Araştırma Makalesi
BibTex RIS Kaynak Göster

DETERMİNATİON THE PHYSİCAL STRUCTURES AND POTENTİAL NUTRİTİVE VALUE OF RATİON USED İN BEEF PRODUCTİON

Yıl 2025, Cilt: 8 Sayı: 2, 59 - 71
https://doi.org/10.55257/ethabd.1741847

Öz

In this study, the physical and chemical properties, as well as the in vitro digestibility and fermentation parameters of rations used in certain feedlot farms were evaluated. The particle size distribution of the rations varied as follows: upper sieve 2.80% – 32.82%, middle sieve 12.46% – 40.62%, lower sieve 25.62% – 39.81%, and pan 8.40% – 48.73%. Significant differences were observed in the contents of dry matter (DM), crude protein (CP), crude fat (CF), crude ash (CA), neutral detergent fiber (NDF) and acid detergent fiber (ADF) among the rations (P<0.05). The DM ranged from 89.39% to 94.93%, CP from 6.47% to 12.62%, CF from 2.88% to 6.59%, CA from 5.06% to 11.44%, NDF from 39.08% to 64.57%, and ADF from 18.38% to 42.11%. Furthermore, significant differences were found in in vitro gas production (GP), methane (CH₄) production, true digestible dry matter (TDDM), true digestibility (TD), partitioning factor (PF), microbial protein (MP) production, microbial protein synthesis efficiency (MPSE), and ammonia nitrogen (NH₃-N) levels (P<0.05). GP ranged between 73.16 and 105.16 ml (per 500 mg DM), CH₄ production between 10.58 and 14.62 ml, TDDM between 228.50 and 344.03 mg, TD from 45.56% to 68.53%, MP from 67.53 to 144.93 mg, and NH₃-N from 47.73 to 51.52 mg/100 ml. Metabolizable energy (ME) values of the rations ranged from 7.08 to 9.59 MJ/kg DM, and organic matter digestibility (OMD) from 48.04% to 61.12%. In terms of 96-hour in vitro gas kinetics, the volume of gas produced from the rapidly fermentable fraction (a) ranged from 0.59 to 4.03 ml, from the slowly fermentable fraction (b) from 37.01 to 47.80 ml, total gas production (a+b) from 38.22 to 50.40 ml, and the fermentation rate (c) from 0.05% to 0.11%.
The results revealed significant differences in the nutritional value and fermentation characteristics of rations used in feedlot operations. These findings provide essential data that can serve as a foundation for improving feed formulations aimed at enhancing animal health and productivity. Accordingly, future studies are recommended to focus on developing more optimized ration strategies based on these parameters.

