SEÇİCİ LAZER ERİTME İLE YAPILAN ÜRETİMDE LAZER GÜCÜ VE TABAKALAMA KALINLIĞI PARAMETRELERİNİN ÇEKME KUVVETİ VE KOPMA UZAMASI ÜZERİNE ETKİSİ
Yıl 2022,
, 152 - 157, 11.08.2022
İkbal Leblebicioğlu
,
Kerem Kılıç
,
Mustafa Ayata
Öz
Diş hekimliği alanında eklemeli üretim yöntemlerinden en yaygın kullanıma sahip olanı seçici lazer eritme sistemidir (SLM). Kobalt-krom (Co-Cr) alaşımlı tozların imalatı için SLM sistemlerinin popülerliği gün geçtikçe artmaktadır. Bu çalışmanın amacı lazer sinterleme yöntemi ile üretilen Co-Cr metal altyapıların üretim sürecinde lazer gücü ve tabakalama kalınlığı parametrelerinin değiştirilmesinin, metal altyapının çekme mukavemeti ve kopma uzamasına etkisinin araştırılmasıdır. Dambıl şekilli toplamda 120 adet numune 3 mm çapında ve 18 mm uzunluğunda üretilmiştir. Numuneler farklı tabakalama kalınlıklarında, farklı lazer güçleri altında üretilmiştir. 20 ve 30 µm tabakalama kalınlıkları için 50-200 lazer gücü arasında değişen 4 farklı lazer gücü TruPrint 1000 lazer metal füzyon sistemiyle üretilmiş ve mekanik özellikleri çekme testiyle test edilmiştir. Normal dağılıma uygunluk Shapiro-Wilk testi ile incelendi. Lazer gücü ve tabakalama kalınlığı etkilerinin ve etkileşiminin çekme mukavemeti ve kopma uzaması değerleri üzerine etkilerini incelemek için İki-yönlü ANOVA yöntemi kullanıldı ve çoklu karşılaştırmalar Bonferroni testiyle gerçekleştirildi.SLM üretim sürecinde lazer gücü ve tabakalama kalınlığının değişimi mekanik özellikleri kısmen etkilemektedir. Lazer gücü ve tabakalama kalınlığı çekme mukavemetini, lazer gücü kopma uzamasını etkilerken tabakalama kalınlığının kopma uzamasına etkisi anlamlı bulunmamıştır.
Teşekkür
Makalenin yazarları çalışmaya desteğinden ötürü Hasçelik Kablo Sanayi Ticaret AŞ’ye teşekkür eder
Kaynakça
- 1. Koutsoukis T, Zinelis S, Eliades G, et al. Selective laser melting technique of Co-Cr dental alloys: A review of structure and properties and comparative analysis with other available techniques. J Prosthodont. 2015;24:303-312.
- 2. Van Noort R. The future of dental devices is digital. Dent Mater. 2012;28:3-12.
- 3. Ekren O, Ozkomur A, Ucar Y. Effect of layered manufacturing techniques, alloy powders, and layer thickness on metal-ceramic bond strength. J Prosthet Dent. 2018;119:481-487.
- 4. Gusarov AV, Grigoriev SN, Volosova MA, et al. On productivity of laser additive manufacturing. J Mater Process. 2018;261:213-232.
- 5. Maamoun AH, Xue YF, Elbestawi MA, Veldhuis SC. Effect of Selective Laser Melting Process Parameters on the Quality of Al Alloy Parts: Powder Characterization, Density, Surface Roughness, and Dimensional Accuracy. Materials (Basel). 2018;11:2343.
- 6. Ucar Y, Ekren O. Effect of layered manufacturing techniques, alloy powders, and layer thickness on mechanical properties of Co-Cr dental alloys. J Prosthet Dent. 2018;120:762-770.
- 7. Qian B, Saeidi K, Kvetková L, et al. Defects-tolerant Co-Cr-Mo dental alloys prepared by selective laser melting. Dent Mater. 2015;31:1435-1444.
- 8. Akçin ET, Güncü MB, Aktaş G, et al. Effect of manufacturing techniques on the marginal and internal fit of cobalt-chromium implant-supported multiunit frameworks. J Prosthet Dent 2018;120:715-720.
- 9. Strub JR, Rekow ED, Witkowski S. Computer-aided design and fabrication of dental restorations: current systems and future possibilities. J Am Dent Assoc 2006;137:1289-1296.
- 10. Tian X, Günster J, Melcher J, et al. Process parameters analysis of direct laser sintering and post treatment of porcelain components using Taguchi's method. J Eur Ceram Soc.2009;29:1903-1915.
- 11. Takaichi A, Suyalatu, Nakamoto T, et al. Microstructures and mechanical properties of Co-29Cr-6Mo alloy fabricated by selective laser melting process for dental applications. J Mech Behav Biomed Mater2013;21:67-76.
