Araştırma Makalesi
BibTex RIS Kaynak Göster

In Situ Synthesis of Catecholamines-Inorganic Nanoflowers and Enhanced Antimicrobial Activity

Yıl 2025, Cilt: 34 Sayı: 3, 488 - 498, 30.12.2025
https://doi.org/10.34108/eujhs.1767146

Öz

Hybrid nanoflowers synthesized from proteins, enzymes, amino acids and various plant extracts have attracted considerable interest and are used for a variety of purposes. Notably, they exhibit increased stability, as well as enhanced catalytic, antimicrobial and antioxidant activity compared to free molecules. Most synthesis techniques are expected to occur in a solution medium. In this study, we synthesized catecholamine hybrid nanoflowers in situ as a result of a one-day incubation. The in situ catecholamine nanoflower that we synthesized on the surface of a glass exhibits high antimicrobial activity. Thanks to this feature, they have the potential to be used as antimicrobial surface coatings. For surface-bound synthesis, we selected a glass surface as the model surface and catecholamines (dopamine, epinephrine and norepinephrine) as the model organic components. We characterized the in situ catecholamine nanoflower using Scanning Electron Microscopy and contact angle analysis. Additionally, we tested the antimicrobial activities of the in situ catecholamine nanoflower coating against the bacteria Staphylococcus aureus and Escherichia coli and the fungus Candida albicans. The results revealed that the antimicrobial activity of the in situ catecholamine nanoflower coatings had increased significantly. In view of the findings, it is expected that they will have a successful impact as part of antimicrobial surface coatings.

Etik Beyan

This study does not require ethical committee approval. Clinical samples were not used.

Teşekkür

This research did not receive support from any funding agency/industry.

