Araştırma Makalesi
BibTex RIS Kaynak Göster

ON WEAK MINIMAL SOLUTIONS OF SET VALUED OPTIMIZATION PROBLEMS AND COMPARISON OF SOME SET ORDER RELATIONS

Yıl 2023, Cilt: 11 Sayı: 1, 60 - 69, 28.02.2023
https://doi.org/10.20290/estubtdb.1241960

Öz

In this work, some set order relations are compared with each other. In addition, it is shown that every weak minimal solution of a set valued optimization problem with respect to vector optimization criterion, is also a weak minimal solution with respect to set optimization criterion considering some special set orders.

Proje Numarası

22ADP047

Kaynakça

  • [1] Kuroiwa D. Some criteria in set-valued optimization. Investigations on nonlinear analysis and convex analysis. Surikaisekikenkyusho Kokyuroku 1998; 985: 171–176
  • [2] Kuroiwa D. The natural criteria in set-valued optimization. Research on nonlinear analysis and convex analysis. Surikaisekikenkyusho Kokyuroku 1998; 1031: 85–90
  • [3] Kuroiwa D. Some duality theorems of set-valued optimization with natural criteria. In: The International Conference on Nonlinear Analysis and Convex Analysis 1999, World Scientific, River Edge, NJ. 221–228.
  • [4] Kuroiwa D. Existence theorems of set optimization with set-valued maps. J Inf Optim 2003; 24: 73–84.
  • [5] Jahn J, Ha T.X.D. New Order Relations in Set Optimization. J Optimiz Theory App. 2003; 148: 209–236.
  • [6] Young RC. The algebra of many-valued quantities. Math Ann. 1931; 104: 260–290
  • [7] Nishnianidze Z.G. Fixed points of monotonic multiple-valued operators. Bull Georgian Acad Sci 1984; 114: 489–491 (in Russian)
  • [8] Karaman E, Soyertem M, Atasever Güvenç İ, Tozkan D, Küçük M, Küçük Y. Partial order relations on family of sets and scalarizations for set optimization. Positivity 2018; 22: 783-802.
  • [9] Hernández E, Rodríguez-Marín L. Nonconvex scalarization in set optimization with set-valued maps. J Math Anal Appl 2007; 325: 1–18
  • [10] Karaman E, Güvenç İA, Soyertem M. Optimality conditions in set-valued optimization problems with respect to a partial order relation by using subdifferentials. Optimization 2021; 70 (3): 613-650.
  • [11] Karaman E, Soyertem M, Güvenç İ.A. Optimality conditions in set-valued optimization problem with respect to a partial order relation via directional derivative. Taiwan J Math 2020; 24 (3): 709-722
  • [12] Karaman E. Nonsmooth set variational inequality problems and optimality criteria for set optimization. Miskolc Math Notes 2020; 21 (1): 229-240
  • [13] Khan AA, Tammer C, Zălinescu C. 2015. Set-Valued Optimization: An Introduction with Applications. Berlin: Springer, 2015.
  • [14] Khushboo, Lalitha CS. Scalarizations for a set optimization problem using generalized oriented distance function. Positivity 2019; 23: 1195–1213
  • [15] Kuroiwa D, Tanaka T, Ha TXD. On cone convexity of set-valued maps. Nonlinear Analysis 1997; 30: 1487-1496.
  • [16] Kuroiwa D. On set-valued optimization. In: Third World Congress of Nonlinear Analysis 2001, Part 2, Nonlinear Anal. 47: 1395–1400.
  • [17] Kuroiwa D. Existence of efficient points of set optimization with weighted criteria. J Nonlinear Convex A 2003; 4: 117–123.
  • [18] Küçük M, Soyertem M, Küçük Y. On the scalarization of set-valued optimization problems with respect to total ordering cones. In: Hu, B., Morasch, K., Pickl, S., Siegle, M. (eds.) Operations Research Proceedings, Heidelberg: Springer, 347–352, 2011
  • [19] Küçük M, Soyertem M, Küçük Y, Atasever İ. Vectorization of set-valued maps with respect to total ordering cones and its applications to set-valued optimization problems. J Math Anal 2012; 385: 285–292
  • [20] Neukel N. Order relations of sets and its application in socio-economics. Appl Math Sci 2013; 7(115): 5711–5739.

