Derleme
BibTex RIS Kaynak Göster

GIDALARDA HIZLANDIRILMIŞ RAF ÖMRÜ TESTLERİ

Yıl 2020, Cilt: 9 Sayı: 1, 109 - 124, 31.01.2020
https://doi.org/10.18036/estubtdc.680044

Öz

Bilinçli tüketicilerin besinsel ve duyusal kalitesi yüksek uzun ömürlü gıdalara taleplerinin artması ve üretim-tüketim zincirinde kalitenin mümkün olan en yüksek seviyede korunması beklentisi gıda endüstrisini raf ömrü ve hızlandırılmış testler üzerindeki çalışmalara yönlendirmiştir. Raf ömrü işlenmiş ürünün önceden belirlenmiş mikrobiyel, besinsel, tekstürel, duyusal özellikleri ve tüketici beğenisini koruduğu depolama süresi olarak tanımlanabilir. İşlenmiş gıdalar taze halleri ile kıyaslandığında daha uzun raf ömrüne sahiptir ve bu yüzden standart depolama koşullarında raf ömrü testleri uzun zaman gerektirmektedir. Bu nedenle son yıllarda gıdaların kontrollü ve ağırlaştırılmış depolama koşullarındaki bozunma oranlarının ve kalite parametrelerindeki değişimlerin daha hızlı ve kolay belirlenmesi için hızlandırılmış raf ömrü testleri kullanılmaktadır. Çalışma raf ömrü, hızlandırılmış raf ömrü testleri ve raf ömrü tahmininde kullanılacak reaksiyon kinetiği yaklaşımlı matematiksel modelleri açıklayarak son yıllarda hızlandırılmış raf ömrü testleriyle ilgili seçilmiş çalışmaları özetlemeyi amaçlamaktadır.

