Araştırma Makalesi
BibTex RIS Kaynak Göster

The Effect of Tarragon Extract Obtained by Different Extraction Methods on In Vitro Gas and Methane Production and Estimated Parameters in Dairy Cattle TMRs

Yıl 2025, Cilt: 8 Sayı: 1, 61 - 67, 30.06.2025
https://doi.org/10.55257/ethabd.1676542

Öz

This study was conducted to reveal the antimethanogenic effects of tarragon (Artemisia dracunculus) extracts obtained by different extraction methods using the in vitro gas production technique. Extracts obtained from tarragon using four different extraction methods (water, acetone, ethanol, and methanol) were added to the total mixed ration (TMR) of dairy cattle at a 1% level to form experimental groups. The rumen fluid used in the in vitro gas production technique was obtained postslaughter from a special slaughterhouse, sourced from Simmental cattle aged between 4-6 years and weighing approximately 500 kg. Compared to the control group, the groups supplemented with acetone, ethanol, and methanol extracts exhibited higher in vitro gas production values, as well as higher estimated parameters such as ME, NEL, and OMS, while no significant effect on methane production was detected (P<0.05). The NDF digestibility value determined using the Daisy incubator was highest in the ethanol group (36.01) and lowest in the acetone group (18.33) (P<0.05). Among the digestibility parameters, the partitioning factor (PF) and microbial protein synthesis efficiency (MPSE) values were found to be the lowest in the acetone group, at 2.43 and 9.33, respectively (P<0.05). In conclusion, it was determined that tarragon extracts affect rumen fermentation and energy efficiency, do not have a significant effect on methane production, but have the potential to improve feed value. It was concluded that higher doses should be tested to reveal the antimethanogenic effect of these extracts.