Kaynakça

  • Åkerholm, M., and Salmén, L. (2003). The oriented structure of lignin and its viscoelastic properties studied by static and dynamic FT-IR spectroscopy, Holzforschung 57, 459-465.
  • Allen, M.S. (1997). Relationship between fermentation acid production in the rumen and the requirement for physically effective fiber. Journal of Dairy Science, 80(7),1447–1462.
  • Alp, M., Kocabağlı,N., Kahraman, R., Yetim, M., ve Şenel, H.S. (1996). Kanatlı beslenmesinde kullanılan yem hammaddelerinin ve karma yemlerin besin maddeleri ve enerji kapsamları yönünden değerlendirilmesi. İstanbul Üniversitesi Veteriner Fakültesi Dergisi, 22(1), 9-22.
  • Anonim, (1987). Süt sığırları üzerinde Sıcağın Yarattığı Stresin İncelenmesi. U.S. Feed Grains Council News, 6, 10-12.
  • AOAC, (1990). Official methods of analysis of the Association of Official Analytical Chemists, Vol. II, 15th ed. Sec.985.29. The Association: Arlington, VA.
  • Bateman Ii, H.G., and Jenkins, T.C. (1998). Influence of soybean oil in high fiber diets fed to nonlactating cows on ruminal unsaturated fatty acids and nutrient digestibility. Journal of Dairy Science, 81(9), 2451-2458.
  • Blümmel M., Makkar, H.P.S., and Becker, K. (1997). In vitro gas production: A technique revisited. Journal of Animal Physiology and Animal Nutrition, 77(1-5), 24-34.
  • Blümmel, M., and Lebzien, P. (2001). Predicting ruminal microbial efficiencies of dairy rations by in vitro techniques. Livestock Production Science, 68(2-3), 107-117.
  • Blümmel, M., Karsli, A., and Russell, J. R. (2003). Influence of diet on growth yields of rumen micro-organisms in vitro and in vivo: influence on growth yield of variable carbon fluxes to fermentation products. British Journal of Nutrition, 90(3), 625-634.
  • Canbolat, O., ve Karaman, Ş. (2009): Bazı baklagil kaba yemlerinin in vitro gaz üretimi, organik madde sindirimi, nispi yem değeri ve metabolik enerji içeriklerinin karşılaştırılması. Journal of Agricultural Sciences, 15 (2), 188-196.
  • Canbolat, Ö., Kara, H., ve Filya, İ. (2013). Bazı baklagil kaba yemlerinin in vitro gaz üretimi, metabolik enerji, organik madde sindirimi ve mikrobiyal protein üretimlerinin karşılaştırılması. Uludağ Üniversitesi Ziraat Fakültesi Dergisi, 27(2), 71-82.
  • Cappellozza, B. I., Bohnert, D.W., Schauer, C.S., Falck, S.J., Vanzant, E.S., Harmon, D. L., and Cooke, R. F. (2013). Daily and alternate day supplementation of urea or soybean meal to ruminants consuming low-quality cool-season forage: II. Effects on ruminal fermentation. Livestock Science, 155(2-3), 214-222.
  • Cone, J.W., and Van Gelder, A.H. (1999). Influence of protein fermantation on gas production profiles. Animal Feed Science Technology,76(3-4), 251-264.
  • Deniz, A. (2021). Bursa bölgesindeki süt sığırcılığı işletmelerinde yem ve süt kalite özelliklerinin belirlenmesi (Master's thesis, Bursa Uludag Universitesi ). 106s.
  • DeVore, D.W. (2018). In-vitro digestibility and gas production of wheat middlings, solvent extracted cottonseed meal, soyhulls, and corn gluten feed and the effects of monensin on in-vitro digestibility and gas production. A Masters Thesis. The Graduate College of Missouri State University. 66p.
  • Dohme, F., Machmuller, A., Wasserfallen, A., Kreuzer, M. (2000). Comparative efficiency of various fats rich in medium chain fatty acids to suppress ruminal methanogenesis as measured with RUSITEC. Canadian Journal of Animal Science; 80(3), 473-484.
  • Duncan, D.B. (1955). Multiple range and multiple F tests. Biometrics, 11(1), 1-42.
  • FAO, (2011). Feeding the Future – Livestock in Food Security. World Livestock. 77-98.
  • Garcia, A.R. (2009). Usage of the Penn State Forage Separator for evaluating particle size of TMRs.
  • Getachew, G., Blümmel, M., Makar, H.P.S., and Becker, K. (1998). In vitro gas measuring techniques for assessment of nutritional quality of feeds: a review. Animal Feed Science and Technology, 72(3-4), 261- 281.
