Çalışmanın amacı görme engelli çocukların denge ve yaşam kalitelerini incelemektir. Çalışmaya 8-12 yaş arasındaki görme engelli 8, normal gören 10 çocuk dahil edildi. Çocukların yaş ve görme kayıplarının dereceleri kaydedildi, antropometrik ölçümleri alındı. Dengeleri “Denge Hata Puanlama Sistemi” ile değerlendirildi. Yaşam kaliteleri 8-12 yaş için “Pediatrik Yaşam Kalitesi Envanteri 4.0” kullanılarak değerlendirildi. Her iki grubun değerlendirmeleri Mann-Whitney U testi kullanılarak karşılaştırıldı. Tüm testlerde istatistiksel anlamlılık düzeyi 0.05 olarak kabul edildi. Her iki gruptaki çocukların yaş ve antropometrik özellikleri benzer bulundu (p>0.05). Sert/düz zemin üzerindeyken tek bacak üstünde durma, toplam sert zemin, toplam yumuşak zemin ve toplam denge hata puanlarının görme engelli çocuklarda daha yüksek olduğu bulundu (sırasıyla p=0.003; p=0.016; p=0.001; p=0.002). Çocukların yaşam kalitesi değerlendirmelerinde çocuklar arasında fark bulunmadı (p>0.05). Ebeveyn yaşam kalitesi ölçeklerinde ise fiziksel sağlık işlevselliğinde ve toplam ebeveyn değerlendirme puanlamasında görme engelli çocukların yaşam kalitesi puanlarının daha düşük olduğu bulundu (sırasıyla p=0.003; p=0.001).Görme engelli çocuklarda denge gelişimi tipik gelişen yaşıtlarına göre gecikebilmekte veya farklı şekilde ilerleyebilmektedir. Görsel bilginin denge üzerine etkisi en çok yumuşak zeminde tek ayaküstünde durma becerisinde görülmüştür. Bu durumun görme engelli çocuklar için dinamik denge becerilerinin statik denge becerilerinden daha zor olmasıyla ilişkili olduğu düşünülmektedir.
Çalışmanın yürütüldüğü Emel Tarman Görme Engelliler İlkokulu ve Mehmet Tarman İlkokulu öğrencilerine, okul müdürleri ve öğretmenlerine gösterdikleri ilgi ve yardımları için; Nuh Naci Yazgan Üniversitesi öğrencilerinden Ayçe Bıyıklı, Kübra Topçu, Özge Gözelce, Dilan Alişan, Rabia Aksoy, Büşra Ertem, Fatoş Alev Sümer, Osman Kurnaz’a veri toplama sürecindeki katkıları için teşekkür ederiz.
Kaynakça
1. Bourne RRA, Flaxman SR, Braithwaite T, et al. Magnitude, temporal trends, and projections of the global prevalence of blindness and distance and near vision impairment: a systematic review and meta-analysis. Lancet Glob. Health. 2017;5:888–897.
2. Brian AS, Haegele JA, Bostick L. Perceived motor competence of children with visual impairments: A preliminary investigation. Br J Vis Impair. 2016;34:151–155.
3. Augestad LB, Jiang L. Physical activity, physical fitness, and body composition among children and young adults with visual impairments: A systematic review. Br J Vis Impair. 2015;33:167–182.
4. Juodžbalienė V, Muckus K. The influence of the degree of visual impairment on psychomotor reaction and equilibrium maintenance of adolescents. Medicina (Kaunas). 2006;42:49–56.
5. Wong HB, Machin D, Tan SB, Wong TY, Saw SM. Visual impairment and its impact on health-related quality of life in adolescents. Am. J. Ophthalmol. 2009;147:505–511.
6. Lieberman LJ, Lepore M, Lepore-Stevens M, Ball L. Physical education for children with visual impairment or blindness. J. Phys. Educ. Recreat. 2019;90:30–38.
7. Rutkowska I, Bednarczuk G, Molik B, et al. Balance functional assessment in people with visual impairment. J. Hum. Kinet. 2015;48:99–109.
8. Ragnarsdóttir M. The concept of balance. Physiotherapy. 1996;82:368–375.
9. Shumway-Cook A, Horak FB. Assessing the influence of sensory interaction on balance: suggestion from the field. Physical therapy. 1986;66:1548–1550.