Kaynakça

  • Anonim 2024. Annual greenhouse gas emissions including land use. https://ourworldindata.org/grapher/methane-emissions . Erişim: 2025 Nisan.
  • AOAC., 1990. Official Methods of Analysis. 15th ed. Assocition of Official Analytical Chemists, Washington, DC, US.
  • Bayrak, A., Doğan, A., Akgül, A., 1986. Tarhun (Artemisia dracunculus L.) Uçucu Yağının Bileşenleri Üzerine Araştırma. Doğa Bilim Dergisi. 10:3, 314-318.
  • Bhatta, R., & Singh, N. (2022). Effects of Plant Extracts on Rumen Fermentation and Methane Production in Ruminants. Journal of Animal Science, 100(2), 123-135. doi:10.1093/jas/skab123
  • Blümmel, M., & Lebzien, P. (2001). Predicting ruminal microbial efficiencies of dairy rations by in vitro techniques. Livestock production science, 68(2-3), 107-117.
  • Blümmel, M., Steingaβ, H., & Becker, K. (1997). The relationship between in vitro gas production, in vitro microbial biomass yield and 15N incorporation and its implications for the prediction of voluntary feed intake of roughages. British Journal of Nutrition, 77(6), 911-921.
  • Bodas R, Prieto N, García‐González R, Andrés S, Giráldez FJ, López S. (2012) . Manipulation of rumen fermentation and methane production with plant secondary metabolites. Animal Feed Science and Technology 176, 78–93.
  • Cieslak, A., Zmora, P., Stochmal, A., & Oleszek, W. (2013). Plant components with specific activities against rumen methanogens. Animal, 7(2), 253-265.
  • Curabay, B. ve Filya, İ., 2020. Bazı Esansiyel Yağların Yonca Kuru Otunun İn Vitro Sindirilebilirliği, Rumen Fermantasyonu ve Metan Gazı Üretimi Üzerine Etkileri. Bursa Uludağ Üniversitesi Ziraat Fakültesi Dergisi, 34(1): 19-35.
  • Duncan, D. B., 1955. Multiple Range and Multiple F Tests. Biometrics, 11(1), 1-42. Reıneccıus, G,. 1995 The flavorist. In: Source Book of Flavors. Springer, Boston, MA .pp 691-712.
  • Goel, G., & Makkar, H. P. S. (2012). Methane mitigation from ruminants using tannins and saponins. Tropical Animal Health and Production, 44(4), 729-739.
  • Goel, G., Makkar, H. P. S., & Becker, K. (2008). Effects of Sesbania sesban and Carduus pycnocephalus leaves and their extracts on partitioning of nutrients from roughage-and concentrate-based feeds to methane. Animal Feed Science and Technology, 147(1-3), 72-89.
  • Gülpınar, Y., 2012. Tarhun Bitkisinin (Artemicia dracunculus L.) Wistar Albino Ratlarda Oluşturulmuş Akut Akciğer Toksik Hasarına Karşı Koruyucu ve Tedavi Edici Etkisinin Araştırılması. Yüksek Lisans Tezi, Fenbilimleri Enstitüsü, Gaziantep Üniversitesi.
  • Hristov, A. N., Oh, J., Firkins, J. L., Dijkstra, J., Kebreab, E., Waghorn, G., ... & Tricarico, J. M. (2013). Special topics—Mitigation of methane and nitrous oxide emissions from animal operations: I. A review of enteric methane mitigation options. Journal of Animal Science, 91(11), 5045-5069.
  • Jayanegara, A., Leiber, F., & Kreuzer, M. (2015). Meta-analysis of the relationship between dietary tannin level and methane formation in ruminants from in vivo and in vitro experiments. Journal of Animal Physiology and Animal Nutrition, 99(2), 146-159.
  • Kılıç, Ü., Abdıwalı, M. A., 2016. Alternatif Kaba Yem Kaynağı Olarak Şarapçılık Endüstrisi Üzüm Atıklarının İn Vitro Gerçek Sindirilebilirlikleri ve Nispi Yem Değerlerinin Belirlenmesi. Kafkas Universitesi Veteriner Fakultesi Dergisi, 22(6).
  • Makkar, H. P., Francis, G., & Becker, K. (2007). Bioactivity of phytochemicals in some lesser-known plants and their effects and potential applications in livestock and aquaculture production systems. Animal, 1(9), 1371-1391.
  • Menke, K. H., Steingass, H., 1988. Estimation of The Energetic Feed Value From Chemical Analysis and İn Vitro Gas Production Using Rumen Fluid. Animal Resouers. 28:7-55.
  • Nuraliev, Y., 1991. Medical plants. Healing properties of fruit and vegetables Lekarstvennyie Rasteniya. Tselebnyie Svoystva Fruktov I Ovoschey, Novgorod, IKPA.
  • Olivier, J. G., et al. (2005). "Recent trends in global greenhouse gas emissions: regional trends 1970–2000 and spatial distributionof key sources in 2000." Environmental Sciences 2(2-3): 81-99.
  • Patra, A. K., & Saxena, J. (2011). Exploitation of dietary tannins to improve rumen metabolism and ruminant nutrition. Journal of the Science of Food and Agriculture, 91(1), 24-37.
  • Patra, A. K., Kamra, D. N., & Neeta Agarwal, N. A. (2008). Effect of leaf extracts on in vitro fermentation of feed and methanogenesis with rumen liquor of buffalo.
  • Poulsen, M., Schwab, C., Borg Jensen, B., Engberg, R. M., Spang, A., Canibe, N., ... & Urich, T. (2013). Methylotrophic methanogenic Thermoplasmata implicated in reduced methane emissions from bovine rumen. Nature communications, 4(1), 1428.
  • Salem, A. Z. M., Olivares, M., Lopez, S., Gonzalez-Ronquillo, M., Rojo, R., Camacho, L. M., Cerrillo, S. M. A., ve Mejia, H. P. (2011). Effect of natural extracts of Salix babylonica and Leucaena leucocephala on nutrient digestibility and growth.
  • Salem, A. Z. M., Olivares-Pérez, J., Gado, H. M., Kholif, A. E., Mendoza, G. D., & El-Adawy, M. (2014). Effect of exogenous enzymes on nutrient digestibility, ruminal fermentation and growth performance in beef steers. Asian-Australasian Journal of Animal Sciences, 27(10), 1331-1337.
  • Selçuk, G., & Kamalak, A. (2022). Effect of rosemary extract on in vitro gas and methane production in ruminants. Turkish Journal of Veterinary and Animal Sciences, 46(3), 321-329.
  • Türkiye İstatistik Kurumu (TÜİK). (2023). Sera Gazı Emisyon İstatistikleri, 1990-2022.
  • Van Soest, P. J., Robertson, J. D., and Lewis, B. A., 1991. Methods for Dietary Fibre, Neutral Detergent Fibre and Non-Starch Polysaccharides İn Relation to Animal Nutrition. Journal of Dairy Science, 74: 3583-3597.
  • Venkateswarlu, M., Gupta, P. R., & Sharma, R. K. (2020). Influence of plant secondary metabolites on rumen fermentation and methane production. Animal Nutrition and Feed Technology, 20(2), 153-167.
  • Wollenberg, E., Richards, M., Smith, P., Havlík, P., Obersteiner, M., Tubiello, F. N., ... & Vermeulen, S. (2016). Reducing emissions from agriculture to meet the 2°C target. Global Change Biology, 22(12), 3859-3864. doi: 10.1111/gcb.13340
  • Yaichibe, T., Masanori, K. ve Kenichi, A. 1997. Morphological Characters and Essential Oil İn Artemisia dracunculus (French Tarragon) and Artemisia dracuncloides (Russian Tarragon). 41 (4), 229–238
  • Yoon, K.D., Chin, Y.W., Yang, M.H., Kim, J., 2011. Separation of Anti-Ulcer Fl Avonoids From Artemisia Extracts By High-Speed Countercurrent Chromatography. Food Chemistry, 129 (2), 679–683.