Kaynakça

  • [1] Cavaliere A, Ventura V. Mismatch between food sustainability and consumer acceptance toward innovation technologies among millenial students: The case of shelf life extention. Journal of Cleaner Production 2018; 175:641-650.
  • [2] Ashurst P. The stability and shelf life of fruit juices and soft drinks. In:The stability and shelf life of food. Ashurts&Associates, Ludlow, UK 2016; 347-374. http://dx.doi.org/10.1016/B978-0-08-100435-7.00012-5.
  • [3] Manzocco L, Calligaris S, Anese M, Nicoli MC. Determination and prediction of shelf life of oils/fats and oil/fat-based foods. Oxidative stability and shelf life of foods containing oils and fats 2016; 133-156.
  • [4] Wibowo S, Buve C, Hendrickx M, Loey AV, Grauwe T. Integrated science-based approach to study quality changes of shelf-stable food products during storage: A proof of concept on orange and mango juices. Trends in Food Science and Technology 2018; 73:76-86.
  • [5] Gimenez A, Gagliardi A, Ares G. Estimation of failure criteria in multivariate sensory shelf life testing using survival analysis. Food Research International 2017; 99(1): 542-549.
  • [6] Grewal MK, Chandrapala J, Donkor O, Apostolopoulos V, Vasiljevic T. Electrophoretic characterization of protein interactions suggesting limited feasibility of accelerated shelf-life testing of ultra-high temperature milk. Journal Dairy Science 2017; 100: 76-88.
  • [7] Peleg M, Normand MD. Simulating shelf life determination by two simultaneous criteria. Food Research International 2015; 78:388-395.
  • [8] Kebede BT, Grauwet T, Magpusao J, Michiels SC, Hendrickx M, Loey AV. An integrated fingerprinting and kinetic approach to accelerated shelf-life testing of chemical changes in thermally treated carrot puree. Food Chemistry 2015a; 179: 94-102.
  • [9] Derossi A, Mastrandrea L, Amodio ML, Chiara MLV, Colelli G. Application of multivariate accelerated tests for the shelf life determination. Journal of Food Engineering 2016; 169:122-130.
  • [10] O'Sullivan MG. Shelf life and sensory quality of foods and beverages. In A handbook for sensory and consumer-driven new product Development. Woodhead Publishing 2017; 103-123.
  • [11] Martins RC, Lopez IC, Silva CLM. Accelerated life testing of frozen green beans (Phaseolus vulgaris L.) quality loss kinetics: Colour and starch. Journal of Food Engineering 2005; 67:339-346.
  • [12] Ling B, Tang J, Kong F, Mitcham EJ, Wang S. Kinetics of food quality changes during thermal processing: A review. Food Bioprocess Technology 2015; 8:343-358.
  • [13] Garcia-Garcia P, Lopez-Lopez A, Garrido-Fernandez A. Study of the shelf life of ripe olives using an accelerated test approach. Journal of Food Engineering 2008; 84:569-575.
  • [14] Wibowo S, Grauwet T, Gedefa GB, Hendrickx M, Loey AV. Quality changes of pasteurised mango juice during storage. Part II: Kinetic modelling of shelf-life markers. Food Research International 2015a; 78:410-423.
  • [15] Bunkar DS, Jha A, Mahajan A. Kinetics of changes in shelf life parameters during storage of pearl millet based kheer mix and development of a shelf life prediction model. Journal of Food Science and Technology 2014; 51(12):3740-3748.
  • [16] Buve C, Kebede BT, De Batselier C, Carrillo C, Pham HTT, Hendrickx M, Grauwet T, Loey AV. Kinetics of colour changes in pasteurised strawberry juice during storage. Journal of Food Engineering 2018; 216:42-51.
  • [17] Remini H, Mertz C, Belbahi A, Achir N, Dornier M, Madani K. Degradation kinetic modelling of ascorbic acid and colour intensity in pasteurised blood orange during storage. Food Chemistry 2015; 173:665-673.
  • [18] Liu X, Jiang Y, Shen S, Luo Y, Gao L. Comparison of Arrhenius model and artificial neuronal network for quality prediction of rainbow trout (Oncorhynchus mykiss) fillets during storage at different temperatures. LWT-Food Science and Technology 2015; 60:142-147.
  • [19] Kebede BT, Grauwet T, Palmers S, Michiels C, Hendrickx M, Loey AV. Investigating chemical changes during shelf-life of thermal and high-pressure high-temperature sterilized carrot purees: A 'fingerprinting kinetics' approach. Food Chemistry 2015b; 185:119-126.
  • [20] Kebede BT, Grauwet T, Magpusao J, Palmers S, Michiels C, Hendrickx M, Loey AV. Chemical changes of thermally sterilized broccoli puree during shelf-life: Investigation of the volatile fraction by fingerprinting-kinetics. Food Research International 2015c; 67:264-271.
  • [21] Celli GB, Dibazar R, Ghanem A, Brooks SL. Degradation kinetics of anthocyanins in freeze-dried microencapsulates from lowbush blueberries (Vaccinium angustifolium Aiton) and prediction of shelf-life. Drying Technology 2016; 34(10):1175-1184.
  • [22] Peleg M, Normand MD, Corradini MG. The Arrhenius equation revisited. Critical Reviews in Food Science and Nutrition, 2012, 52: 830-851.
  • [23] Roos YH, Drusch S. Reaction kinetics. In Phase Transitions in Foods (2nd edition). Editors: Roos YH, Drusch S. Academic Press, NewYork, 2016, 275-313.
  • [24] Anonim A. Williams-Landel-Ferry equation. Wikipedia, erişim tarihi: 09.09.2019, http/www.en.wikipedia.org/wiki/Williams_Landel_Ferry_equation.
  • [25] Calligaris S, Manzocco L, Anese M, Nicoli MC. Shelf-life assessment of food undergoing oxidation-A review. Critical Reviews in Food Science and Nutrition 2016, 56: 1903-1912. [26] Anonim B. Eyring Equation. Wikipedia, erişim tarihi:19.09.2019, http/www.en.wikipedia.org/Eyring_equation.