Kaynakça

  • Inzana JA, Schwarz EM, Kates SL, Awad HA. Biomaterials approaches to treating implant-associated osteomyelitis. Biomater. 2016;81:58–71. doi:10.1016/j.biomaterials.2015.12.012
  • Cong YY, Quan C, Liu M, et al. Alendronate-decorated biodegradable polymeric micelles for potential bone-targeted delivery of vancomycin. J. Biomat. Sci.-Polym. E. 2015;26(11):629–643. doi:10.1080/09205063.2015.1053170
  • Wang, Y, Li P, Xiang P, Lu J, Yuan J, Shen J. Electrospun polyurethane/keratin/AgNP biocomposites for compatible and antibacterial wound dressings. J. Mater. Chem. B. 2016;4(4):635-648. doi:10.1039/C5TB02358K
  • Fang B, Jiang Y, Nusslein K, Rotello VM, Santore MM. Antimicrobial surfaces containing cationic nanoparticles: How immobilized, clustered, and protruding cationic charge presentation affects killing activity and kinetics. Colloid. Surface B. 2015;125: 255–263. doi:10.1016/j.colsurfb.2014.10.043
  • Sahoo J, Sarkhel S, Mukherjee N, Jaiswal A. Nanomaterial-based antimicrobial coating for biomedical implants: new age solution for biofilm-associated infections. ACS omega. 2022;7(50):45962-45980. doi:10.1021/acsomega.2c06211
  • Khan SS, Ullah I, Ullah S, et al. Recent advances in the surface functionalization of nanomaterials for antimicrobial applications. Mater. 2021;14(22):6932. doi:10.3390/ma14226932
  • Nikam M, Mane S, Jadhav S, et al. Influence of micro-textures on wettability and antibacterial behavior of Titanium surfaces against S. Aureus and E. coli: in vitro studies. Int J Interact Des Manuf. 2025;19(2):1101-1112. doi:10.1007/s12008-023-01287-8
  • Ghosh S, Mukherjee S, Patra D, Haldar J. Polymeric biomaterials for prevention and therapeutic intervention of microbial infections. Biomacromolecules. 2022;23(3):592-608. doi: 10.1021/acs.biomac.1c01528
  • Su L, Yu Y, Zhao Y, Liang F, Zhang, X. Strong antibacterial polydopamine coatings prepared by a shaking-assisted method. Sci Rep. 2016;6(1):24420. doi:10.1038/srep24420
  • Celik C, Ildiz N, Ocsoy I. Building block and rapid synthesis of catecholamines-inorganic nanoflowers with their peroxidase-mimicking and antimicrobial activities. Sci Rep. 2020;10(1):2903. doi:10.1038/s41598-020-59699-5
  • Yilmaz E, Koca FD, Saticioglu IB. Formation of Colchicine‐incorporated Hybrid Nanoflower with an Intrinsic Peroxidase‐Mimic and Enhanced Antimicrobial Activities. Chem Biodivers. 2025;27:e00911. doi:10.1002/cbdv.202500911
  • Ozaydin G, Mirioglu M, Kaplan N, Dadi S, Ocsoy I, Gokturk E. Horseradishperoxidase (HRP) nanoflowers-mediated polymerization of vinylmonomers. J Polym Res. 2024;31(12):363. doi:10.1007/s10965-024-04217-8
  • Arun R, Shruthy R, Preetha R, Sreejit V. Biodegradable nanocomposite inforced with cellulose nanofiber from coconut industry waste for replacing synthetic plastic food packaging. Chemosphere. 2022; 291:132786. doi: 10.1016/j.chemosphere.2021.132786
  • Clinical and Laboratory Standards Institute (CLSI). M100 Performance Standards for Antimicrobial Susceptibility Testing. https://www.nih.org.pk/wp-content/uploads/2021/02/CLSI-2020.pdfUpdateddateJanuary 2020. Accessed August 07, 2025.
  • Hossain TJ. Methods for screening and evaluation of antimicrobial activity: A review of protocols, advantages, and limitations. Eur J Microbiol Immunol. 2024;14(2):97-115. doi:10.1556/1886.2024.00035
  • Veiga A, Maria da Graça TT, Rossa Murakami FS, et al. Colorimetric microdilution assay: Validation of a standard method for determination of MIC, IC50%, and IC90% of antimicrobial compounds. J Microbio. Methods. 2019; 162:50-61. doi: 10.1016/j.mimet.2019.05.003
  • Ildiz N, Baldemir A, Altinkaynak C, Özdemir N, Yilmaz V, Ocsoy, I. Self-assembled snowball-like hybrid nanostructures comprising Viburnumopulus L. extract and metal ions for antimicrobial and catalytic applications. Enzyme Microb Technol. 2017;102: 60-66. doi: 10.1016/j.enzmictec.2017.04.003
  • Liu Y, Li R, Xiao X, Wang Z. Anti-HIV agent azidothymidine decreases Tet(X)-mediated tigecycline resistance in Gram-negative bacteria. Commun Biol. 2020;3(1):162. doi:10.1038/s42003-020-0877-5
  • Butler J, Handy RD, Upton M, Besinis A. Review of antimicrobial nanocoatings in medicine and dentistry: mechanisms of action, biocompatibility performance, safety, and benefits compared to antibiotics. ACS nano. 2023;17(8):7064-7092. doi:10.1021/acsnano.2c12488
  • Tan G, Xu J, Chirume WM, Zhang J, Zhang H, Hu X. Antibacterial and anti-inflammatory coating materials for orthopedic implants: a review. Coatings. 2021;11(11):1401. doi:10.3390/coatings11111401
  • Kışla D, Gökmen GG, Evrendilek GA, et al. Recent developments in antimicrobial surface coatings: Various deposition techniques with nanosized particles, their application and environmental concerns. Trends Food Sci Technol. 2023; 135:144-172. doi: 10.1016/j.tifs.2023.03.019
  • Koca‐Caliskan U, Donmez C, Eruygur N, Ayaz F, Altinkaynak C, Ozdemir N. Synthesis and characterization of copper‐nanoflowers with the utilization of medicinal plant extracts for enhanced various enzyme inhibitory activities. Chem Biodiversity. 2022;19(11):e202200476. doi:10.1002/cbdv.202200476
  • Chormey DS, Erarpat S, Zaman BT, Özdoğan N, Yağmuroğlu O, Bakırdere S. Nanoflower synthesis, characterization and analytical applications: a review. Environ Chem Lett. 2023;21(3):1863-1880. doi:10.1007/s10311-023-01572-8
  • Huhtamäki T, Tian X, Korhonen J, Ras RHA. Surface-wetting characterization using contact-angle measurements. Nat Protoc. 2018;13(7):1521–1538. doi:10.1038/s41596-018-0003-z
  • Di R, Sun Y, Yao R, Pei S, Yao X, Hang R. Preparation of TiO2 Nano-Flower Coating on Ti Substrates with Good Physical Sterilization Effect and Biocompatibility. In Acta Metall Sin (Engl Lett). 2024;37(9):1581-1589. doi:10.1007/s40195-024-01724-x
  • Baldemir Kılıc A, Ildiz N, Yusufbeyoglu S, Ocsoy I. Nanoflower synthesis formed at different pH based on Crocussativus L. (Crocistigma, saffron) extract and its major components: a new approach for enhancing antioxidant, antimicrobial and catalytic activities. Inorg Nano-Met Chem. 2025;55(1):18-28. doi:10.1080/24701556.2023.2240757
  • Demirbas A, Karsli B, Dadi S, et al. Formation of Umbilicariadecussata (Antarctic and Turkey) Extracts Based Nanoflowers with Their Peroxidase Mimic, Dye Degradation and Antimicrobial Properties. Chem Biodiversity. 2023;20(8):e202300090. doi:10.1002/cbdv.202300090
  • Rezaei FY, Pircheraghi G, Nikbin VS. Antibacterial activity, cell wall damage, and cytotoxicity of zincoxidenanospheres, nanorods, and nanoflowers. ACS Appl Nano Mater. 2024;7(13):15242-15254. doi:10.1021/acsanm.4c02046
  • Erkoc P, Ulucan-Karnak F. Nanotechnology-based antimicrobial and antiviral surface coating strategies. Prosthesis. 2021;3(1):25-52. doi:10.3390/prosthesis3010005