  • Getachew, G., DePeters, E.J., and Robinson, P.H. (2004). In vitro gas production provides effective method for assessing ruminant feeds. California Agriculture, 58(1), 54-58.
  • Goel, G., Makkar, H.P.S., Becker, K. (2008). Effect of sesbania sesban and carduus pycnocephalus leaves and fenugreek (Trigonella foenum-graecum L) seeds and their extract on partitioning of nutrients from roughage-and concentrate-based feeds to methane. Animal Feed Science and Technology, 147(1-3), 72-89.
  • Gülsün, B., ve Miç, P. (2018). Rasyon hazırlamada temel yem miktarlarının ekonomik olarak belirlenmesi için çok amaçlı programlama yaklaşımı. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 7(2), 634-648.
  • Güney, M., ve Karslı, M. (2014). Süt ineklerinin protein fraksiyonlarına tepkileri. Yuzuncu Yıl University Journal of Agricultural Sciences, 24(3), 317-324.
  • Heinrichs, A. J., and Kononoff, P. J. (1999). Evaluating particle size of forages and TMRs using the Penn State Particle Separator. Dairy Cattle Research.
  • Heinrichs, J., and Kononoff, P. (2002). Evaluating particle size of forages and TMRs using the new Penn State Forage Particle Separator. Pennsylvania State University, College of Agricultural Sciences, Cooperative Extension DAS, 42, 1-15.
  • Hopkins, B.A., Whitlow, L.W. (2013). Effective use of protein in early lactation diets.
  • Johnson, K. A., and Johnson, D. E. (1995) Methane emissions from cattle. Journal of Animal Science, 73(8), 2483–2492.
  • Jones, C. M., Heinrichs, A. J., Roth, G. W., and Ishler, V. A. (2018). From Harvest to Feed: Understanding Silage Management. Penn State Extension.
  • Kamalak, A., Canbolat, O., Gurbuz, Y., Erol, A., and Ozay, O. (2005). Effect of maturity stage on chemical composition, ın vitro and ın situ dry matter degradation of tumbleweed hay (Gundelia Tournefortii L.). Small Ruminant Research 58(2), 149–156.
  • Khafipour, E., Li, S., Plaizier, J. C., and Krause, D. O. (2009). Rumen microbiome composition determined using two nutritional models of subacute ruminal acidosis. Applied and Environmental Microbiology, 75(22), 7115-7124.
  • Khanum, S. A., Yaqoob, T., Sadaf, S., Hussain, M., Jabbar, M. A., Hussain, H. N., Kausar, R., and Rehman, S. (2007). Nutritional evaluation of various feedstuffs for livestock production using in vitro gas method. Pakistan Veterinary Journal, 27(3), 129–133.
  • Konca, Y. (2007). Süt Sığırı Rasyonlarında İlave Yağ Kullanımının Ruminal Fermantasyon ve Süt Kompozisyonuna Etkileri. Türkiye Süt Sığırcılığı Kurultayı, İzmir, Türkiye, 20-22.
  • Kononoff, P. J., and Heinrichs, A. J. (2003). The effect of corn silage particle size and cottonseed hulls on cows in early lactation. Journal of Dairy Science. 86(7), 2438-2451.
  • Kononoff, P. J., Heinrichs, A. J., and Buckmaster, D. R. (2003). Modification of the Penn State forage and total mixed ration particle separator and the effects of moisture content on its measurements. Journal of Dairy Science, 86(5), 1858-1863.
  • Koyuncu, M., ve Akgün, H. (2018). Çiftlik hayvanları ve küresel iklim değişikliği arasındaki etkileşim. Uludağ Üniversitesi Ziraat Fakültesi Dergisi, 32(1), 151-164.
  • Kutlu, H. R., ve Serbester, U. (2014). Ruminnt beslemede son gelişmeler. Turkish Journal of Agriculture-Food Science and Technology, 2(1), 18-37.
  • Larick, D. K., Turner, B. E., Schoenherr, W. D., Coffey, M. T., and Pilkington, D. H. (1992). Volatile compound content and fatty acid composition of pork as influenced by linoleic acid content of the diet. Journal of Animal Science, 70(5), 1397-1403.
  • López, S., Makkar, H. P., and Soliva, C. R. (2010). Screening plants and plant products for methane inhibitors. In vitro screening of plant resources for extra-nutritional attributes in ruminants: Nuclear And Related Methodologies, 191-231.
  • MacCracken, M.C. (2001). Global warming: A science overview. In Global warming and energy policy, Springer, Boston, MA, 151-159 pp.
