In this study, we investigate the following four-dimensional difference equations system
{█(u_n=(αu_(n-3) t_(n-2)+β)/(γv_(n-1) t_(n-2) u_(n-3) ), @v_n=(αv_(n-3) u_(n-2)+β)/(γw_(n-1) u_(n-2) v_(n-3) ),n∈N_0,@w_n=(αw_(n-3) v_(n-2)+β)/(γt_(n-1) v_(n-2) w_(n-3) ), @t_n=(αt_(n-3) w_(n-2)+β)/(γu_(n-1) w_(n-2) t_(n-3) ), )┤
where the initial values u_(-d),v_(-d),w_(-d),t_(-d), d∈{1,2,3} and the parameters α,β,γ are real numbers. Then, we obtain the solutions of system of third-order difference equations in explicit form. In addition, the solutions according to some special cases of the parameters are examined. Finally, numerical examples are given to demonstrate the theoretical results.
In this study, we investigate the following four-dimensional difference equations system
{█(u_n=(αu_(n-3) t_(n-2)+β)/(γv_(n-1) t_(n-2) u_(n-3) ), @v_n=(αv_(n-3) u_(n-2)+β)/(γw_(n-1) u_(n-2) v_(n-3) ),n∈N_0,@w_n=(αw_(n-3) v_(n-2)+β)/(γt_(n-1) v_(n-2) w_(n-3) ), @t_n=(αt_(n-3) w_(n-2)+β)/(γu_(n-1) w_(n-2) t_(n-3) ), )┤
where the initial values u_(-d),v_(-d),w_(-d),t_(-d), d∈{1,2,3} and the parameters α,β,γ are real numbers. Then, we obtain the solutions of system of third-order difference equations in explicit form. In addition, the solutions according to some special cases of the parameters are examined. Finally, numerical examples are given to demonstrate the theoretical results.
Birincil Dil | İngilizce |
---|---|
Konular | Adi Diferansiyel Denklemler, Fark Denklemleri ve Dinamik Sistemler |
Bölüm | Makaleler |
Yazarlar | |
Yayımlanma Tarihi | 27 Şubat 2024 |
Gönderilme Tarihi | 12 Aralık 2023 |
Kabul Tarihi | 15 Şubat 2024 |
Yayımlandığı Sayı | Yıl 2024 |