Katekolamin-İnorganik Nano Çiçeklerin Yerinde Sentezi ve Gelişmiş Antimikrobiyal Aktiviteleri

Yıl 2025, Cilt: 34 Sayı: 3, 488 - 498, 30.12.2025
https://doi.org/10.34108/eujhs.1767146

Öz

Proteinler, enzimler, amino asitler ve çeşitli bitki özlerinden sentezlenen hibrit nano çiçekler büyük ilgi görmüş ve çeşitli amaçlarla kullanılmaktadır. Özellikle, serbest moleküllerle karşılaştırıldığında daha yüksek stabiliteye sahip olmanın yanı sıra, katalitik, antimikrobiyal ve antioksidan aktiviteleri de daha yüksektir. Sentez tekniklerinin çoğu bir çözelti ortamında gerçekleştirilir. Bu çalışmada ise, bir günlük inkübasyon sonucunda katekolamin hibrit nano çiçekleri in situ olarak sentezledik. Cam yüzeyinde sentezlediğimiz in situ katekolamin nano çiçekleri yüksek antimikrobiyal aktivite sergilemektedir. Bu özelliği sayesinde, yüzey kaplamaları olarak kullanılma potansiyeline sahiptir. Yüzeye bağlı sentez için, model yüzey olarak cam ve model organik bileşenler olarak katekolaminler (dopamin, epinefrin ve norepinefrin) seçilmiştir. İn situ katekolamin nano çiçekleri taramalı elektron mikroskobu ve temas açısı ölçümü kullanarak karakterize ettik. Ayrıca, in situ katekolamin nano çiçekleri kaplamalarının Staphylococcus aureus, Escherichia coli ve Candida albicans’a karşı antimikrobiyal aktivitesini test ettik. Sonuçlar, in situ katekolamin nano çiçekleri kaplamalarının antibakteriyel aktivitesinin önemli ölçüde arttığını ortaya koydu. Bulgular ışığında, antimikrobiyal yüzey kaplamalarının bir parçası olarak başarılı bir etki yaratmaları beklenmektedir.