  • Menke, K.H., and Steingass, H. (1988). Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Animal Research and Development, 28, 7-55.
  • Menke, K.H., Raab, L., Salenski, A., Steingass, H., Fritz, D., Schnieder, W. (1979). The estimation of digestibility and metabolisable energy content of ruminant feedstuffs from the gas production when they are incubated with rumen liquor in vitro. Journal of Agricultural Science 93(1), 217-222.
  • Morgavi, D. P., Forano, E., Martin, C., and Newbold, C. J. (2010). Microbial ecosystem and methanogenesis in ruminants. Animal, 4(7), 1024-1036.
  • National Research Council, (2001). Committee on Animal Nutrition, and Subcommittee on Dairy Cattle Nutrition.. Nutrient Requirements of Dairy Cattle: National Academies Press.
  • Navarro-Villa, A., O’Brien, M., Lopez, S., Boland, T.M., O’Kiely, P. (2011). Modifications of a gas production technique for assessing in vitro rumen methane production from feedstuffs. Animal Feed Science and Technology, 166, 163-174.
  • Norton, B.W. (2003). The nutritive value of tree legumes. http://www.fao.org/ag/AGP/AGPC/doc/Publicat/Gutt-shel/x5556e0j.htm. pp.1-10.
  • Orskov, E.R., and Mcdonald, I. (1979). The estimation of protein degradability in the rumen from incubation measurement weighed according to rate of passage. The Journal of Agricultural Science, 92(2), 499-503.
  • Özgen, H. (1986). Hayvan besleme. Selçuk Üniversitesi.
  • Palmquist, D. L., and Jenkins, T. C. (1980). Fat in lactation rations. Journal of Dairy Science, 63(1), 1-14.
  • Parissi, Z.M., Papachristou, T.G., and Nastis, A.S. (2005). Effect of drying method on estimated nutritive value of browse species using an in vitro gas production technique. Animal Feed Science and Technology, 123, 119-128.
  • Reece, W.O., (2008). Dukes veteriner fizyoloji Cilt I ve II (12. Baskı) (Türkçe Çeviri). Ed: Yıldız S. Medipres, Malatya, s, 500-511.
  • Selçuk, B., (2024). Bazı Baklagil Kaba Yemlerinin Ruminant Rasyonlarına İlavesinin Mikrobiyal Protein Üretimine Ve Fermantasyon Parametreleri Üzerine Etkileri. Doktora tezi. Kahramanmaraş Sütçü İmam Üniversitesi. Fen Bilimleri Enstitüsü. Kahramanmaraş. 102s.
  • Spss, I. I. B. M., (2011). IBM SPSS statistics for Windows, version 20.0. New York: IBM Corp, 440, 394.
  • Steinfeld, H., Gerber, P., Wassenaar, T., Castel, V., Rosales, M. and De Haan, C. (2006). Livestock's Long Shadow: Environmental issues and options. Food and Agriculture Organization, Rome, Italy. 212p.
  • Tekce, E., ve Gül, M. (2014). Ruminant beslemede NDF ve ADF’nin önemi. Atatürk Üniversitesi Veteriner Bilimleri Dergisi, 9(1), 63-73.
  • Van Soest, P. V., Robertson, J. B., and Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74(10), 3583-3597.
  • Wachira, A. M., Sinclair, L. A., Wilkinson, R. G., Enser, M., Wood, J. D., and Fisher, A. V. (2002). Effects of dietary fat source and breed on the carcass composition, n-3 polyunsaturated fatty acid and conjugated linoleic acid content of sheep meat and adipose tissue. British Journal of Nutrition, 88(6), 697-709.
  • Zebeli, Q., Aschenbach, J. R., Tafaj, M., Boguhn, J., Ametaj, B. N., and Drochner, W. (2012). Role of physically effective fiber and estimation of dietary fiber adequacy in high-producing dairy cattle. Journal of Dairy Science, 95(3), 1041-1056.
  • Zengin, A. (2016). Denizli ilinde özel bir sığırcılık işletmesinde yetiştirilen angus sığırlarına ait bazı performans değerleri. Yüksek Lisans Tezi. Süleyman Demirel Üniversitesi. Fen Bilimleri Enstitüsü. Isparta. 81s.
  • Zhao, H., Lv, F., Liu, G., Pang, X., Han, X., and Wang, X. (2023). Effects of starters with different NDF/starch ratio on rumen fermentation parameters and rumen microorganisms in lambs. Frontiers in Veterinary Science, 10. 1064774.
  • Zinn, R. A. (1992). Comparative feeding value of supplemental fat in steam-flaked corn-and steam-flaked wheat-based finishing diets for feedlot steers. Journal of Animal Science, 70(10), 2959-2969.