Farklı Ekstraksiyon Metodlarıyla Elde Edilen Tarhun Ekstraktının Süt Sığırı TMR’lerinde İn Vitro Gaz ve Metan Üretimi ile Tahminlenen Parametreler Üzerine Etkisi

Yıl 2025, Cilt: 8 Sayı: 1, 61 - 67, 30.06.2025
https://doi.org/10.55257/ethabd.1676542

Öz

Bu çalışma, farklı ekstraksiyon yöntemleriyle elde edilen tarhun (Artemisia dracunculus) ekstraktlarının in vitro gaz üretim tekniğiyle antimetanojenik etkilerini ortaya koymak amacıyla yapılmıştır. Tarhun bitkisinden su, aseton, etanol ve metanol olmak üzere dört farklı ekstraksiyon yöntemiyle elde edilen özütler süt sığırı toplam rasyon karşımı (TMR)’na %1 seviyesinde olacak şekilde ilave edilerek deneme grupları oluşturulmuş, in vitro gaz üretim tekniğinde kullanılan rumen sıvısı ise özel bir kesimhaneden, 4-6 yaş aralığında ve yaklaşık 500 kg ağırlığındaki Simental ırkı sığırdan kesim sonrası temin edilmiştir. Kontrol grubuna kıyasla, aseton, etanol ve metanol ekstraktı eklenen gruplarda in vitro gaz üretim değerleri ile ME, NEL ve OMS gibi tahminlenen parametreler daha yüksek saptanırken, metan üretimi üzerine anlamlı bir etkisinin olmadığı tespit edilmiştir (P<0.05). Daisy inkübatörle belirlenen NDF sindirilebilirlik değeri en yüksek etanol grubunda (36,01) en düşük ise aseton grubunda (18,33) belirlenmiştir (P<0.05). Sindirilebilirlik parametrelerinden taksimat faktörü (PF) ve mikrobiyal protein sentezlenme etkinlik (MPSE) değerleri 2,43 ve 9,33 ile en düşük aseton grubunda saptanmıştır (P<0.05). Sonuç olarak, tarhun ekstraktlarının rumen fermantasyonu ve enerji verimliliği üzerinde etkili olduğu, metan üretimi üzerine anlamlı bir etksinin olmadığı ancak yem değerini iyileştirme potansiyeline sahip olduğu belirlenmiştir. Söz konusu ekstraktların antimetanojenik etkisini ortaya koyabilme adına daha yüksek dozların denenmesi gerektiği ve kanaatine varılmıştır.

Etik Beyan

Sayın editör, yapılan çalışma da herhangi bir etik belgesine gerek duyulmamaktadır.