- 12. Simchi A, Pohl H. Effects of laser sintering processing parameters on the microstructure and densification of iron powder. Mater Sci Eng C A. 2003;359:119-128.
- 13. Shiomi M, Osakada K, Nakamura K, et al. Residual Stress within Metallic Model Made by Selective Laser Melting Process. CIRP Annals. 2004;53:195-198.
- 14. Kruth J-P, Vandenbroucke B, Van Vaerenbergh J, Mercelis P, editors. Benchmarking of different SLS/SLM processes as rapid manufacturing techniques. Proceedings of the International Conference Polymers & Moulds Innovations PMI 2005; 2005.
- 15. Castillo-Oyagüe R, Osorio R, Osorio E, et al. The effect of surface treatments on the microroughness of laser-sintered and vacuum-cast base metal alloys for dental prosthetic frameworks. Microsc ResTech 2012;75:1206-1212.
- 16. Castillo-de-Oyagüe R, Sánchez-Turrión A, López-Lozano JF, et al. Vertical misfit of laser-sintered and vacuum-cast implant-supported crown copings luted with definitive and temporary luting agents. Med Oral Patol Oral Cir Bucal. 2012;17:e610-617.
- 17. Mazzoli A. Selective laser sintering in biomedical engineering. Med Biol Eng Comput. 2013;51:245-256.
- 18. Withers PJ, Bhadeshia HKDH. Residual stress. Part 2 – Nature and origins. Mater Sci Technol. 2001;17:366-375.
- 19. ASTM F. 75–12. Standard Specification for Cobalt–28Chromium–6Molybdenum Alloy Casting and Casting Alloy for Surgical Implants. https://standards.globalspec.com/std/3846698/astm-f75-12 Erişim tarihi:05.03.2022.
- 20. Wang JH, Ren J, Liu W, et al. Effect of Selective Laser Melting Process Parameters on Microstructure and Properties of Co-Cr Alloy. Materials (Basel). 2018;11:1546.
- 21. Hong MH, Min BK, Lee DH, et al. Marginal fit of metal-ceramic crowns fabricated by using a casting and two selective laser melting processes before and after ceramic firing. J Prosthet Dent. 2019;122:475-481.
- 22. Ucar Y, Akova T, Akyil MS, et al. Internal fit evaluation of crowns prepared using a new dental crown fabrication technique: Laser-sintered Co-Cr crowns. J Prosthet Dent. 2009;102:253-259.
- 23. Akova T, Ucar Y, Tukay A, et al. Comparison of the bond strength of laser-sintered and cast base metal dental alloys to porcelain. Dent Mater. 2008;24:1400-1404.
- 24. AlMangour B, Luqman M, Grzesiak D, et al. Effect of processing parameters on the microstructure and mechanical properties of Co–Cr–Mo alloy fabricated by selective laser melting. Mater Sci Eng C A. 2020;792:139456.
THE EFFECT OF LASER POWER AND LAYER THICKNESS PARAMETERS ON THE TENSILE STRENGTH AND ELONGATION IN SELECTIVE LASER MELTING PRODUCTION
Yıl 2022,
, 152 - 157, 11.08.2022
İkbal Leblebicioğlu
,
Kerem Kılıç
,
Mustafa Ayata
Öz
The most widely used additive manufacturing method in dentistry is the selective laser melting (SLM) system. The popularity of SLM systems for the manufacture of cobalt-chromium alloy powders is increasing day by day. The aim of this study is to investigate the effect of changing the laser power and layer thickness parameters during the production process of Co-Cr metal substructures produced by the laser sintering method on the tensile strength and elongation at fracture of the metal substructure. A total of 120 dumbbell-shaped samples were produced with a diameter of 3 mm and a length of 18 mm. The samples were produced at different layer thicknesses and under different laser powers. For 20 and 30 µm layer thicknesses, 4 different laser powers ranging from 50-200 W were produced with the TruPrint 1000 laser metal fusion system and its mechanical properties were tested with the tensile test. Conformity to the normal distribution was evaluated using the Shapiro-Wilk test. The two-way ANOVA method was used to examine the effects of laser power and layer thickness effects and interaction on tensile strength and elongation values, and multiple comparisons were made with Bonferroni test. The variation of laser power and layer thickness in the SLM manufacturing process partially affects the mechanical properties. While laser power and layer thickness affect tensile strength, laser power affect elongation, and the effect of layer thickness on elongation was not found significant.
Kaynakça
- 1. Koutsoukis T, Zinelis S, Eliades G, et al. Selective laser melting technique of Co-Cr dental alloys: A review of structure and properties and comparative analysis with other available techniques. J Prosthodont. 2015;24:303-312.
- 2. Van Noort R. The future of dental devices is digital. Dent Mater. 2012;28:3-12.