BAZI BESİ ÇİFTLİKLERİNDE KULLANILAN RASYONLARIN FİZİKSEL YAPILARININ VE POTANSİYEL BESLEME DEĞERLERİNİN BELİRLENMESİ

Yıl 2025, Cilt: 8 Sayı: 2, 59 - 71
https://doi.org/10.55257/ethabd.1741847

Öz

Bu çalışmada, bazı besi çiftliklerinde kullanılan rasyonların fiziksel ve kimyasal özellikleri ile in vitro sindirilebilirlik ve fermantasyon parametreleri değerlendirilmiştir. Rasyonlara ait partikül boyut dağılımları üst elekte %2.80 - 32.82, orta elekte %12.46 - 40.62, alt elekte %25.62 - 39.81 ve alt tavada %8.40 - 48.73 arasında değişim göstermiştir. Rasyonların kurutulmuş kuru madde (KKM), ham protein (HP), ham yağ (HY), ham kül (HK), nötral deterjan fiber (NDF) ve asit deterjan fiber (ADF) içerikleri arasında istatistiksel olarak anlamlı farklılıklar tespit edilmiştir (P<0.05). Rasyonların KKM % 89.39 - 94.93, HP % 6.47 - 12.62, HY % 2.88 - 6.59, HK % 5.06 - 11.44, NDF % 39.08 - 64.57 ve ADF %18.38 - 42.11 arasında değişmiştir. Rasyonların in vitro gaz üretimi (GÜ), metan (CH₄) üretimi, gerçek sindirilebilir kuru madde (GSKM), gerçek sindirim derecesi (GSD), taksimat faktörü (TF), mikrobiyal protein (MP) üretimi, mikrobiyal protein sentezleme etkinliği (MPSE) ve amonyak azotu (NH₃-N) değerleri arasında da anlamlı farklılıklar saptanmıştır (P<0.05). Gaz üretimi 73.16 - 105.16 ml (500 mg KM), CH₄ üretimi 10.58 - 14.62 ml, GSKM 228.50 - 344.03 mg, GSD %45.56 - 68.53, MP 67.53 - 144.93 mg ve NH₃-N 47.73 - 51.52 mg/100 ml aralığında bulunmuştur. Rasyonların metabolik enerji (ME) içerikleri 7.08 - 9.59 MJ/kg KM, organik madde sindirim dereceleri (OMSD) ise % 48.04 - 61.12 arasında değişmiştir. Gaz kinetiği açısından değerlendirildiğinde, kolay fermente edilebilen fraksiyondan üretilen gaz hacmi (a) 0.59 - 4.03 ml, yavaş fermente edilebilen fraksiyondan üretilen gaz hacmi (b) 37.01 - 47.80 ml, toplam gaz üretimi (a+b) 38.22 - 50.40 ml ve fermantasyon hızı (c) %0.05 - 0.11 olarak belirlenmiştir.
Elde edilen sonuçlar, besi çiftliklerinde kullanılan rasyonların besleme değeri ve fermantasyon özellikleri açısından önemli farklılıklar gösterdiğini ortaya koymuştur. Bu bulgular, hayvan sağlığı ve verimliliğini artırmaya yönelik yem formülasyonlarının geliştirilmesinde temel oluşturacak nitelikte verilerdir. Bu doğrultuda, gelecekte yapılacak çalışmaların söz konusu parametreleri dikkate alarak daha optimize edilmiş rasyon stratejileri geliştirmeye odaklanması önerilmektedir.

Etik Beyan

Çalışmada kullanılan Rumen sıvısı Kesimhaneden alınmasından dolayı etik Beyana ihtiyaç yoktur.