Kaynakça

  • Anonim 2024. Annual greenhouse gas emissions including land use. https://ourworldindata.org/grapher/methane-emissions . Erişim: 2025 Nisan.
  • AOAC., 1990. Official Methods of Analysis. 15th ed. Assocition of Official Analytical Chemists, Washington, DC, US.
  • Bayrak, A., Doğan, A., Akgül, A., 1986. Tarhun (Artemisia dracunculus L.) Uçucu Yağının Bileşenleri Üzerine Araştırma. Doğa Bilim Dergisi. 10:3, 314-318.
  • Bhatta, R., & Singh, N. (2022). Effects of Plant Extracts on Rumen Fermentation and Methane Production in Ruminants. Journal of Animal Science, 100(2), 123-135. doi:10.1093/jas/skab123
  • Blümmel, M., & Lebzien, P. (2001). Predicting ruminal microbial efficiencies of dairy rations by in vitro techniques. Livestock production science, 68(2-3), 107-117.
  • Blümmel, M., Steingaβ, H., & Becker, K. (1997). The relationship between in vitro gas production, in vitro microbial biomass yield and 15N incorporation and its implications for the prediction of voluntary feed intake of roughages. British Journal of Nutrition, 77(6), 911-921.
  • Bodas R, Prieto N, García‐González R, Andrés S, Giráldez FJ, López S. (2012) . Manipulation of rumen fermentation and methane production with plant secondary metabolites. Animal Feed Science and Technology 176, 78–93.
  • Cieslak, A., Zmora, P., Stochmal, A., & Oleszek, W. (2013). Plant components with specific activities against rumen methanogens. Animal, 7(2), 253-265.
  • Curabay, B. ve Filya, İ., 2020. Bazı Esansiyel Yağların Yonca Kuru Otunun İn Vitro Sindirilebilirliği, Rumen Fermantasyonu ve Metan Gazı Üretimi Üzerine Etkileri. Bursa Uludağ Üniversitesi Ziraat Fakültesi Dergisi, 34(1): 19-35.
  • Duncan, D. B., 1955. Multiple Range and Multiple F Tests. Biometrics, 11(1), 1-42. Reıneccıus, G,. 1995 The flavorist. In: Source Book of Flavors. Springer, Boston, MA .pp 691-712.
  • Goel, G., & Makkar, H. P. S. (2012). Methane mitigation from ruminants using tannins and saponins. Tropical Animal Health and Production, 44(4), 729-739.
  • Goel, G., Makkar, H. P. S., & Becker, K. (2008). Effects of Sesbania sesban and Carduus pycnocephalus leaves and their extracts on partitioning of nutrients from roughage-and concentrate-based feeds to methane. Animal Feed Science and Technology, 147(1-3), 72-89.
  • Gülpınar, Y., 2012. Tarhun Bitkisinin (Artemicia dracunculus L.) Wistar Albino Ratlarda Oluşturulmuş Akut Akciğer Toksik Hasarına Karşı Koruyucu ve Tedavi Edici Etkisinin Araştırılması. Yüksek Lisans Tezi, Fenbilimleri Enstitüsü, Gaziantep Üniversitesi.
  • Hristov, A. N., Oh, J., Firkins, J. L., Dijkstra, J., Kebreab, E., Waghorn, G., ... & Tricarico, J. M. (2013). Special topics—Mitigation of methane and nitrous oxide emissions from animal operations: I. A review of enteric methane mitigation options. Journal of Animal Science, 91(11), 5045-5069.
  • Jayanegara, A., Leiber, F., & Kreuzer, M. (2015). Meta-analysis of the relationship between dietary tannin level and methane formation in ruminants from in vivo and in vitro experiments. Journal of Animal Physiology and Animal Nutrition, 99(2), 146-159.
  • Kılıç, Ü., Abdıwalı, M. A., 2016. Alternatif Kaba Yem Kaynağı Olarak Şarapçılık Endüstrisi Üzüm Atıklarının İn Vitro Gerçek Sindirilebilirlikleri ve Nispi Yem Değerlerinin Belirlenmesi. Kafkas Universitesi Veteriner Fakultesi Dergisi, 22(6).
  • Makkar, H. P., Francis, G., & Becker, K. (2007). Bioactivity of phytochemicals in some lesser-known plants and their effects and potential applications in livestock and aquaculture production systems. Animal, 1(9), 1371-1391.