Etik Beyan

Bu çalışma etik kurul onayı gerektirmez. Klinik numune kullanılmamıştır.

Teşekkür

Bu araştırma herhangi bir finansman kuruluşundan/sektörden destek almamıştır.

Kaynakça

  • Inzana JA, Schwarz EM, Kates SL, Awad HA. Biomaterials approaches to treating implant-associated osteomyelitis. Biomater. 2016;81:58–71. doi:10.1016/j.biomaterials.2015.12.012
  • Cong YY, Quan C, Liu M, et al. Alendronate-decorated biodegradable polymeric micelles for potential bone-targeted delivery of vancomycin. J. Biomat. Sci.-Polym. E. 2015;26(11):629–643. doi:10.1080/09205063.2015.1053170
  • Wang, Y, Li P, Xiang P, Lu J, Yuan J, Shen J. Electrospun polyurethane/keratin/AgNP biocomposites for compatible and antibacterial wound dressings. J. Mater. Chem. B. 2016;4(4):635-648. doi:10.1039/C5TB02358K
  • Fang B, Jiang Y, Nusslein K, Rotello VM, Santore MM. Antimicrobial surfaces containing cationic nanoparticles: How immobilized, clustered, and protruding cationic charge presentation affects killing activity and kinetics. Colloid. Surface B. 2015;125: 255–263. doi:10.1016/j.colsurfb.2014.10.043
  • Sahoo J, Sarkhel S, Mukherjee N, Jaiswal A. Nanomaterial-based antimicrobial coating for biomedical implants: new age solution for biofilm-associated infections. ACS omega. 2022;7(50):45962-45980. doi:10.1021/acsomega.2c06211
  • Khan SS, Ullah I, Ullah S, et al. Recent advances in the surface functionalization of nanomaterials for antimicrobial applications. Mater. 2021;14(22):6932. doi:10.3390/ma14226932
  • Nikam M, Mane S, Jadhav S, et al. Influence of micro-textures on wettability and antibacterial behavior of Titanium surfaces against S. Aureus and E. coli: in vitro studies. Int J Interact Des Manuf. 2025;19(2):1101-1112. doi:10.1007/s12008-023-01287-8
  • Ghosh S, Mukherjee S, Patra D, Haldar J. Polymeric biomaterials for prevention and therapeutic intervention of microbial infections. Biomacromolecules. 2022;23(3):592-608. doi: 10.1021/acs.biomac.1c01528
  • Su L, Yu Y, Zhao Y, Liang F, Zhang, X. Strong antibacterial polydopamine coatings prepared by a shaking-assisted method. Sci Rep. 2016;6(1):24420. doi:10.1038/srep24420
  • Celik C, Ildiz N, Ocsoy I. Building block and rapid synthesis of catecholamines-inorganic nanoflowers with their peroxidase-mimicking and antimicrobial activities. Sci Rep. 2020;10(1):2903. doi:10.1038/s41598-020-59699-5
  • Yilmaz E, Koca FD, Saticioglu IB. Formation of Colchicine‐incorporated Hybrid Nanoflower with an Intrinsic Peroxidase‐Mimic and Enhanced Antimicrobial Activities. Chem Biodivers. 2025;27:e00911. doi:10.1002/cbdv.202500911
  • Ozaydin G, Mirioglu M, Kaplan N, Dadi S, Ocsoy I, Gokturk E. Horseradishperoxidase (HRP) nanoflowers-mediated polymerization of vinylmonomers. J Polym Res. 2024;31(12):363. doi:10.1007/s10965-024-04217-8
  • Arun R, Shruthy R, Preetha R, Sreejit V. Biodegradable nanocomposite inforced with cellulose nanofiber from coconut industry waste for replacing synthetic plastic food packaging. Chemosphere. 2022; 291:132786. doi: 10.1016/j.chemosphere.2021.132786
  • Clinical and Laboratory Standards Institute (CLSI). M100 Performance Standards for Antimicrobial Susceptibility Testing. https://www.nih.org.pk/wp-content/uploads/2021/02/CLSI-2020.pdfUpdateddateJanuary 2020. Accessed August 07, 2025.
  • Hossain TJ. Methods for screening and evaluation of antimicrobial activity: A review of protocols, advantages, and limitations. Eur J Microbiol Immunol. 2024;14(2):97-115. doi:10.1556/1886.2024.00035
