BibTex RIS Kaynak Göster

İNTESTİNAL MİKROBİYOTA VE OBEZİTE İLİŞKİSİ

Yıl 2018, Cilt: 27 Sayı: 1, 95 - 99, 01.03.2018

Öz

Obezite prevalansı son yıllarda giderek artarak hem
gelişmiş hem de gelişmekte olan ülkeler için önemli bir
sorun teşkil etmektedir. Yüksek enerjili diyet tüketiminin artması ve fiziksel aktivite düzeyinin azalması ile
birlikte ortaya çıkan enerji dengesizliği obezitenin temel
nedenini oluşturmaktadır. Son yıllarda obezitenin gelişimi ile ilgili biyokimyasal yollar araştırılmaya başlanmıştır. Çalışmalardan elde edilen bulgular, intestinal
mikrobiyotanın enerji metabolizması üzerinde etkilerinin olduğunu ve obezitenin patogenezinde rol oynadığını ortaya koymuştur. İntestinal mikrobiyotanın
polisakkarit ve oligosakkaritlerin metabolizmasında ve
kısa zincirli yağ asitlerinin üretiminde fonksiyonları
bulunmaktadır. İntestinal mikrobiyotadaki değişikler ile
birlikte mikrobiyal çeşitlilik azaldığında öncelikli olarak
glikoz ve lipid metabolizması etkilenmektedir. Glikoz ve
lipid metabolizmasında ortaya çıkan değişikler ise vücutta bir enflamasyona yol açarak obezitenin
patofizlojik sürecini başlatmaktadır. Mikrobiyotanın
insan vücudunda etkilerinin olduğu bilinmektedir. Ancak yapılan son çalışmalar intestinal mikrobiyotanın,
metabolizma üzerinde tahmin edilenden daha fazla etkiye sahip olduğunu göstermektedir. Gelecekte yapılacak
olan çalışmalar ışığında intestinal mikrobiyota,
obezitenin tedavisinde potansiyel rol oynayabilecektir