10. De Campos LFCC, de Athayde Costa A, dos Santos LGTF, et al. Effects of training in physical fitness and body composition of the brazilian 5-a-side football team. Rev Andal Med Deport. 2013;6:91–95.
11. Haegele JA, Porretta D. Physical activity and school-age individuals with visual impairments: A literature review. Adapt Phys Activ Q. 2015;32:68–82.
12. Rutkowska I, Skowroński W. A comparison of body balance of blind children aged 7-16 years in sex and age categories. Stud. Phys. Cult. Tour. 2007;14.
13. World Health Organization ICD-10 Version: 2016: International Statistical Classification of Diseases and Related Health Problems 10th Revision. https://icd.who.int/browse10/2016/en#/. Erişim tarihi: 27.02.2022
14. Riemann BL, Guskiewicz KM. Effects of mild head injury on postural stability as measured through clinical balance testing. J. Athl. Train.. 2000;35:19-25.
15. Hansen C, Cushman D, Chen W,Bounsanga J, Hung M. Reliability testing of the balance error scoring system in children between the ages of 5 and 14. Clin J Sport Med. 2017;27:64-68.
16. Erkmen N, Taşkın H, Kaplan T,Sanioǧlu A. The effect of fatiguing exercise on balance performance as measured by the balance error scoring system. Isokinet Exerc Sci. 2009;17:121–127.
17. Erkmen N, Suveren S, Göktepe AS,Yazıcıoğlu K. Farkli branşlardaki sporcularin denge performanslarinin karşilaştirilmasi. Spormetre Beden Eğitimi ve Spor Bilimleri Dergisi. 2007;3:115–122.
18. Sönmez S, Başbakkal Z. Türk Çocuklarının Pediatrik Yaşam Kalitesi 4. Envanterinin (PedsQL 4) Geçerlilik ve Güvenilirlik Çalışması. Turkiye Klinikleri J Pediatr. 2007;16:229–237.
19. Malwina KA, Krzysztof M, Piotr Z. Visual Impairment does not Limit Training Effects in Development of Aerobic and Anaerobic Capacity in Tandem Cyclists. J. Hum. Kinet. 2015;48:87–97.
20. Ribadi H, Rider RA, Toole T. A comparison of static and dynamic balance in congenitally blind, sighted, and sighted blindfolded adolescents. Adapt Phys Activ Q. 1987;4:220–225.
21. Brambring M. Divergent development of gross motor skills in children who are blind or sighted. J Vis Impair Blind. 2006;100:620–634.
22. Graci V, Elliott DB, Buckley JG. Utility of peripheral visual cues in planning and controlling adaptive gait. Optom Vis Sci. 2010;87:21–27.
23. Tosoni A, Galati G, Romani GL, Corbetta M. Sensory-motor mechanisms in human parietal cortex underlie arbitrary visual decisions. Nat. Neurosci.2008;11:1446–1453.
24. Poucet B, Lenck-Santini PP, Paz-Villagrán V, Save E. Place cells, neocortex and spatial navigation: a short review. J. Physiol. Paris. 2003;97:537–546.
25. Rodriguez PF. Human navigation that requires calculating heading vectors recruits parietal cortex in a virtual and visually sparse water maze task in fMRI. Behav. Neurosci. 2010;124:532-540.
26. Chebat DR, Chen JK, Schneider F, Ptito A, Kupers R, Ptito M. Alterations in right posterior hippocampus in early blind individuals. Neuroreport. 2007;18:329–333.
27. Woollacott M, Shumway-Cook A, Hutchinson S, et al. Effect of balance training on muscle activity used in recovery of stability in children with cerebral palsy: a pilot study. Dev Med Child Neurol. 2005;47:455–461.
28. Bouisset S, Do MC. Posture, dynamic stability, and voluntary movement. Neurophysiol Clin. 2008;38:345–362.
29. Hamblion EL, Moore AT, Rahi JS. The health-related quality of life of children with hereditary retinal disorders and the psychosocial impact on their families. Investig. Ophthalmol. Vis. Sci. 2011;52:7981–7986.