  • Veiga A, Maria da Graça TT, Rossa Murakami FS, et al. Colorimetric microdilution assay: Validation of a standard method for determination of MIC, IC50%, and IC90% of antimicrobial compounds. J Microbio. Methods. 2019; 162:50-61. doi: 10.1016/j.mimet.2019.05.003
  • Ildiz N, Baldemir A, Altinkaynak C, Özdemir N, Yilmaz V, Ocsoy, I. Self-assembled snowball-like hybrid nanostructures comprising Viburnumopulus L. extract and metal ions for antimicrobial and catalytic applications. Enzyme Microb Technol. 2017;102: 60-66. doi: 10.1016/j.enzmictec.2017.04.003
  • Liu Y, Li R, Xiao X, Wang Z. Anti-HIV agent azidothymidine decreases Tet(X)-mediated tigecycline resistance in Gram-negative bacteria. Commun Biol. 2020;3(1):162. doi:10.1038/s42003-020-0877-5
  • Butler J, Handy RD, Upton M, Besinis A. Review of antimicrobial nanocoatings in medicine and dentistry: mechanisms of action, biocompatibility performance, safety, and benefits compared to antibiotics. ACS nano. 2023;17(8):7064-7092. doi:10.1021/acsnano.2c12488
  • Tan G, Xu J, Chirume WM, Zhang J, Zhang H, Hu X. Antibacterial and anti-inflammatory coating materials for orthopedic implants: a review. Coatings. 2021;11(11):1401. doi:10.3390/coatings11111401
  • Kışla D, Gökmen GG, Evrendilek GA, et al. Recent developments in antimicrobial surface coatings: Various deposition techniques with nanosized particles, their application and environmental concerns. Trends Food Sci Technol. 2023; 135:144-172. doi: 10.1016/j.tifs.2023.03.019
  • Koca‐Caliskan U, Donmez C, Eruygur N, Ayaz F, Altinkaynak C, Ozdemir N. Synthesis and characterization of copper‐nanoflowers with the utilization of medicinal plant extracts for enhanced various enzyme inhibitory activities. Chem Biodiversity. 2022;19(11):e202200476. doi:10.1002/cbdv.202200476
  • Chormey DS, Erarpat S, Zaman BT, Özdoğan N, Yağmuroğlu O, Bakırdere S. Nanoflower synthesis, characterization and analytical applications: a review. Environ Chem Lett. 2023;21(3):1863-1880. doi:10.1007/s10311-023-01572-8
  • Huhtamäki T, Tian X, Korhonen J, Ras RHA. Surface-wetting characterization using contact-angle measurements. Nat Protoc. 2018;13(7):1521–1538. doi:10.1038/s41596-018-0003-z
  • Di R, Sun Y, Yao R, Pei S, Yao X, Hang R. Preparation of TiO2 Nano-Flower Coating on Ti Substrates with Good Physical Sterilization Effect and Biocompatibility. In Acta Metall Sin (Engl Lett). 2024;37(9):1581-1589. doi:10.1007/s40195-024-01724-x
  • Baldemir Kılıc A, Ildiz N, Yusufbeyoglu S, Ocsoy I. Nanoflower synthesis formed at different pH based on Crocussativus L. (Crocistigma, saffron) extract and its major components: a new approach for enhancing antioxidant, antimicrobial and catalytic activities. Inorg Nano-Met Chem. 2025;55(1):18-28. doi:10.1080/24701556.2023.2240757
  • Demirbas A, Karsli B, Dadi S, et al. Formation of Umbilicariadecussata (Antarctic and Turkey) Extracts Based Nanoflowers with Their Peroxidase Mimic, Dye Degradation and Antimicrobial Properties. Chem Biodiversity. 2023;20(8):e202300090. doi:10.1002/cbdv.202300090
  • Rezaei FY, Pircheraghi G, Nikbin VS. Antibacterial activity, cell wall damage, and cytotoxicity of zincoxidenanospheres, nanorods, and nanoflowers. ACS Appl Nano Mater. 2024;7(13):15242-15254. doi:10.1021/acsanm.4c02046
  • Erkoc P, Ulucan-Karnak F. Nanotechnology-based antimicrobial and antiviral surface coating strategies. Prosthesis. 2021;3(1):25-52. doi:10.3390/prosthesis3010005
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Eczacılıkta Analitik Kimya, Farmasotik Mikrobiyoloji
Bölüm Araştırma Makalesi
Yazarlar