Kaynakça

  • 1. World Health Organization - Obesity and overweight - Fact sheet N°311 - Updated October 2017 [http:// www.who.int/mediacentre/factsheets/fs311/en/].
  • 2. Türkiye İstatistik Kurumu, Türkiye Sağlık Araştırmas ı 2 0 1 5 ; 5 8 [ h t t p : / / w w w . t u i k . g o v . t r / PreHaberBultenleri.do?id=18854].
  • 3. Türkiye Halk Sağlığı-Obezite, Diyabet ve Metabolik Hastalıklar Daire Başkanlığı.
  • 4. Kasai C, Sugimoto K, Moritani I, et al. Comparison of the gut microbiota composition between obese and non-obese individuals in a Japanese population, as analyzed by terminal restriction fragment length polymorphism and next-generation sequencing. BMC Gastroenterology 2015;15:100.
  • 5. Lederberg J. Infectious history. Science 2000; 288:287-293.
  • 6. Yıldırım E, Altun R. Obezite ve mikrobiyota. Güncel Gastroenteroloji 2014; 18:106-111.
  • 7. Arumugam M, Raes J, Pelletier E, et al. Enterotypes of the human gut microbiome. Nature 2011; 473:174
  • 8. Eckburg PB, Bik EM, Bernstein CN, et al. Diversity of the human intestinal microbial flora. Science 2005; 308:1635–1638.
  • 9. Çetin R, Güven B, Tunçbilek V, ve ark. Mikroorganizmalar ve insan vücudu ile olan etkileşimleri. TAF Prev Med Bull TAF Preventive Medicine Bulletin 2015;15: 272-278.
  • 10. O’Hara AM, Shanahan F. The gut flora as a forgotten organ. EMBO reports 2006; 7: 688-693.
  • 11. Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010; 464:59-65.
  • 12. Dominguez-Bello MG, Costello EK, Contreras M, et al. Delivery mode shapes the Acquisition and structure of the initial microbiotaa cross multiple body Habitats in newborns. Proc Natl Acad Sci USA 2010; 107:11971-11975.
  • 13. Rondanelli M, Giacosa A, Faliva MA, et al. Review on microbiota and effectiveness of probiotics use in older. World J Clin Cases 2015; 16:156-162.
  • 14. Ramirez-Farias C, Slezak K, Fuller Z, et al. Effect of inulin on the human gut microbiota: stimulation of Bifidobacterium adolescentis and Faecalibacterium prausnitzii. Br J Nutr 2009; 101:541-550.
  • 15. Cani PD, Amar J, Iglesias MA, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 2007;56:1761-1772
  • 16. De Filippo C, Cavalieri D, Di Paola M, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci USA 2010;107:14691 –14696.
  • 17. Flint HJ. The impact of nutrition on the human microbiome. Nutr Rev 2012; 70:10-13.
  • 18. Bengmark S. Gut microbiota, immune development and function. Pharmacological Research 2013; 69:87 -113.
  • 19. Blandino G, Inturri R, Lazzara F, et al. Impact of gut microbiota on diabetes mellitus. Diabetes & metabolism 2016;42:303-315.
  • 20. Nadal I, Santacruz A, Marcos A, et al. Shifts in clostridia, bacteroides and immunoglobulin-coating fecal bacteria associated with weight loss in obese adolescents. Int J Obes 2009; 33:758-767
  • 21. Turnbaugh PJ, Backhed F, Fulton L, Gordon JI. Dietinduced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe 2008; 3:213-223.
  • 22. Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature 2006; 444:1009-1010.