KÜME DEĞERLİ OPTİMİZASYON PROBLEMLERİNİN ZAYIF MİNİMAL ÇÖZÜMLERİ VE BAZI KÜME SIRALAMALARININ KARŞILAŞTIRILMASI ÜZERİNE

Yıl 2023, Cilt: 11 Sayı: 1, 60 - 69, 28.02.2023
https://doi.org/10.20290/estubtdb.1241960

Öz

Bu çalışmada, bazı küme sıralamaları karşılaştırılmıştır. Ek olarak bir küme değerli optimizasyon probleminin vektör optimizasyon yaklaşımına göre bir zayıf çözümünün bazı küme sıralamalarına göre belirlenen küme optimizasyonu yaklaşımına göre de bir zayıf minimal çözüm olduğu gösterilmiştir.

Destekleyen Kurum

Eskişehir Teknik Üniversitesi

Proje Numarası

22ADP047

Kaynakça

  • [1] Kuroiwa D. Some criteria in set-valued optimization. Investigations on nonlinear analysis and convex analysis. Surikaisekikenkyusho Kokyuroku 1998; 985: 171–176
  • [2] Kuroiwa D. The natural criteria in set-valued optimization. Research on nonlinear analysis and convex analysis. Surikaisekikenkyusho Kokyuroku 1998; 1031: 85–90
  • [3] Kuroiwa D. Some duality theorems of set-valued optimization with natural criteria. In: The International Conference on Nonlinear Analysis and Convex Analysis 1999, World Scientific, River Edge, NJ. 221–228.
  • [4] Kuroiwa D. Existence theorems of set optimization with set-valued maps. J Inf Optim 2003; 24: 73–84.
  • [5] Jahn J, Ha T.X.D. New Order Relations in Set Optimization. J Optimiz Theory App. 2003; 148: 209–236.
  • [6] Young RC. The algebra of many-valued quantities. Math Ann. 1931; 104: 260–290
  • [7] Nishnianidze Z.G. Fixed points of monotonic multiple-valued operators. Bull Georgian Acad Sci 1984; 114: 489–491 (in Russian)
  • [8] Karaman E, Soyertem M, Atasever Güvenç İ, Tozkan D, Küçük M, Küçük Y. Partial order relations on family of sets and scalarizations for set optimization. Positivity 2018; 22: 783-802.
  • [9] Hernández E, Rodríguez-Marín L. Nonconvex scalarization in set optimization with set-valued maps. J Math Anal Appl 2007; 325: 1–18
  • [10] Karaman E, Güvenç İA, Soyertem M. Optimality conditions in set-valued optimization problems with respect to a partial order relation by using subdifferentials. Optimization 2021; 70 (3): 613-650.
  • [11] Karaman E, Soyertem M, Güvenç İ.A. Optimality conditions in set-valued optimization problem with respect to a partial order relation via directional derivative. Taiwan J Math 2020; 24 (3): 709-722
  • [12] Karaman E. Nonsmooth set variational inequality problems and optimality criteria for set optimization. Miskolc Math Notes 2020; 21 (1): 229-240
  • [13] Khan AA, Tammer C, Zălinescu C. 2015. Set-Valued Optimization: An Introduction with Applications. Berlin: Springer, 2015.
  • [14] Khushboo, Lalitha CS. Scalarizations for a set optimization problem using generalized oriented distance function. Positivity 2019; 23: 1195–1213
  • [15] Kuroiwa D, Tanaka T, Ha TXD. On cone convexity of set-valued maps. Nonlinear Analysis 1997; 30: 1487-1496.
  • [16] Kuroiwa D. On set-valued optimization. In: Third World Congress of Nonlinear Analysis 2001, Part 2, Nonlinear Anal. 47: 1395–1400.
  • [17] Kuroiwa D. Existence of efficient points of set optimization with weighted criteria. J Nonlinear Convex A 2003; 4: 117–123.
  • [18] Küçük M, Soyertem M, Küçük Y. On the scalarization of set-valued optimization problems with respect to total ordering cones. In: Hu, B., Morasch, K., Pickl, S., Siegle, M. (eds.) Operations Research Proceedings, Heidelberg: Springer, 347–352, 2011
  • [19] Küçük M, Soyertem M, Küçük Y, Atasever İ. Vectorization of set-valued maps with respect to total ordering cones and its applications to set-valued optimization problems. J Math Anal 2012; 385: 285–292
  • [20] Neukel N. Order relations of sets and its application in socio-economics. Appl Math Sci 2013; 7(115): 5711–5739.
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Makaleler
Yazarlar