Çağla Çelik Yoldaş 0000-0002-5703-2375

Nilay Ildiz 0000-0002-3799-856X

Sadık Küçükgünay 0009-0005-7520-6788

İsmail Öçsoy 0000-0002-5991-3934

Gönderilme Tarihi 16 Ağustos 2025
Kabul Tarihi 8 Aralık 2025
Yayımlanma Tarihi 30 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 34 Sayı: 3

Kaynak Göster

APA Çelik Yoldaş, Ç., Ildiz, N., Küçükgünay, S., Öçsoy, İ. (2025). In Situ Synthesis of Catecholamines-Inorganic Nanoflowers and Enhanced Antimicrobial Activity. Sağlık Bilimleri Dergisi, 34(3), 488-498. https://doi.org/10.34108/eujhs.1767146
AMA Çelik Yoldaş Ç, Ildiz N, Küçükgünay S, Öçsoy İ. In Situ Synthesis of Catecholamines-Inorganic Nanoflowers and Enhanced Antimicrobial Activity. JHS. Aralık 2025;34(3):488-498. doi:10.34108/eujhs.1767146
Chicago Çelik Yoldaş, Çağla, Nilay Ildiz, Sadık Küçükgünay, ve İsmail Öçsoy. “In Situ Synthesis of Catecholamines-Inorganic Nanoflowers and Enhanced Antimicrobial Activity”. Sağlık Bilimleri Dergisi 34, sy. 3 (Aralık 2025): 488-98. https://doi.org/10.34108/eujhs.1767146.
EndNote Çelik Yoldaş Ç, Ildiz N, Küçükgünay S, Öçsoy İ (01 Aralık 2025) In Situ Synthesis of Catecholamines-Inorganic Nanoflowers and Enhanced Antimicrobial Activity. Sağlık Bilimleri Dergisi 34 3 488–498.
IEEE Ç. Çelik Yoldaş, N. Ildiz, S. Küçükgünay, ve İ. Öçsoy, “In Situ Synthesis of Catecholamines-Inorganic Nanoflowers and Enhanced Antimicrobial Activity”, JHS, c. 34, sy. 3, ss. 488–498, 2025, doi: 10.34108/eujhs.1767146.
ISNAD Çelik Yoldaş, Çağla vd. “In Situ Synthesis of Catecholamines-Inorganic Nanoflowers and Enhanced Antimicrobial Activity”. Sağlık Bilimleri Dergisi 34/3 (Aralık2025), 488-498. https://doi.org/10.34108/eujhs.1767146.
JAMA Çelik Yoldaş Ç, Ildiz N, Küçükgünay S, Öçsoy İ. In Situ Synthesis of Catecholamines-Inorganic Nanoflowers and Enhanced Antimicrobial Activity. JHS. 2025;34:488–498.
MLA Çelik Yoldaş, Çağla vd. “In Situ Synthesis of Catecholamines-Inorganic Nanoflowers and Enhanced Antimicrobial Activity”. Sağlık Bilimleri Dergisi, c. 34, sy. 3, 2025, ss. 488-9, doi:10.34108/eujhs.1767146.
Vancouver Çelik Yoldaş Ç, Ildiz N, Küçükgünay S, Öçsoy İ. In Situ Synthesis of Catecholamines-Inorganic Nanoflowers and Enhanced Antimicrobial Activity. JHS. 2025;34(3):488-9.