  • 23. Turnbaugh PJ, Hamady M, Yatsunenko T, et al. A core gut microbiome in obese and lean twins. Nature 2009; 457:480-484.
  • 24. Armougom F, Henry M, Vialettes B, et al. Monitoring bacterial community of human gut microbiota reveals an increase in Lactobacillus in obese patients and methanogens in anorexic patients. PLoS One 2009; 4:e7125.
  • 25. Million M, Maraninchi M, Henry M, et al. Obesityassociated gut microbiota is enriched in Lactobacillus reuteri and depleted in Bifidobacterium animalis and Methanobrevibacter smithii. Int J Obes 2012; 36:817-825
  • 26. Backhed F, Ding H, Wang T, et al. The gut microbiota as an environmental factor that regulates fat storage, Proc. Natl Acad Sci 2004; 101:15718–15723
  • 27. Jumpertz R, Le DS, Turnbaugh PJ, et al. Energybalance studies reveal associations between gut microbes, caloric load, and nutrient absorption in humans. Am J Clin Nutr 2011; 94:58-65
  • 28. Lin HV, Frassetto A, Kowalik EJ Jr, et al. Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PLoS ONE 2012; 7 e35240.
  • 29. Schwiertz A, Taras D, Schafer K, et al. Microbiota and SCFA in lean and overweight healthy subjects. Obesity 2010; 18:190-195.
  • 30. Samuel BS, Gordon JI. A humanized gnotobiotic Mouse model of host archaeal bacterial mutualism. Proc Natl Acad Sci 2006; 103:10011–10016
  • 31. Brown AJ, Goldsworthy SM, Barnes AA, et al. The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J Biol Chem 2003; 278:11312–11319.
  • 32. Rodes L, Khan A, Paul A, et al. Effect of probiotics Lactobacillus and Bifidobacterium on gut-derived lipopolysaccharides and inflammatory cytokines: an in vitro study using a human colonic microbiota model. J Microbiol Biotechnol 2013; 23:518–526.
  • 33. de Wit N, Derrien M, Bosch-Vermeulen H, et al. Saturated fat stimulates obesity and hepatic steatosis and affects gut microbiota composition by an enhanced overflow of dietary fat to the distal intestine. Am J Physiol Gastrointest Liver Physiol 2012; 303:589–599.
  • 34. Davila AM, Blachier F, Gotteland M, et al. Re-print of “Intestinal luminal nitrogen metabolism: role of the gut microbiota and consequences for the host”. Pharmacol Res 2013; 69:114–126.
  • 35. Windey K, De Preter V, Verbeke K. Relevance of protein fermentation to gut health. Mol Nutr Food Res 2012; 56:184–196.
  • 36. Yoo SR, Kim YJ, Park DY, et al. Probiotics L. plantarum and L. curvatus in combination alter hepatic lipid metabolism and suppress diet-induced obesity. Obesity 2013; 21:2571–2578.
  • 37. Lee HY, Park JH, Seok SH, et al. Human originated bacteria, Lactobacillus rhamnosus PL60, produce conjugated linoleic acid and show anti-obesity effects in diet-induced obese mice. Biochim Biophys Acta 2006; 1761:736–744.
  • 38. Cani PD, Lecourt E, Dewulf EM, et al. Gut microbiota fermentation of prebiotics increases satietogenic and incretin gut peptide production with consequences for appetite sensation and glucose response after a meal. Am J Clin Nutr 2009; 90:1236–1243.