Destekleyen Kurum

K.S.Ü. BAP

Kaynakça

  • Åkerholm, M., and Salmén, L. (2003). The oriented structure of lignin and its viscoelastic properties studied by static and dynamic FT-IR spectroscopy, Holzforschung 57, 459-465.
  • Allen, M.S. (1997). Relationship between fermentation acid production in the rumen and the requirement for physically effective fiber. Journal of Dairy Science, 80(7),1447–1462.
  • Alp, M., Kocabağlı,N., Kahraman, R., Yetim, M., ve Şenel, H.S. (1996). Kanatlı beslenmesinde kullanılan yem hammaddelerinin ve karma yemlerin besin maddeleri ve enerji kapsamları yönünden değerlendirilmesi. İstanbul Üniversitesi Veteriner Fakültesi Dergisi, 22(1), 9-22.
  • Anonim, (1987). Süt sığırları üzerinde Sıcağın Yarattığı Stresin İncelenmesi. U.S. Feed Grains Council News, 6, 10-12.
  • AOAC, (1990). Official methods of analysis of the Association of Official Analytical Chemists, Vol. II, 15th ed. Sec.985.29. The Association: Arlington, VA.
  • Bateman Ii, H.G., and Jenkins, T.C. (1998). Influence of soybean oil in high fiber diets fed to nonlactating cows on ruminal unsaturated fatty acids and nutrient digestibility. Journal of Dairy Science, 81(9), 2451-2458.
  • Blümmel M., Makkar, H.P.S., and Becker, K. (1997). In vitro gas production: A technique revisited. Journal of Animal Physiology and Animal Nutrition, 77(1-5), 24-34.
  • Blümmel, M., and Lebzien, P. (2001). Predicting ruminal microbial efficiencies of dairy rations by in vitro techniques. Livestock Production Science, 68(2-3), 107-117.
  • Blümmel, M., Karsli, A., and Russell, J. R. (2003). Influence of diet on growth yields of rumen micro-organisms in vitro and in vivo: influence on growth yield of variable carbon fluxes to fermentation products. British Journal of Nutrition, 90(3), 625-634.
  • Canbolat, O., ve Karaman, Ş. (2009): Bazı baklagil kaba yemlerinin in vitro gaz üretimi, organik madde sindirimi, nispi yem değeri ve metabolik enerji içeriklerinin karşılaştırılması. Journal of Agricultural Sciences, 15 (2), 188-196.
  • Canbolat, Ö., Kara, H., ve Filya, İ. (2013). Bazı baklagil kaba yemlerinin in vitro gaz üretimi, metabolik enerji, organik madde sindirimi ve mikrobiyal protein üretimlerinin karşılaştırılması. Uludağ Üniversitesi Ziraat Fakültesi Dergisi, 27(2), 71-82.
  • Cappellozza, B. I., Bohnert, D.W., Schauer, C.S., Falck, S.J., Vanzant, E.S., Harmon, D. L., and Cooke, R. F. (2013). Daily and alternate day supplementation of urea or soybean meal to ruminants consuming low-quality cool-season forage: II. Effects on ruminal fermentation. Livestock Science, 155(2-3), 214-222.
  • Cone, J.W., and Van Gelder, A.H. (1999). Influence of protein fermantation on gas production profiles. Animal Feed Science Technology,76(3-4), 251-264.
  • Deniz, A. (2021). Bursa bölgesindeki süt sığırcılığı işletmelerinde yem ve süt kalite özelliklerinin belirlenmesi (Master's thesis, Bursa Uludag Universitesi ). 106s.
  • DeVore, D.W. (2018). In-vitro digestibility and gas production of wheat middlings, solvent extracted cottonseed meal, soyhulls, and corn gluten feed and the effects of monensin on in-vitro digestibility and gas production. A Masters Thesis. The Graduate College of Missouri State University. 66p.
  • Dohme, F., Machmuller, A., Wasserfallen, A., Kreuzer, M. (2000). Comparative efficiency of various fats rich in medium chain fatty acids to suppress ruminal methanogenesis as measured with RUSITEC. Canadian Journal of Animal Science; 80(3), 473-484.
  • Duncan, D.B. (1955). Multiple range and multiple F tests. Biometrics, 11(1), 1-42.
  • FAO, (2011). Feeding the Future – Livestock in Food Security. World Livestock. 77-98.
  • Garcia, A.R. (2009). Usage of the Penn State Forage Separator for evaluating particle size of TMRs.
  • Getachew, G., Blümmel, M., Makar, H.P.S., and Becker, K. (1998). In vitro gas measuring techniques for assessment of nutritional quality of feeds: a review. Animal Feed Science and Technology, 72(3-4), 261- 281.
  • Getachew, G., DePeters, E.J., and Robinson, P.H. (2004). In vitro gas production provides effective method for assessing ruminant feeds. California Agriculture, 58(1), 54-58.