- 3. Ekren O, Ozkomur A, Ucar Y. Effect of layered manufacturing techniques, alloy powders, and layer thickness on metal-ceramic bond strength. J Prosthet Dent. 2018;119:481-487.
- 4. Gusarov AV, Grigoriev SN, Volosova MA, et al. On productivity of laser additive manufacturing. J Mater Process. 2018;261:213-232.
- 5. Maamoun AH, Xue YF, Elbestawi MA, Veldhuis SC. Effect of Selective Laser Melting Process Parameters on the Quality of Al Alloy Parts: Powder Characterization, Density, Surface Roughness, and Dimensional Accuracy. Materials (Basel). 2018;11:2343.
- 6. Ucar Y, Ekren O. Effect of layered manufacturing techniques, alloy powders, and layer thickness on mechanical properties of Co-Cr dental alloys. J Prosthet Dent. 2018;120:762-770.
- 7. Qian B, Saeidi K, Kvetková L, et al. Defects-tolerant Co-Cr-Mo dental alloys prepared by selective laser melting. Dent Mater. 2015;31:1435-1444.
- 8. Akçin ET, Güncü MB, Aktaş G, et al. Effect of manufacturing techniques on the marginal and internal fit of cobalt-chromium implant-supported multiunit frameworks. J Prosthet Dent 2018;120:715-720.
- 9. Strub JR, Rekow ED, Witkowski S. Computer-aided design and fabrication of dental restorations: current systems and future possibilities. J Am Dent Assoc 2006;137:1289-1296.
- 10. Tian X, Günster J, Melcher J, et al. Process parameters analysis of direct laser sintering and post treatment of porcelain components using Taguchi's method. J Eur Ceram Soc.2009;29:1903-1915.
- 11. Takaichi A, Suyalatu, Nakamoto T, et al. Microstructures and mechanical properties of Co-29Cr-6Mo alloy fabricated by selective laser melting process for dental applications. J Mech Behav Biomed Mater2013;21:67-76.
- 12. Simchi A, Pohl H. Effects of laser sintering processing parameters on the microstructure and densification of iron powder. Mater Sci Eng C A. 2003;359:119-128.
- 13. Shiomi M, Osakada K, Nakamura K, et al. Residual Stress within Metallic Model Made by Selective Laser Melting Process. CIRP Annals. 2004;53:195-198.
- 14. Kruth J-P, Vandenbroucke B, Van Vaerenbergh J, Mercelis P, editors. Benchmarking of different SLS/SLM processes as rapid manufacturing techniques. Proceedings of the International Conference Polymers & Moulds Innovations PMI 2005; 2005.
- 15. Castillo-Oyagüe R, Osorio R, Osorio E, et al. The effect of surface treatments on the microroughness of laser-sintered and vacuum-cast base metal alloys for dental prosthetic frameworks. Microsc ResTech 2012;75:1206-1212.
- 16. Castillo-de-Oyagüe R, Sánchez-Turrión A, López-Lozano JF, et al. Vertical misfit of laser-sintered and vacuum-cast implant-supported crown copings luted with definitive and temporary luting agents. Med Oral Patol Oral Cir Bucal. 2012;17:e610-617.
- 17. Mazzoli A. Selective laser sintering in biomedical engineering. Med Biol Eng Comput. 2013;51:245-256.
- 18. Withers PJ, Bhadeshia HKDH. Residual stress. Part 2 – Nature and origins. Mater Sci Technol. 2001;17:366-375.
- 19. ASTM F. 75–12. Standard Specification for Cobalt–28Chromium–6Molybdenum Alloy Casting and Casting Alloy for Surgical Implants. https://standards.globalspec.com/std/3846698/astm-f75-12 Erişim tarihi:05.03.2022.
- 20. Wang JH, Ren J, Liu W, et al. Effect of Selective Laser Melting Process Parameters on Microstructure and Properties of Co-Cr Alloy. Materials (Basel). 2018;11:1546.
- 21. Hong MH, Min BK, Lee DH, et al. Marginal fit of metal-ceramic crowns fabricated by using a casting and two selective laser melting processes before and after ceramic firing. J Prosthet Dent. 2019;122:475-481.
- 22. Ucar Y, Akova T, Akyil MS, et al. Internal fit evaluation of crowns prepared using a new dental crown fabrication technique: Laser-sintered Co-Cr crowns. J Prosthet Dent. 2009;102:253-259.
- 23. Akova T, Ucar Y, Tukay A, et al. Comparison of the bond strength of laser-sintered and cast base metal dental alloys to porcelain. Dent Mater. 2008;24:1400-1404.
- 24. AlMangour B, Luqman M, Grzesiak D, et al. Effect of processing parameters on the microstructure and mechanical properties of Co–Cr–Mo alloy fabricated by selective laser melting. Mater Sci Eng C A. 2020;792:139456.