Araştırma Makalesi
BibTex RIS Kaynak Göster

HYPER-LEONARDO HYBRINOMIALS

Yıl 2023, Cilt: 11 Sayı: 1, 91 - 103, 28.02.2023
https://doi.org/10.20290/estubtdb.1226488

Öz

The aim of this paper is to define hyper-Leonardo hybrinomials as a generalization of the Leonardo Pisano hybrinomials and to examine some of their properties such as the recurrence relation, summation formula and generating function. Another aim is to introduce hyper-Leonardo hybrid numbers.
The aim of this paper is to define hyper-Leonardo hybrinomials as a generalization of the Leonardo Pisano hybrinomials and to examine some of their properties such as the recurrence relation, summation formula and generating function. Another aim is to introduce hyper-Leonardo hybrid numbers.

The aim of this paper is to define hyper-Leonardo hybrinomials as a generalization of the Leonardo Pisano hybrinomials and to examine some of their properties such as the recurrence relation, summation formula and generating function. Another aim is to introduce hyper-Leonardo hybrid numbers.

Kaynakça

  • [1] Falcón S, Plaza Á. On the Fibonacci k-numbers. Chaos, Solitons and Fractals 2007; 32 (5): 1615-1624.
  • [2] Yazlik Y, Köme C, Mathusudanan V. A new generalization of Fibonacci and Lucas p-numbers. Journal of Computational Analysis and Applications 2018; 25 (4): 667-669.
  • [3] Bernstein M, Sloane NJA. Some canonical sequences of integers. Linear Algebra and its Applications 1995; 226-228: 57-72. https://doi.org/10.1016/0024-3795(94)00245-9
  • [4] Betten D. Kalahari and the sequence "Sloane No.377". Annals of Discrete Mathematics 1988; 37: 51-58. https://doi.org/10.1016/S01675060(08)70224-3
  • [5] Cameron BJ. Some sequences of integers. Discrete Mathematics 1989; 75 (1-3): 89-102. https://doi.org/10.1016/0012-365X(89)90081-2
  • [6] Koshy T. Fibonacci and Lucas numbers with applications. Pure and Applied Mathematics, A Wiley-Interscience Series of Texts, Monographs and Tracts, New York: Wiley 2001.
  • [7] Catarino PM, Borges A. On Leonardo numbers. Acta Mathematica Universitatis Comenianae 2020; 89 (1): 75-86.
  • [8] Alp Y., Koçer GE. Hybrid Leonardo numbers. Chaos, Solitons and Fractals 2021;150: 111128. https://doi.org/10.1016/j.chaos.2021.111128
  • [9] Soykan Y. Generalized Leonardo number. Journal of Progressive Research in Mathematics 2021; 18 (4): 58-84.
  • [10] Soykan Y. Special cases of generalized Leonardo numbers: modified p-Leonardo, p-Leonardo-Lucas and p-Leonardo numbers. Earthline Journal of Mathematical Sciences 2023; 11(2): 317-342.
  • [11] Mersin EÖ, Bahşi M. Hyper-Leonardo numbers. Conference Proceedings of Science and Technology 2022; 5 (1): 14-20.
  • [12] Shannon A.G. A note on generalized Leonardo numbers. Notes on Number Theory and Discrete Mathematics 2019; 25 (3): 97-101.
  • [13] Kürüz F, Dağdeviren A. Catarino P. On Leonardo Pisano Hybrinomials. Mathematics 2021; 9 (22): 2923. https://doi.org/10.3390/math9222923