  • Goel, G., Makkar, H.P.S., Becker, K. (2008). Effect of sesbania sesban and carduus pycnocephalus leaves and fenugreek (Trigonella foenum-graecum L) seeds and their extract on partitioning of nutrients from roughage-and concentrate-based feeds to methane. Animal Feed Science and Technology, 147(1-3), 72-89.
  • Gülsün, B., ve Miç, P. (2018). Rasyon hazırlamada temel yem miktarlarının ekonomik olarak belirlenmesi için çok amaçlı programlama yaklaşımı. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 7(2), 634-648.
  • Güney, M., ve Karslı, M. (2014). Süt ineklerinin protein fraksiyonlarına tepkileri. Yuzuncu Yıl University Journal of Agricultural Sciences, 24(3), 317-324.
  • Heinrichs, A. J., and Kononoff, P. J. (1999). Evaluating particle size of forages and TMRs using the Penn State Particle Separator. Dairy Cattle Research.
  • Heinrichs, J., and Kononoff, P. (2002). Evaluating particle size of forages and TMRs using the new Penn State Forage Particle Separator. Pennsylvania State University, College of Agricultural Sciences, Cooperative Extension DAS, 42, 1-15.
  • Hopkins, B.A., Whitlow, L.W. (2013). Effective use of protein in early lactation diets.
  • Johnson, K. A., and Johnson, D. E. (1995) Methane emissions from cattle. Journal of Animal Science, 73(8), 2483–2492.
  • Jones, C. M., Heinrichs, A. J., Roth, G. W., and Ishler, V. A. (2018). From Harvest to Feed: Understanding Silage Management. Penn State Extension.
  • Kamalak, A., Canbolat, O., Gurbuz, Y., Erol, A., and Ozay, O. (2005). Effect of maturity stage on chemical composition, ın vitro and ın situ dry matter degradation of tumbleweed hay (Gundelia Tournefortii L.). Small Ruminant Research 58(2), 149–156.
  • Khafipour, E., Li, S., Plaizier, J. C., and Krause, D. O. (2009). Rumen microbiome composition determined using two nutritional models of subacute ruminal acidosis. Applied and Environmental Microbiology, 75(22), 7115-7124.
  • Khanum, S. A., Yaqoob, T., Sadaf, S., Hussain, M., Jabbar, M. A., Hussain, H. N., Kausar, R., and Rehman, S. (2007). Nutritional evaluation of various feedstuffs for livestock production using in vitro gas method. Pakistan Veterinary Journal, 27(3), 129–133.
  • Konca, Y. (2007). Süt Sığırı Rasyonlarında İlave Yağ Kullanımının Ruminal Fermantasyon ve Süt Kompozisyonuna Etkileri. Türkiye Süt Sığırcılığı Kurultayı, İzmir, Türkiye, 20-22.
  • Kononoff, P. J., and Heinrichs, A. J. (2003). The effect of corn silage particle size and cottonseed hulls on cows in early lactation. Journal of Dairy Science. 86(7), 2438-2451.
  • Kononoff, P. J., Heinrichs, A. J., and Buckmaster, D. R. (2003). Modification of the Penn State forage and total mixed ration particle separator and the effects of moisture content on its measurements. Journal of Dairy Science, 86(5), 1858-1863.
  • Koyuncu, M., ve Akgün, H. (2018). Çiftlik hayvanları ve küresel iklim değişikliği arasındaki etkileşim. Uludağ Üniversitesi Ziraat Fakültesi Dergisi, 32(1), 151-164.
  • Kutlu, H. R., ve Serbester, U. (2014). Ruminnt beslemede son gelişmeler. Turkish Journal of Agriculture-Food Science and Technology, 2(1), 18-37.
  • Larick, D. K., Turner, B. E., Schoenherr, W. D., Coffey, M. T., and Pilkington, D. H. (1992). Volatile compound content and fatty acid composition of pork as influenced by linoleic acid content of the diet. Journal of Animal Science, 70(5), 1397-1403.
  • López, S., Makkar, H. P., and Soliva, C. R. (2010). Screening plants and plant products for methane inhibitors. In vitro screening of plant resources for extra-nutritional attributes in ruminants: Nuclear And Related Methodologies, 191-231.
  • MacCracken, M.C. (2001). Global warming: A science overview. In Global warming and energy policy, Springer, Boston, MA, 151-159 pp.
  • Menke, K.H., and Steingass, H. (1988). Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Animal Research and Development, 28, 7-55.
  • Menke, K.H., Raab, L., Salenski, A., Steingass, H., Fritz, D., Schnieder, W. (1979). The estimation of digestibility and metabolisable energy content of ruminant feedstuffs from the gas production when they are incubated with rumen liquor in vitro. Journal of Agricultural Science 93(1), 217-222.