30. Sheppard L, Eiser C, Kingston J. Mothers’ perceptions of children’s quality of life following early diagnosis and treatment for retinoblastoma (Rb). Child Care Health Dev. 2005;31:137–142.
31. Castañeda YS, Cheng-Patel CS, Leske DA, et al. Quality of life and functional vision concerns of children with cataracts and their parents. Eye. 2016;30:1251–1259.
32. Smyth CA, Spicer CL, Morgese ZL. Family voices at mealtime: Experiences with young children with visual impairment. Topics Early Child Spec Educ. 2014;34:175–185.
33. Skaggs S, Hopper C. Individuals with visual impairments: A review of psychomotor behavior. Adapt Phys Activ Q. 1996;13:16–26.
34. Marmeleira J, Laranjo L, Marques O, Pereira C. Physical activity patterns in adults who are blind as assessed by accelerometry. Adapt Phys Activ Q. 2014;31:283–296.
35. Santamaria T, Mallia L, Vitali F, et al. Imagine your body even without seeing it: the effect of physical activity upon the physical self-concept in people with and without blindness.Sport Sci Health. 2020;16:425–434.
INVESTIGATION OF THE BALANCE AND LIFE QUALITY OF VISUALLY IMPAIRED CHILDREN: A PILOT STUDY
The aim of the study is to examine the balance and quality of life of visually impaired children. Eight visually impaired and 10 children with normal vision aged 8-12 years were included in the study. The age and degrees of vision loss of the children were recorded, and anthropometric measurements were made. The balance of children was evaluated by using "Balance Error Scoring System". Their quality of life was evaluated using the “Pediatric Quality of Life Inventory 4.0” for 8-12-year-olds. Both groups’ assessments were compared using the Mann-Whitney U test. The statistical significance level was accepted as 0.05 in all tests. The age and anthropometric characteristics of children in both groups were similar (p>0.05). It was found that standing on one leg on a hard/flat floor, to tally hard floor, to tally soft floor, and to tally balance error scores were higher in visually impaired children (p=0.003; p=0.016; p=0.001; p=0.002 respectively). No difference was found in the quality of life assessment of children (p>0.05). On the parental scales, visually impaired children were found to have lower physical health functionality and total paren talassessment scores (p=0.003; p=0.001, respectively). Balance development in visually impaired children may be delayed or progress differently compared to their typically developing peers. The effect of visual information on balance was mostly seen in the ability to stand on one foot on soft ground. This is thought to be related to the fact that dynamic balances skills are more difficult for visually impaired children than static balance kills.
1. Bourne RRA, Flaxman SR, Braithwaite T, et al. Magnitude, temporal trends, and projections of the global prevalence of blindness and distance and near vision impairment: a systematic review and meta-analysis. Lancet Glob. Health. 2017;5:888–897.
2. Brian AS, Haegele JA, Bostick L. Perceived motor competence of children with visual impairments: A preliminary investigation. Br J Vis Impair. 2016;34:151–155.
3. Augestad LB, Jiang L. Physical activity, physical fitness, and body composition among children and young adults with visual impairments: A systematic review. Br J Vis Impair. 2015;33:167–182.
4. Juodžbalienė V, Muckus K. The influence of the degree of visual impairment on psychomotor reaction and equilibrium maintenance of adolescents. Medicina (Kaunas). 2006;42:49–56.
5. Wong HB, Machin D, Tan SB, Wong TY, Saw SM. Visual impairment and its impact on health-related quality of life in adolescents. Am. J. Ophthalmol. 2009;147:505–511.
6. Lieberman LJ, Lepore M, Lepore-Stevens M, Ball L. Physical education for children with visual impairment or blindness. J. Phys. Educ. Recreat. 2019;90:30–38.
7. Rutkowska I, Bednarczuk G, Molik B, et al. Balance functional assessment in people with visual impairment. J. Hum. Kinet. 2015;48:99–109.
8. Ragnarsdóttir M. The concept of balance. Physiotherapy. 1996;82:368–375.
9. Shumway-Cook A, Horak FB. Assessing the influence of sensory interaction on balance: suggestion from the field. Physical therapy. 1986;66:1548–1550.
10. De Campos LFCC, de Athayde Costa A, dos Santos LGTF, et al. Effects of training in physical fitness and body composition of the brazilian 5-a-side football team. Rev Andal Med Deport. 2013;6:91–95.
