BibTex RIS Kaynak Göster

BEŞİNCİ MERTEBEDEN FARK DENKLEM SİSTEMİNİN ÇÖZÜLEBİLİRLİĞİ ÜZERİNE

Yıl 2019, Cilt: 7 Sayı: 1, 29 - 45, 01.01.2019

Kaynakça

  • [1] Alzahrani E O, El-Dessoky M M, Elsayed E M and Kuang Y. Solutions and properties of some degernerate systems of difference equations. J. Computational Analysis and Applications, 2015; 3: 321-333.
  • [2] Çınar C and Elsayed E M. On the positive solutions of the difference equation Applied Mathematics and Computation, 2004; 150: 21-24.
  • [3] Dekkar I. Touafek N and Yazlik Y. Global stability of a third-order non- linear system of difference equations with period two coefficients. Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 2017; 111: 325-347.
  • [4] Din Q. On a system of fourth-order rational difference equations. Acta Univ. Apulensis, Math. Inform, 2014; 39: 137-150.
  • [5] Elaydi S. An Introduction to Difference Equations. Springer, New York, 1996.
  • [6] El-Dessoky M M, Elsayed E M and Alghamdi M Solutions and periodicity for some systems of fourth order rational difference equations. J. Computational Analysis and Applications, 2015; 18: 179-194.
  • [7] El-Metwally H and Elsayed E M. Qualitative study of solutions of some difference equatiaons. Abstract and Applied Analysis, Article ID 248291, 2012, 16 pages.
  • [8] El-Metwally H and Elsayed E M. Qualitative behavior of some rational difference equatiaons. J. Computational Analysis and Applications, 2016.; 20: 226-236.
  • [9] Elsayed E M. Behavior and expression of the solutions of some rational difference equations. J. Computational Analysis and Applications, 2013; 15: 73-81.
  • [10] Elsayed E M. Solution of a rational recursive sequences of order three. Funct. Approx. Comment. Math., 2013; 48: 7-17.
  • [11] Elsayed E M. El-Dessoky M M and Alzahrani E O. The form of solution and dynamics of a rational recursive sequence. J. Computational Analysis and Applications, 2014; 17: 172-186.
  • [12] Elsayed E M and İbrahim T F. Solutions and periodicity of a rational recursive sequences of order five. Bulletin of the Malaysian Mathematical Sciences Society, 2014; 38: 95-112.
  • [13] Elsayed E M. Mahmoud S R and Ali A T. Expression and dynamics of the soltions of some rational recursive sequences. Iranian Journal of Science & Technology, 2014; 38: 295-303.
  • [14] Elsayed E M and İbrahim T F. Periodicity and solutions for some systems of nonlinear rational difference equations. Hacettepe Journal of Mathematics and Statistics, 2015; 44: 1361-1390.
  • [15] Elsayed E M. Expression and behavior of the solutions of some rational recursive sequences. Mathematical Methods in the Applied Sciences, 2016; 39: 5682-5694.
  • [16] Gelisken A and Kara M. Some General Systems of Rational Difference Equations. Journal of Difference Equations, 2015; 396757, 1-7.
  • [17] Grove E A and Ladas G. Periodicities in Nonlinear Difference Equations. Advances in Discrete Mathematics and Applications, 2005; 4: Chapman & Hall/CRC, London.
  • [18] Halim Y. Touafek N and Yazlik Y. Dynamic behavior of a second-order nonlinear rational difference equation. Turk. J. Math, 2015; 39: 1004-1018.
  • [19] İbrahim T F. On the third order rational difference equation . İnt. J. Contemp. Math. Sciences, 2009; 4: 1321-1334.
  • [20] İbrahim T F and Touafek N. On a third order rational difference equation with variable coefficients. Dynamics of Discrete and Impulsive Systems Series B Applications Algorithms, 2013; 20: 251-264.
  • [21] Steviç S. Diblik J. Iricanin B and Smarda Z. On the difference equation Hindawi Publishing Corporation Abstract and Applied Analysis, 2012, 9 pages.
  • [22] Steviç S. On some solvable systems of difference equations. Applied Mathematics and Computation, 2012; 218: 5010-5018.
  • [23] Steviç S. On a solvable rational system of difference equations. Applied Mathematics and Computation, 2012; 219: 2896-2908.
  • [24] Steviç S. Diblik J. Iricanin B and Smarda Z. Solvability of nonlinear difference equations of fourth order. Electronic Journal of Differential Equations, 2014; 264: 1-14.
  • [25] Steviç S. Iricanin B and Smarda Z. On a close to symmetric system of difference equations of second order. Advences in Difference Equations, 2015; 264: 1-34.
  • [26] Steviç S. Diblik J. Iricanin B and Smarda Z. On a fifth-order difference equation. J. Computational Analysis and Applications, 2016; 20: 1214-1227.
  • [27] Stevic S. Alghamdi M A. Alotaibi A and Elsayed E M. On a class of solvable higher order difference equations. Filomat, 2017; 31: 461-477.
  • [28] Tollu D T. Yazlik Y and Taskara N. On the solutions of two special types of riccati difference equation via fibonacci numbers. Advances in Difference Equations, 2013; 174: 1-7.
  • [29] Tollu D T. Yazlik Y and Taskara N. On fourteen solvable systems of difference equations. Applied Mathematics and Computation, 2014; 233: 310-319.
  • [30] Tollu D T. Yazlik Y and Taskara N. Behavior of positive solutions of a difference equation. Journal of Applied Mathematics and Informatics, 2017; 35: 217-230.
  • [31] Touafek N and Elsayed E M. Periodicity of some systems of nonlinear difference equations. Bull. Math. Soc. Sci. Math. Roumanie Tome, 2012; 55: 217-224.
  • [32] Yalcinkaya I and Tollu D T. Global behavior of a second order system of difference equations. Advanced Studies in Contemporary Mathematics, 2016; 26: 653-667.
  • [33] Yazlik Y. On the solutions and behavior of rational difference equations. J. Comput. Anal. Appl, 2014; 17: 584-594.
  • [34] Yazlik Y. Elsayed E M and Taskara N. On the behaviour of the solutions the solutions of difference equation system. J. Comput. Anal. Appl, 2014; 16: 932-941.
  • [35] Yazlik Y. Tollu D T and Taskara N. On the behaviour of solutions for some systems of difference equations. J. Comput. Anal. Appl, 2015; 18: 166-178.
  • [36] Yazlik Y. Tollu D T and Taskara N. On the solutions of a three-dimensional system of difference equations. Kuwait Journal of Science, 2015; 43: 95-111.
Toplam 36 adet kaynakça vardır.