  • Morgavi, D. P., Forano, E., Martin, C., and Newbold, C. J. (2010). Microbial ecosystem and methanogenesis in ruminants. Animal, 4(7), 1024-1036.
  • National Research Council, (2001). Committee on Animal Nutrition, and Subcommittee on Dairy Cattle Nutrition.. Nutrient Requirements of Dairy Cattle: National Academies Press.
  • Navarro-Villa, A., O’Brien, M., Lopez, S., Boland, T.M., O’Kiely, P. (2011). Modifications of a gas production technique for assessing in vitro rumen methane production from feedstuffs. Animal Feed Science and Technology, 166, 163-174.
  • Norton, B.W. (2003). The nutritive value of tree legumes. http://www.fao.org/ag/AGP/AGPC/doc/Publicat/Gutt-shel/x5556e0j.htm. pp.1-10.
  • Orskov, E.R., and Mcdonald, I. (1979). The estimation of protein degradability in the rumen from incubation measurement weighed according to rate of passage. The Journal of Agricultural Science, 92(2), 499-503.
  • Özgen, H. (1986). Hayvan besleme. Selçuk Üniversitesi.
  • Palmquist, D. L., and Jenkins, T. C. (1980). Fat in lactation rations. Journal of Dairy Science, 63(1), 1-14.
  • Parissi, Z.M., Papachristou, T.G., and Nastis, A.S. (2005). Effect of drying method on estimated nutritive value of browse species using an in vitro gas production technique. Animal Feed Science and Technology, 123, 119-128.
  • Reece, W.O., (2008). Dukes veteriner fizyoloji Cilt I ve II (12. Baskı) (Türkçe Çeviri). Ed: Yıldız S. Medipres, Malatya, s, 500-511.
  • Selçuk, B., (2024). Bazı Baklagil Kaba Yemlerinin Ruminant Rasyonlarına İlavesinin Mikrobiyal Protein Üretimine Ve Fermantasyon Parametreleri Üzerine Etkileri. Doktora tezi. Kahramanmaraş Sütçü İmam Üniversitesi. Fen Bilimleri Enstitüsü. Kahramanmaraş. 102s.
  • Spss, I. I. B. M., (2011). IBM SPSS statistics for Windows, version 20.0. New York: IBM Corp, 440, 394.
  • Steinfeld, H., Gerber, P., Wassenaar, T., Castel, V., Rosales, M. and De Haan, C. (2006). Livestock's Long Shadow: Environmental issues and options. Food and Agriculture Organization, Rome, Italy. 212p.
  • Tekce, E., ve Gül, M. (2014). Ruminant beslemede NDF ve ADF’nin önemi. Atatürk Üniversitesi Veteriner Bilimleri Dergisi, 9(1), 63-73.
  • Van Soest, P. V., Robertson, J. B., and Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74(10), 3583-3597.
  • Wachira, A. M., Sinclair, L. A., Wilkinson, R. G., Enser, M., Wood, J. D., and Fisher, A. V. (2002). Effects of dietary fat source and breed on the carcass composition, n-3 polyunsaturated fatty acid and conjugated linoleic acid content of sheep meat and adipose tissue. British Journal of Nutrition, 88(6), 697-709.
  • Zebeli, Q., Aschenbach, J. R., Tafaj, M., Boguhn, J., Ametaj, B. N., and Drochner, W. (2012). Role of physically effective fiber and estimation of dietary fiber adequacy in high-producing dairy cattle. Journal of Dairy Science, 95(3), 1041-1056.
  • Zengin, A. (2016). Denizli ilinde özel bir sığırcılık işletmesinde yetiştirilen angus sığırlarına ait bazı performans değerleri. Yüksek Lisans Tezi. Süleyman Demirel Üniversitesi. Fen Bilimleri Enstitüsü. Isparta. 81s.
  • Zhao, H., Lv, F., Liu, G., Pang, X., Han, X., and Wang, X. (2023). Effects of starters with different NDF/starch ratio on rumen fermentation parameters and rumen microorganisms in lambs. Frontiers in Veterinary Science, 10. 1064774.
  • Zinn, R. A. (1992). Comparative feeding value of supplemental fat in steam-flaked corn-and steam-flaked wheat-based finishing diets for feedlot steers. Journal of Animal Science, 70(10), 2959-2969.
Toplam 61 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Hayvansal Üretim (Diğer)
Bölüm Makaleler
Yazarlar

Yakup Bilal 0000-0001-9785-5395

Adem Kamalak 0000-0003-0967-4821

Erken Görünüm Tarihi 17 Ekim 2025
Yayımlanma Tarihi 24 Ekim 2025
Gönderilme Tarihi 14 Temmuz 2025
Kabul Tarihi 2 Eylül 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 8 Sayı: 2

Kaynak Göster

APA Bilal, Y., & Kamalak, A. (2025). BAZI BESİ ÇİFTLİKLERİNDE KULLANILAN RASYONLARIN FİZİKSEL YAPILARININ VE POTANSİYEL BESLEME DEĞERLERİNİN BELİRLENMESİ. Erciyes Tarım ve Hayvan Bilimleri Dergisi, 8(2), 59-71. https://doi.org/10.55257/ethabd.1741847