11. Haegele JA, Porretta D. Physical activity and school-age individuals with visual impairments: A literature review. Adapt Phys Activ Q. 2015;32:68–82.
12. Rutkowska I, Skowroński W. A comparison of body balance of blind children aged 7-16 years in sex and age categories. Stud. Phys. Cult. Tour. 2007;14.
13. World Health Organization ICD-10 Version: 2016: International Statistical Classification of Diseases and Related Health Problems 10th Revision. https://icd.who.int/browse10/2016/en#/. Erişim tarihi: 27.02.2022
14. Riemann BL, Guskiewicz KM. Effects of mild head injury on postural stability as measured through clinical balance testing. J. Athl. Train.. 2000;35:19-25.
15. Hansen C, Cushman D, Chen W,Bounsanga J, Hung M. Reliability testing of the balance error scoring system in children between the ages of 5 and 14. Clin J Sport Med. 2017;27:64-68.
16. Erkmen N, Taşkın H, Kaplan T,Sanioǧlu A. The effect of fatiguing exercise on balance performance as measured by the balance error scoring system. Isokinet Exerc Sci. 2009;17:121–127.
17. Erkmen N, Suveren S, Göktepe AS,Yazıcıoğlu K. Farkli branşlardaki sporcularin denge performanslarinin karşilaştirilmasi. Spormetre Beden Eğitimi ve Spor Bilimleri Dergisi. 2007;3:115–122.
18. Sönmez S, Başbakkal Z. Türk Çocuklarının Pediatrik Yaşam Kalitesi 4. Envanterinin (PedsQL 4) Geçerlilik ve Güvenilirlik Çalışması. Turkiye Klinikleri J Pediatr. 2007;16:229–237.
19. Malwina KA, Krzysztof M, Piotr Z. Visual Impairment does not Limit Training Effects in Development of Aerobic and Anaerobic Capacity in Tandem Cyclists. J. Hum. Kinet. 2015;48:87–97.
20. Ribadi H, Rider RA, Toole T. A comparison of static and dynamic balance in congenitally blind, sighted, and sighted blindfolded adolescents. Adapt Phys Activ Q. 1987;4:220–225.
21. Brambring M. Divergent development of gross motor skills in children who are blind or sighted. J Vis Impair Blind. 2006;100:620–634.
22. Graci V, Elliott DB, Buckley JG. Utility of peripheral visual cues in planning and controlling adaptive gait. Optom Vis Sci. 2010;87:21–27.
23. Tosoni A, Galati G, Romani GL, Corbetta M. Sensory-motor mechanisms in human parietal cortex underlie arbitrary visual decisions. Nat. Neurosci.2008;11:1446–1453.
24. Poucet B, Lenck-Santini PP, Paz-Villagrán V, Save E. Place cells, neocortex and spatial navigation: a short review. J. Physiol. Paris. 2003;97:537–546.
25. Rodriguez PF. Human navigation that requires calculating heading vectors recruits parietal cortex in a virtual and visually sparse water maze task in fMRI. Behav. Neurosci. 2010;124:532-540.
26. Chebat DR, Chen JK, Schneider F, Ptito A, Kupers R, Ptito M. Alterations in right posterior hippocampus in early blind individuals. Neuroreport. 2007;18:329–333.
27. Woollacott M, Shumway-Cook A, Hutchinson S, et al. Effect of balance training on muscle activity used in recovery of stability in children with cerebral palsy: a pilot study. Dev Med Child Neurol. 2005;47:455–461.
28. Bouisset S, Do MC. Posture, dynamic stability, and voluntary movement. Neurophysiol Clin. 2008;38:345–362.
29. Hamblion EL, Moore AT, Rahi JS. The health-related quality of life of children with hereditary retinal disorders and the psychosocial impact on their families. Investig. Ophthalmol. Vis. Sci. 2011;52:7981–7986.
30. Sheppard L, Eiser C, Kingston J. Mothers’ perceptions of children’s quality of life following early diagnosis and treatment for retinoblastoma (Rb). Child Care Health Dev. 2005;31:137–142.