İlknur Atasever Güvenç 0000-0003-0952-1024

Proje Numarası 22ADP047
Yayımlanma Tarihi 28 Şubat 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 11 Sayı: 1

Kaynak Göster

APA Atasever Güvenç, İ. (2023). ON WEAK MINIMAL SOLUTIONS OF SET VALUED OPTIMIZATION PROBLEMS AND COMPARISON OF SOME SET ORDER RELATIONS. Eskişehir Teknik Üniversitesi Bilim Ve Teknoloji Dergisi B - Teorik Bilimler, 11(1), 60-69. https://doi.org/10.20290/estubtdb.1241960
AMA Atasever Güvenç İ. ON WEAK MINIMAL SOLUTIONS OF SET VALUED OPTIMIZATION PROBLEMS AND COMPARISON OF SOME SET ORDER RELATIONS. Estuscience - Theory. Şubat 2023;11(1):60-69. doi:10.20290/estubtdb.1241960
Chicago Atasever Güvenç, İlknur. “ON WEAK MINIMAL SOLUTIONS OF SET VALUED OPTIMIZATION PROBLEMS AND COMPARISON OF SOME SET ORDER RELATIONS”. Eskişehir Teknik Üniversitesi Bilim Ve Teknoloji Dergisi B - Teorik Bilimler 11, sy. 1 (Şubat 2023): 60-69. https://doi.org/10.20290/estubtdb.1241960.
EndNote Atasever Güvenç İ (01 Şubat 2023) ON WEAK MINIMAL SOLUTIONS OF SET VALUED OPTIMIZATION PROBLEMS AND COMPARISON OF SOME SET ORDER RELATIONS. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B - Teorik Bilimler 11 1 60–69.
IEEE İ. Atasever Güvenç, “ON WEAK MINIMAL SOLUTIONS OF SET VALUED OPTIMIZATION PROBLEMS AND COMPARISON OF SOME SET ORDER RELATIONS”, Estuscience - Theory, c. 11, sy. 1, ss. 60–69, 2023, doi: 10.20290/estubtdb.1241960.
ISNAD Atasever Güvenç, İlknur. “ON WEAK MINIMAL SOLUTIONS OF SET VALUED OPTIMIZATION PROBLEMS AND COMPARISON OF SOME SET ORDER RELATIONS”. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B - Teorik Bilimler 11/1 (Şubat 2023), 60-69. https://doi.org/10.20290/estubtdb.1241960.
JAMA Atasever Güvenç İ. ON WEAK MINIMAL SOLUTIONS OF SET VALUED OPTIMIZATION PROBLEMS AND COMPARISON OF SOME SET ORDER RELATIONS. Estuscience - Theory. 2023;11:60–69.
MLA Atasever Güvenç, İlknur. “ON WEAK MINIMAL SOLUTIONS OF SET VALUED OPTIMIZATION PROBLEMS AND COMPARISON OF SOME SET ORDER RELATIONS”. Eskişehir Teknik Üniversitesi Bilim Ve Teknoloji Dergisi B - Teorik Bilimler, c. 11, sy. 1, 2023, ss. 60-69, doi:10.20290/estubtdb.1241960.
Vancouver Atasever Güvenç İ. ON WEAK MINIMAL SOLUTIONS OF SET VALUED OPTIMIZATION PROBLEMS AND COMPARISON OF SOME SET ORDER RELATIONS. Estuscience - Theory. 2023;11(1):60-9.