  • [14] Mersin EÖ. Hyper-Leonardo polynomials. 9th International Congress on Fundamental and Applied Sciences (ICFAS2022) Proceeding book, icfas2022.intsa.org, ISBN 978-605-67052-7-4
  • [15] Özdemir M. Introduction to hybrid numbers. Advances in Applied Clifford Algebras 2018; 28 (1): 1-32.
  • [16] Szynal-Liana A. Wloch I. The Fibonacci hybrid numbers. Utilitas Mathematica 2019; 110.
  • [17] Szynal-Liana A, Wloch I. Introduction to Fibonacci and Lucas hybrinomials. Complex Variables and Elliptic Equations 2020; 65(10): 1736-1747.
  • [18] Szynal-Liana A, Wloch I. On Jacopsthal and Jacopsthal-Lucas hybrid numbers. Annales Mathematicae Silesianae 2019; 33: 276-283. https://doi.org/10.2478/amsil-2018-0009
  • [19] Szynal-Liana A. The Horadam hybrid numbers. Discussiones Mathematicae General Algebra and Applications 2018; 38(1): 91-98.
  • [20] Kızılateş C. A note on Horadam hybrinomials. Fundamental Journal of mathematics and Applications 2022; 5 (1): 1-9. https://doi.org/10.33401/fujma.993546
  • [21] Öztürk İ, Özdemir M. Similarity of hybrid numbers. Mathematical Methods in Applied Sciences. 2020; 43(15): 8867-8881. https://doi.org/10.1002/mma.6580
  • [22] Yağmur T. A note on generalized hybrid tribonacci numbers. Discussiones Mathematicae General Algebra and Applications 2020; 40:187-199. [23] Dos Santos Mangueira MC, Vieira RPM, Alves FRV, Catarino PMMC. The hybrid numbers of Padovan and some identities. Annales Mathematicae Silesianae 2020; 34 (2): 256-267. https://doi.org/10.2478/amsil-2020-0019
  • [24] Kızılateş C, A new generalization of Fibonacci hybrid and Lucas hybrid numbers. Chaos, Solitons and Fractals 2020; 130: 109449. https://doi.org/10.1016/j.chaos.2019.109449
  • [25] Kızılateş C, Kone T. On higher order Fibonacci hyper complex numbers. Chaos, Solitons and Fractals 2021; 148; 111044. https://doi.org/10.1016/j.chaos.2021.111044 [26] Polatlı E. A note on ratios of Fibonacci hybrid and Lucas hybrid numbers. Notes on Number Theory and Discrete Mathematics 2021; 27 (3): 73-78.
  • [27] Kızılateş C, Kone T. On special spacelike hybrid numbers with Fibonacci divisor number components. Indian Journal of Pure and Apllied Mathematics 2022;1-9.
  • [28] Alp Y, Koçer GE. Hybrid Leonardo numbers. Chaos, Solitons and Fractals 2021; 150: 111128. https://doi.org/10.1016/j.chaos.2021.111128
  • [29] Dağdeviren A, Kürüz F. On The Horadam Hybrid Quaternions. arXiv preprint 2020; arXiv:2012.08277.
  • [30] Mangueira MCDS, Alves FRV, Catarino PMMC. Hybrid quaternions of Leonardo. Trends in Computational and Applied Mathematics 2022; 23 (1): 51-62. https://doi.org/10.5540/tcam.2022.023.01.00051
  • [31] Dumont D. Matrices d'Euler-Siedel. Seminaire Lotharingien de Combinatorie B05c, 1981.
  • [32] Dil A, Mezö I. A symmetric algorithm hyperharmonic and Fibonacci numbers. Applied Mathematics and Computation 2008; 206(2): 942-951.
  • [33] Graham RL, Knuth DE. Patashnik O.Concrete Mathematics. Addison Wesley 1993.