31. Castañeda YS, Cheng-Patel CS, Leske DA, et al. Quality of life and functional vision concerns of children with cataracts and their parents. Eye. 2016;30:1251–1259.
32. Smyth CA, Spicer CL, Morgese ZL. Family voices at mealtime: Experiences with young children with visual impairment. Topics Early Child Spec Educ. 2014;34:175–185.
33. Skaggs S, Hopper C. Individuals with visual impairments: A review of psychomotor behavior. Adapt Phys Activ Q. 1996;13:16–26.
34. Marmeleira J, Laranjo L, Marques O, Pereira C. Physical activity patterns in adults who are blind as assessed by accelerometry. Adapt Phys Activ Q. 2014;31:283–296.
35. Santamaria T, Mallia L, Vitali F, et al. Imagine your body even without seeing it: the effect of physical activity upon the physical self-concept in people with and without blindness.Sport Sci Health. 2020;16:425–434.
Yazıcı-gülay, M., Açık, C., & Yazıcı Mutlu, Ç. (2022). GÖRME ENGELLİ ÇOCUKLARIN DENGE VE YAŞAM KALİTELERİNİN İNCELENMESİ: PİLOT ÇALIŞMA. Sağlık Bilimleri Dergisi, 31(2), 158-163. https://doi.org/10.34108/eujhs.960187
AMA
Yazıcı-gülay M, Açık C, Yazıcı Mutlu Ç. GÖRME ENGELLİ ÇOCUKLARIN DENGE VE YAŞAM KALİTELERİNİN İNCELENMESİ: PİLOT ÇALIŞMA. JHS. Ağustos 2022;31(2):158-163. doi:10.34108/eujhs.960187
Chicago
Yazıcı-gülay, Meltem, Cihangir Açık, ve Çiğdem Yazıcı Mutlu. “GÖRME ENGELLİ ÇOCUKLARIN DENGE VE YAŞAM KALİTELERİNİN İNCELENMESİ: PİLOT ÇALIŞMA”. Sağlık Bilimleri Dergisi 31, sy. 2 (Ağustos 2022): 158-63. https://doi.org/10.34108/eujhs.960187.
EndNote
Yazıcı-gülay M, Açık C, Yazıcı Mutlu Ç (01 Ağustos 2022) GÖRME ENGELLİ ÇOCUKLARIN DENGE VE YAŞAM KALİTELERİNİN İNCELENMESİ: PİLOT ÇALIŞMA. Sağlık Bilimleri Dergisi 31 2 158–163.
IEEE
M. Yazıcı-gülay, C. Açık, ve Ç. Yazıcı Mutlu, “GÖRME ENGELLİ ÇOCUKLARIN DENGE VE YAŞAM KALİTELERİNİN İNCELENMESİ: PİLOT ÇALIŞMA”, JHS, c. 31, sy. 2, ss. 158–163, 2022, doi: 10.34108/eujhs.960187.
ISNAD
Yazıcı-gülay, Meltem vd. “GÖRME ENGELLİ ÇOCUKLARIN DENGE VE YAŞAM KALİTELERİNİN İNCELENMESİ: PİLOT ÇALIŞMA”. Sağlık Bilimleri Dergisi 31/2 (Ağustos 2022), 158-163. https://doi.org/10.34108/eujhs.960187.
JAMA
Yazıcı-gülay M, Açık C, Yazıcı Mutlu Ç. GÖRME ENGELLİ ÇOCUKLARIN DENGE VE YAŞAM KALİTELERİNİN İNCELENMESİ: PİLOT ÇALIŞMA. JHS. 2022;31:158–163.
MLA
Yazıcı-gülay, Meltem vd. “GÖRME ENGELLİ ÇOCUKLARIN DENGE VE YAŞAM KALİTELERİNİN İNCELENMESİ: PİLOT ÇALIŞMA”. Sağlık Bilimleri Dergisi, c. 31, sy. 2, 2022, ss. 158-63, doi:10.34108/eujhs.960187.
Vancouver
Yazıcı-gülay M, Açık C, Yazıcı Mutlu Ç. GÖRME ENGELLİ ÇOCUKLARIN DENGE VE YAŞAM KALİTELERİNİN İNCELENMESİ: PİLOT ÇALIŞMA. JHS. 2022;31(2):158-63.