  • Menke, K. H., Steingass, H., 1988. Estimation of The Energetic Feed Value From Chemical Analysis and İn Vitro Gas Production Using Rumen Fluid. Animal Resouers. 28:7-55.
  • Nuraliev, Y., 1991. Medical plants. Healing properties of fruit and vegetables Lekarstvennyie Rasteniya. Tselebnyie Svoystva Fruktov I Ovoschey, Novgorod, IKPA.
  • Olivier, J. G., et al. (2005). "Recent trends in global greenhouse gas emissions: regional trends 1970–2000 and spatial distributionof key sources in 2000." Environmental Sciences 2(2-3): 81-99.
  • Patra, A. K., & Saxena, J. (2011). Exploitation of dietary tannins to improve rumen metabolism and ruminant nutrition. Journal of the Science of Food and Agriculture, 91(1), 24-37.
  • Patra, A. K., Kamra, D. N., & Neeta Agarwal, N. A. (2008). Effect of leaf extracts on in vitro fermentation of feed and methanogenesis with rumen liquor of buffalo.
  • Poulsen, M., Schwab, C., Borg Jensen, B., Engberg, R. M., Spang, A., Canibe, N., ... & Urich, T. (2013). Methylotrophic methanogenic Thermoplasmata implicated in reduced methane emissions from bovine rumen. Nature communications, 4(1), 1428.
  • Salem, A. Z. M., Olivares, M., Lopez, S., Gonzalez-Ronquillo, M., Rojo, R., Camacho, L. M., Cerrillo, S. M. A., ve Mejia, H. P. (2011). Effect of natural extracts of Salix babylonica and Leucaena leucocephala on nutrient digestibility and growth.
  • Salem, A. Z. M., Olivares-Pérez, J., Gado, H. M., Kholif, A. E., Mendoza, G. D., & El-Adawy, M. (2014). Effect of exogenous enzymes on nutrient digestibility, ruminal fermentation and growth performance in beef steers. Asian-Australasian Journal of Animal Sciences, 27(10), 1331-1337.
  • Selçuk, G., & Kamalak, A. (2022). Effect of rosemary extract on in vitro gas and methane production in ruminants. Turkish Journal of Veterinary and Animal Sciences, 46(3), 321-329.
  • Türkiye İstatistik Kurumu (TÜİK). (2023). Sera Gazı Emisyon İstatistikleri, 1990-2022.
  • Van Soest, P. J., Robertson, J. D., and Lewis, B. A., 1991. Methods for Dietary Fibre, Neutral Detergent Fibre and Non-Starch Polysaccharides İn Relation to Animal Nutrition. Journal of Dairy Science, 74: 3583-3597.
  • Venkateswarlu, M., Gupta, P. R., & Sharma, R. K. (2020). Influence of plant secondary metabolites on rumen fermentation and methane production. Animal Nutrition and Feed Technology, 20(2), 153-167.
  • Wollenberg, E., Richards, M., Smith, P., Havlík, P., Obersteiner, M., Tubiello, F. N., ... & Vermeulen, S. (2016). Reducing emissions from agriculture to meet the 2°C target. Global Change Biology, 22(12), 3859-3864. doi: 10.1111/gcb.13340
  • Yaichibe, T., Masanori, K. ve Kenichi, A. 1997. Morphological Characters and Essential Oil İn Artemisia dracunculus (French Tarragon) and Artemisia dracuncloides (Russian Tarragon). 41 (4), 229–238
  • Yoon, K.D., Chin, Y.W., Yang, M.H., Kim, J., 2011. Separation of Anti-Ulcer Fl Avonoids From Artemisia Extracts By High-Speed Countercurrent Chromatography. Food Chemistry, 129 (2), 679–683.
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Hayvansal Üretim (Diğer)
Bölüm Makaleler
Yazarlar

Hasan Özsaygın 0009-0001-7216-6582

Adem Kaya 0000-0002-7726-6865

Erken Görünüm Tarihi 20 Mayıs 2025
Yayımlanma Tarihi 30 Haziran 2025
Gönderilme Tarihi 15 Nisan 2025
Kabul Tarihi 21 Nisan 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 8 Sayı: 1

Kaynak Göster

APA Özsaygın, H., & Kaya, A. (2025). Farklı Ekstraksiyon Metodlarıyla Elde Edilen Tarhun Ekstraktının Süt Sığırı TMR’lerinde İn Vitro Gaz ve Metan Üretimi ile Tahminlenen Parametreler Üzerine Etkisi. Erciyes Tarım ve Hayvan Bilimleri Dergisi, 8(1), 61-67. https://doi.org/10.55257/ethabd.1676542