HYPER-LEONARDO HYBRINOMIALS

Yıl 2023, Cilt: 11 Sayı: 1, 91 - 103, 28.02.2023
https://doi.org/10.20290/estubtdb.1226488

Öz

The aim of this paper is to define hyper-Leonardo hybrinomials as a generalization of the Leonardo Pisano hybrinomials and to examine some of their properties such as the recurrence relation, summation formula and generating function. Another aim is to introduce hyper-Leonardo hybrid numbers.

The aim of this paper is to define hyper-Leonardo hybrinomials as a generalization of the Leonardo Pisano hybrinomials and to examine some of their properties such as the recurrence relation, summation formula and generating function. Another aim is to introduce hyper-Leonardo hybrid numbers.

The aim of this paper is to define hyper-Leonardo hybrinomials as a generalization of the Leonardo Pisano hybrinomials and to examine some of their properties such as the recurrence relation, summation formula and generating function. Another aim is to introduce hyper-Leonardo hybrid numbers.

Kaynakça

  • [1] Falcón S, Plaza Á. On the Fibonacci k-numbers. Chaos, Solitons and Fractals 2007; 32 (5): 1615-1624.
  • [2] Yazlik Y, Köme C, Mathusudanan V. A new generalization of Fibonacci and Lucas p-numbers. Journal of Computational Analysis and Applications 2018; 25 (4): 667-669.
  • [3] Bernstein M, Sloane NJA. Some canonical sequences of integers. Linear Algebra and its Applications 1995; 226-228: 57-72. https://doi.org/10.1016/0024-3795(94)00245-9
  • [4] Betten D. Kalahari and the sequence "Sloane No.377". Annals of Discrete Mathematics 1988; 37: 51-58. https://doi.org/10.1016/S01675060(08)70224-3
  • [5] Cameron BJ. Some sequences of integers. Discrete Mathematics 1989; 75 (1-3): 89-102. https://doi.org/10.1016/0012-365X(89)90081-2
  • [6] Koshy T. Fibonacci and Lucas numbers with applications. Pure and Applied Mathematics, A Wiley-Interscience Series of Texts, Monographs and Tracts, New York: Wiley 2001.
  • [7] Catarino PM, Borges A. On Leonardo numbers. Acta Mathematica Universitatis Comenianae 2020; 89 (1): 75-86.
  • [8] Alp Y., Koçer GE. Hybrid Leonardo numbers. Chaos, Solitons and Fractals 2021;150: 111128. https://doi.org/10.1016/j.chaos.2021.111128
  • [9] Soykan Y. Generalized Leonardo number. Journal of Progressive Research in Mathematics 2021; 18 (4): 58-84.
  • [10] Soykan Y. Special cases of generalized Leonardo numbers: modified p-Leonardo, p-Leonardo-Lucas and p-Leonardo numbers. Earthline Journal of Mathematical Sciences 2023; 11(2): 317-342.
  • [11] Mersin EÖ, Bahşi M. Hyper-Leonardo numbers. Conference Proceedings of Science and Technology 2022; 5 (1): 14-20.
  • [12] Shannon A.G. A note on generalized Leonardo numbers. Notes on Number Theory and Discrete Mathematics 2019; 25 (3): 97-101.
  • [13] Kürüz F, Dağdeviren A. Catarino P. On Leonardo Pisano Hybrinomials. Mathematics 2021; 9 (22): 2923. https://doi.org/10.3390/math9222923
  • [14] Mersin EÖ. Hyper-Leonardo polynomials. 9th International Congress on Fundamental and Applied Sciences (ICFAS2022) Proceeding book, icfas2022.intsa.org, ISBN 978-605-67052-7-4
  • [15] Özdemir M. Introduction to hybrid numbers. Advances in Applied Clifford Algebras 2018; 28 (1): 1-32.
  • [16] Szynal-Liana A. Wloch I. The Fibonacci hybrid numbers. Utilitas Mathematica 2019; 110.
  • [17] Szynal-Liana A, Wloch I. Introduction to Fibonacci and Lucas hybrinomials. Complex Variables and Elliptic Equations 2020; 65(10): 1736-1747.
  • [18] Szynal-Liana A, Wloch I. On Jacopsthal and Jacopsthal-Lucas hybrid numbers. Annales Mathematicae Silesianae 2019; 33: 276-283. https://doi.org/10.2478/amsil-2018-0009
  • [19] Szynal-Liana A. The Horadam hybrid numbers. Discussiones Mathematicae General Algebra and Applications 2018; 38(1): 91-98.
  • [20] Kızılateş C. A note on Horadam hybrinomials. Fundamental Journal of mathematics and Applications 2022; 5 (1): 1-9. https://doi.org/10.33401/fujma.993546
  • [21] Öztürk İ, Özdemir M. Similarity of hybrid numbers. Mathematical Methods in Applied Sciences. 2020; 43(15): 8867-8881. https://doi.org/10.1002/mma.6580
  • [22] Yağmur T. A note on generalized hybrid tribonacci numbers. Discussiones Mathematicae General Algebra and Applications 2020; 40:187-199. [23] Dos Santos Mangueira MC, Vieira RPM, Alves FRV, Catarino PMMC. The hybrid numbers of Padovan and some identities. Annales Mathematicae Silesianae 2020; 34 (2): 256-267. https://doi.org/10.2478/amsil-2020-0019
  • [24] Kızılateş C, A new generalization of Fibonacci hybrid and Lucas hybrid numbers. Chaos, Solitons and Fractals 2020; 130: 109449. https://doi.org/10.1016/j.chaos.2019.109449
  • [25] Kızılateş C, Kone T. On higher order Fibonacci hyper complex numbers. Chaos, Solitons and Fractals 2021; 148; 111044. https://doi.org/10.1016/j.chaos.2021.111044 [26] Polatlı E. A note on ratios of Fibonacci hybrid and Lucas hybrid numbers. Notes on Number Theory and Discrete Mathematics 2021; 27 (3): 73-78.
  • [27] Kızılateş C, Kone T. On special spacelike hybrid numbers with Fibonacci divisor number components. Indian Journal of Pure and Apllied Mathematics 2022;1-9.
  • [28] Alp Y, Koçer GE. Hybrid Leonardo numbers. Chaos, Solitons and Fractals 2021; 150: 111128. https://doi.org/10.1016/j.chaos.2021.111128
  • [29] Dağdeviren A, Kürüz F. On The Horadam Hybrid Quaternions. arXiv preprint 2020; arXiv:2012.08277.
  • [30] Mangueira MCDS, Alves FRV, Catarino PMMC. Hybrid quaternions of Leonardo. Trends in Computational and Applied Mathematics 2022; 23 (1): 51-62. https://doi.org/10.5540/tcam.2022.023.01.00051
  • [31] Dumont D. Matrices d'Euler-Siedel. Seminaire Lotharingien de Combinatorie B05c, 1981.
  • [32] Dil A, Mezö I. A symmetric algorithm hyperharmonic and Fibonacci numbers. Applied Mathematics and Computation 2008; 206(2): 942-951.
  • [33] Graham RL, Knuth DE. Patashnik O.Concrete Mathematics. Addison Wesley 1993.
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Makaleler
Yazarlar