Ayrıntılar

Bölüm Makaleler
Yazarlar

Yasin Yazlık Bu kişi benim

Merve Kara

Yayımlanma Tarihi 1 Ocak 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 7 Sayı: 1

Kaynak Göster

APA Yazlık, Y., & Kara, M. (2019). BEŞİNCİ MERTEBEDEN FARK DENKLEM SİSTEMİNİN ÇÖZÜLEBİLİRLİĞİ ÜZERİNE. Eskişehir Teknik Üniversitesi Bilim Ve Teknoloji Dergisi B - Teorik Bilimler, 7(1), 29-45.
AMA Yazlık Y, Kara M. BEŞİNCİ MERTEBEDEN FARK DENKLEM SİSTEMİNİN ÇÖZÜLEBİLİRLİĞİ ÜZERİNE. Estuscience - Theory. Ocak 2019;7(1):29-45.
Chicago Yazlık, Yasin, ve Merve Kara. “BEŞİNCİ MERTEBEDEN FARK DENKLEM SİSTEMİNİN ÇÖZÜLEBİLİRLİĞİ ÜZERİNE”. Eskişehir Teknik Üniversitesi Bilim Ve Teknoloji Dergisi B - Teorik Bilimler 7, sy. 1 (Ocak 2019): 29-45.
EndNote Yazlık Y, Kara M (01 Ocak 2019) BEŞİNCİ MERTEBEDEN FARK DENKLEM SİSTEMİNİN ÇÖZÜLEBİLİRLİĞİ ÜZERİNE. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B - Teorik Bilimler 7 1 29–45.
IEEE Y. Yazlık ve M. Kara, “BEŞİNCİ MERTEBEDEN FARK DENKLEM SİSTEMİNİN ÇÖZÜLEBİLİRLİĞİ ÜZERİNE”, Estuscience - Theory, c. 7, sy. 1, ss. 29–45, 2019.
ISNAD Yazlık, Yasin - Kara, Merve. “BEŞİNCİ MERTEBEDEN FARK DENKLEM SİSTEMİNİN ÇÖZÜLEBİLİRLİĞİ ÜZERİNE”. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B - Teorik Bilimler 7/1 (Ocak 2019), 29-45.
JAMA Yazlık Y, Kara M. BEŞİNCİ MERTEBEDEN FARK DENKLEM SİSTEMİNİN ÇÖZÜLEBİLİRLİĞİ ÜZERİNE. Estuscience - Theory. 2019;7:29–45.
MLA Yazlık, Yasin ve Merve Kara. “BEŞİNCİ MERTEBEDEN FARK DENKLEM SİSTEMİNİN ÇÖZÜLEBİLİRLİĞİ ÜZERİNE”. Eskişehir Teknik Üniversitesi Bilim Ve Teknoloji Dergisi B - Teorik Bilimler, c. 7, sy. 1, 2019, ss. 29-45.
Vancouver Yazlık Y, Kara M. BEŞİNCİ MERTEBEDEN FARK DENKLEM SİSTEMİNİN ÇÖZÜLEBİLİRLİĞİ ÜZERİNE. Estuscience - Theory. 2019;7(1):29-45.