  • [27] Huang L, Hwang A, Phillips J. Effect of temperature on microbial growth rate-Mathematical analysis: The Arrhenius and Eyring-Polanyi connections. Journal of Food Science, 2011, 76(8):553-560.
  • [28] Rao C. Shelf life testing. In Engineering for storage of fruits and vegetables. BSP Publications, India, 2015,745-754.
  • [29] Jafari SM, Ganje M, Dehnad D, Ghanbari V, Hajitabar J. Arrhenius equation modelling fort he shelf life prediction of tomato paste containing a natural preservative.Journal of Science and Food Agriculture, 2017, 97:5216-5222.
  • [30] Hiatt AN, Taylor LS, Mauer LJ. Influence of simultaneoues variations in temperature and relative humidity on chemical stability of two vitamin C forms and implications for shelf life models, 2010, Journal of Agricultural Food Chemistry, 58:3532-3540.
  • [31] Song Y, Hu Q, Wu Y, Pei F, Kimatu BM, Su A. Storage time assessment and shelf-life prediction models for postharvest Agaricus bisporus. LWT-Food Science and Technology, 2019, 101:360-365.
  • [32] Breda CA, Sanjinez-Argandona EJ, Correia, CAC. Shelf life of powdered Campomanesia adamantium pulp in controlled environments. Food Chemistry 2012; 135: 2960-2964.
  • [33] Hiatt AN, Taylor LS, Maurer LJ. Influence of simultaneous variations in temperature and relative humidity on chemical stability of two vitamin C forms and implications for shelf life models. Journal of Agricultural and Food Chemistry 2010; 58: 3532-3540.
  • [34] Dermesonlouoglou EK, Giannakourou M, Taoukis PS. Kinetic study of the effect of the osmotic dehydration pre-treatment with alternative osmotic solutes to the shelf life of frozen strawberry. Food and Bioproducts Processing 2016; 99: 212-221.
  • [35] Reis FR, Oliveria AC, Gadelha GGP, Abreu MB, Soares HI. Vacuum drying for extending litchi shelf –life: Vitamin C, total phenolics, texture and shelf life assessment. Plant Foods Human Nutrition 2017; 72:120-125.
  • [36] Maldonado JA, Bruıns RB, Yang T, Wright A, Dunne CP, Karwe MV. Browning and ascorbic acid degradation in meals ready-to-eat pear rations in accelerated shelf life. Journal of Food Processing and Preservation 2015; DOI:10.1111/jfpp.12446.
  • [37] Teoh A. Predicting the stability of natural colours in food products: A review. Agro Food Industry Hitech 2010; 21(5): 20-23.
  • [38] Dermensonlouoglou EK, Pourgouri S, Taoukis PS. Kinetic study of the effect of the osmotic dehydration pre-treatment to the shelf life of frozen cucumber. Innovative Food Science and Emerging Technologies 2008; 9: 542-549.
  • [39] Siuncinska K, Konopacka D, Mieszczakowska-Frac M, Polubok A. The effects of ultrasound on quality and nutritional aspects of dried sour cherries during shelf-life. LWT-Food Science and Technology 2016; 68: 168-173.
  • [40] Ganje M, Jafari SM, Dusti A, Dehnad D, Amanjani M, Ghanbari V. Modeling quality changes in tomato paste containing microencapsulated olive leaf extract by accelerated shelf life testing. Food and Bioproducts Processing 2016; 97: 12-19.
  • [41] Sloan AR, Dunn ML, Jefferies LK, Pike OA, Nielsen-Barrow SE, Steele FM. Effect of water activity and packaging material on the quality of dehydrated taro (colocasiaesculenta (L.) Schott) slices during accelerated storage. International Journal of Food Science 2016; http://dx.doi.org/10.1155/2016/9860139.
  • [42] Zhang H, Tang Z, Rasco B, Tang J, Sablani SS. Shelf-life modeling of microwave-assisted thermal sterilized mashed potato in polymeric pouches of different gas barrier properties. Journal of Food Engineering 2016; 183: 65-73.
  • [43] Urbanoviciene D, Bobinaite R, Bobinas C, Viskelis P. Stability and isomerisation of lycopene in oil-based model system during accelerated shelf-life testing. Foodbalt, 2017; DOI: 1022616/foodbalt.2017.034.
  • [44] Rao O, Rocca-Smith JR, Schoenfuss TC, Labuza TP. Accelerated shelf-life testing of quality loss for a commercial hydrolysed hen egg white powder. Food Chemistry 2012; 135: 464-472.
  • [45] Grewal MK, Chandarapala J, Donkor O, Apostolopoulos V. Electropretic characterization of protein interactions suggesting limited feasibility of accelerated shelf-life testing of ultra-high temperature milk. Journal Dairy Science 2016; 100: 76-88.
  • [46] Wibowo S, Grauwet T, Kebede BT, Hendrickx M, Loey AV. Study of chemical changes in pasteurized orange juice during shelf-life: A fingerprinting-kinetics evaluation of the volatile fraction. Food Research International 2015b; 75: 295-304.
  • [47] Kadam DM, Rai DR, Patil RT, Wilson RA, Kaur S, Kumar R. Quality of fresh and stored foam mat dried mandarin powder. International Journal of Science and Technology 2011; 46: 793-799.
  • [48] Wilson RA, Kadam DM, Chadha S, Grewal, MK, Sharma M. Evaluation of physical and chemical properties of foam-mat dried mango (Mangiferaindica) powder during storage. Journal of Food Processing and Preservation 2014; 38: 1866-1874.
  • [49] Putnik P, Kovacevic DB, Herceg K, Roohinejad S, Greiner R, Bekhit AE, Levaj B. Modelling the shelf-life of minimally-processed fresh-cut apples packed in a modified atmosphere using food quality parameters. Food Control 2017; 81:55-64.
  • [50] Dak M, Sagar VR, Jha SK. Shelf-life and kinetics of quality change of dried pomegranate arils in flexible packaging. Food Packaging and Shelf Life 2014; 2(1):1-6.
Toplam 49 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Ziraat, Veterinerlik ve Gıda Bilimleri
Bölüm Makaleler
Yazarlar