Efruz Özlem Mersin 0000-0001-6260-9063

Mustafa Bahşi 0000-0002-6356-6592

Yayımlanma Tarihi 28 Şubat 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 11 Sayı: 1

Kaynak Göster

APA Mersin, E. Ö., & Bahşi, M. (2023). HYPER-LEONARDO HYBRINOMIALS. Eskişehir Teknik Üniversitesi Bilim Ve Teknoloji Dergisi B - Teorik Bilimler, 11(1), 91-103. https://doi.org/10.20290/estubtdb.1226488
AMA Mersin EÖ, Bahşi M. HYPER-LEONARDO HYBRINOMIALS. Estuscience - Theory. Şubat 2023;11(1):91-103. doi:10.20290/estubtdb.1226488
Chicago Mersin, Efruz Özlem, ve Mustafa Bahşi. “HYPER-LEONARDO HYBRINOMIALS”. Eskişehir Teknik Üniversitesi Bilim Ve Teknoloji Dergisi B - Teorik Bilimler 11, sy. 1 (Şubat 2023): 91-103. https://doi.org/10.20290/estubtdb.1226488.
EndNote Mersin EÖ, Bahşi M (01 Şubat 2023) HYPER-LEONARDO HYBRINOMIALS. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B - Teorik Bilimler 11 1 91–103.
IEEE E. Ö. Mersin ve M. Bahşi, “HYPER-LEONARDO HYBRINOMIALS”, Estuscience - Theory, c. 11, sy. 1, ss. 91–103, 2023, doi: 10.20290/estubtdb.1226488.
ISNAD Mersin, Efruz Özlem - Bahşi, Mustafa. “HYPER-LEONARDO HYBRINOMIALS”. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B - Teorik Bilimler 11/1 (Şubat 2023), 91-103. https://doi.org/10.20290/estubtdb.1226488.
JAMA Mersin EÖ, Bahşi M. HYPER-LEONARDO HYBRINOMIALS. Estuscience - Theory. 2023;11:91–103.
MLA Mersin, Efruz Özlem ve Mustafa Bahşi. “HYPER-LEONARDO HYBRINOMIALS”. Eskişehir Teknik Üniversitesi Bilim Ve Teknoloji Dergisi B - Teorik Bilimler, c. 11, sy. 1, 2023, ss. 91-103, doi:10.20290/estubtdb.1226488.
Vancouver Mersin EÖ, Bahşi M. HYPER-LEONARDO HYBRINOMIALS. Estuscience - Theory. 2023;11(1):91-103.