İnci Doğan 0000-0002-7715-7423

Rozerin Aydın 0000-0002-7101-0340

Yayımlanma Tarihi 31 Ocak 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 9 Sayı: 1

Kaynak Göster

APA Doğan, İ., & Aydın, R. (2020). GIDALARDA HIZLANDIRILMIŞ RAF ÖMRÜ TESTLERİ. Eskişehir Teknik Üniversitesi Bilim Ve Teknoloji Dergisi - C Yaşam Bilimleri Ve Biyoteknoloji, 9(1), 109-124. https://doi.org/10.18036/estubtdc.680044
AMA Doğan İ, Aydın R. GIDALARDA HIZLANDIRILMIŞ RAF ÖMRÜ TESTLERİ. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi - C Yaşam Bilimleri Ve Biyoteknoloji. Ocak 2020;9(1):109-124. doi:10.18036/estubtdc.680044
Chicago Doğan, İnci, ve Rozerin Aydın. “GIDALARDA HIZLANDIRILMIŞ RAF ÖMRÜ TESTLERİ”. Eskişehir Teknik Üniversitesi Bilim Ve Teknoloji Dergisi - C Yaşam Bilimleri Ve Biyoteknoloji 9, sy. 1 (Ocak 2020): 109-24. https://doi.org/10.18036/estubtdc.680044.
EndNote Doğan İ, Aydın R (01 Ocak 2020) GIDALARDA HIZLANDIRILMIŞ RAF ÖMRÜ TESTLERİ. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi - C Yaşam Bilimleri Ve Biyoteknoloji 9 1 109–124.
IEEE İ. Doğan ve R. Aydın, “GIDALARDA HIZLANDIRILMIŞ RAF ÖMRÜ TESTLERİ”, Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi - C Yaşam Bilimleri Ve Biyoteknoloji, c. 9, sy. 1, ss. 109–124, 2020, doi: 10.18036/estubtdc.680044.
ISNAD Doğan, İnci - Aydın, Rozerin. “GIDALARDA HIZLANDIRILMIŞ RAF ÖMRÜ TESTLERİ”. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi - C Yaşam Bilimleri Ve Biyoteknoloji 9/1 (Ocak 2020), 109-124. https://doi.org/10.18036/estubtdc.680044.
JAMA Doğan İ, Aydın R. GIDALARDA HIZLANDIRILMIŞ RAF ÖMRÜ TESTLERİ. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi - C Yaşam Bilimleri Ve Biyoteknoloji. 2020;9:109–124.
MLA Doğan, İnci ve Rozerin Aydın. “GIDALARDA HIZLANDIRILMIŞ RAF ÖMRÜ TESTLERİ”. Eskişehir Teknik Üniversitesi Bilim Ve Teknoloji Dergisi - C Yaşam Bilimleri Ve Biyoteknoloji, c. 9, sy. 1, 2020, ss. 109-24, doi:10.18036/estubtdc.680044.
Vancouver Doğan İ, Aydın R. GIDALARDA HIZLANDIRILMIŞ RAF ÖMRÜ TESTLERİ. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi - C Yaşam Bilimleri Ve Biyoteknoloji. 2020;9(1):109-24.