The Relatıonshıp Between Intestınal Mıcrobıota And Obesıty

Yıl 2018, Cilt: 27 Sayı: 1, 95 - 99, 01.03.2018

Öz

With its prevalence increasing in recent years, obesity
has become a major problem for both developed and
developing countries. The energy imbalance associated
with increased consumption of high-energy diets and
reduced levels of physical activity are the main causes
of obesity. In recent years, biochemical pathways
related to the development of obesity have started to
be investigated. Findings from studies have shown
that intestinal microbiota has effects on energy
metabolism and plays a role in the pathogenesis of
obesity. Intestinal microbiota has functions in the
metabolism of polysaccharides and oligosaccharides
and in the production of short chain fatty acids.
Glucose and lipid metabolism are primarily affected
when the microbial diversity decreases with changes in
the intestinal microbiota. Changes in glucose and lipid
metabolism cause an inflammation in the body, leading
to the pathophysiological process of obesity.
Microbiota is known to have effects on the human
body. However, recent studies show that intestinal
microbial activity has a greater effect on metabolism
than is predicted. In future studies, intestinal
microbiota may play a potential role in the treatment
of obesity

Kaynakça

  • 1. World Health Organization - Obesity and overweight - Fact sheet N°311 - Updated October 2017 [http:// www.who.int/mediacentre/factsheets/fs311/en/].
  • 2. Türkiye İstatistik Kurumu, Türkiye Sağlık Araştırmas ı 2 0 1 5 ; 5 8 [ h t t p : / / w w w . t u i k . g o v . t r / PreHaberBultenleri.do?id=18854].
  • 3. Türkiye Halk Sağlığı-Obezite, Diyabet ve Metabolik Hastalıklar Daire Başkanlığı.
  • 4. Kasai C, Sugimoto K, Moritani I, et al. Comparison of the gut microbiota composition between obese and non-obese individuals in a Japanese population, as analyzed by terminal restriction fragment length polymorphism and next-generation sequencing. BMC Gastroenterology 2015;15:100.
  • 5. Lederberg J. Infectious history. Science 2000; 288:287-293.
  • 6. Yıldırım E, Altun R. Obezite ve mikrobiyota. Güncel Gastroenteroloji 2014; 18:106-111.
  • 7. Arumugam M, Raes J, Pelletier E, et al. Enterotypes of the human gut microbiome. Nature 2011; 473:174
  • 8. Eckburg PB, Bik EM, Bernstein CN, et al. Diversity of the human intestinal microbial flora. Science 2005; 308:1635–1638.
  • 9. Çetin R, Güven B, Tunçbilek V, ve ark. Mikroorganizmalar ve insan vücudu ile olan etkileşimleri. TAF Prev Med Bull TAF Preventive Medicine Bulletin 2015;15: 272-278.
  • 10. O’Hara AM, Shanahan F. The gut flora as a forgotten organ. EMBO reports 2006; 7: 688-693.
  • 11. Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010; 464:59-65.
  • 12. Dominguez-Bello MG, Costello EK, Contreras M, et al. Delivery mode shapes the Acquisition and structure of the initial microbiotaa cross multiple body Habitats in newborns. Proc Natl Acad Sci USA 2010; 107:11971-11975.
  • 13. Rondanelli M, Giacosa A, Faliva MA, et al. Review on microbiota and effectiveness of probiotics use in older. World J Clin Cases 2015; 16:156-162.
  • 14. Ramirez-Farias C, Slezak K, Fuller Z, et al. Effect of inulin on the human gut microbiota: stimulation of Bifidobacterium adolescentis and Faecalibacterium prausnitzii. Br J Nutr 2009; 101:541-550.
  • 15. Cani PD, Amar J, Iglesias MA, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 2007;56:1761-1772
  • 16. De Filippo C, Cavalieri D, Di Paola M, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci USA 2010;107:14691 –14696.
  • 17. Flint HJ. The impact of nutrition on the human microbiome. Nutr Rev 2012; 70:10-13.
  • 18. Bengmark S. Gut microbiota, immune development and function. Pharmacological Research 2013; 69:87 -113.
  • 19. Blandino G, Inturri R, Lazzara F, et al. Impact of gut microbiota on diabetes mellitus. Diabetes & metabolism 2016;42:303-315.
  • 20. Nadal I, Santacruz A, Marcos A, et al. Shifts in clostridia, bacteroides and immunoglobulin-coating fecal bacteria associated with weight loss in obese adolescents. Int J Obes 2009; 33:758-767
  • 21. Turnbaugh PJ, Backhed F, Fulton L, Gordon JI. Dietinduced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe 2008; 3:213-223.
  • 22. Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature 2006; 444:1009-1010.
  • 23. Turnbaugh PJ, Hamady M, Yatsunenko T, et al. A core gut microbiome in obese and lean twins. Nature 2009; 457:480-484.
  • 24. Armougom F, Henry M, Vialettes B, et al. Monitoring bacterial community of human gut microbiota reveals an increase in Lactobacillus in obese patients and methanogens in anorexic patients. PLoS One 2009; 4:e7125.
  • 25. Million M, Maraninchi M, Henry M, et al. Obesityassociated gut microbiota is enriched in Lactobacillus reuteri and depleted in Bifidobacterium animalis and Methanobrevibacter smithii. Int J Obes 2012; 36:817-825
  • 26. Backhed F, Ding H, Wang T, et al. The gut microbiota as an environmental factor that regulates fat storage, Proc. Natl Acad Sci 2004; 101:15718–15723
  • 27. Jumpertz R, Le DS, Turnbaugh PJ, et al. Energybalance studies reveal associations between gut microbes, caloric load, and nutrient absorption in humans. Am J Clin Nutr 2011; 94:58-65
  • 28. Lin HV, Frassetto A, Kowalik EJ Jr, et al. Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PLoS ONE 2012; 7 e35240.
  • 29. Schwiertz A, Taras D, Schafer K, et al. Microbiota and SCFA in lean and overweight healthy subjects. Obesity 2010; 18:190-195.
  • 30. Samuel BS, Gordon JI. A humanized gnotobiotic Mouse model of host archaeal bacterial mutualism. Proc Natl Acad Sci 2006; 103:10011–10016
  • 31. Brown AJ, Goldsworthy SM, Barnes AA, et al. The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J Biol Chem 2003; 278:11312–11319.
  • 32. Rodes L, Khan A, Paul A, et al. Effect of probiotics Lactobacillus and Bifidobacterium on gut-derived lipopolysaccharides and inflammatory cytokines: an in vitro study using a human colonic microbiota model. J Microbiol Biotechnol 2013; 23:518–526.
  • 33. de Wit N, Derrien M, Bosch-Vermeulen H, et al. Saturated fat stimulates obesity and hepatic steatosis and affects gut microbiota composition by an enhanced overflow of dietary fat to the distal intestine. Am J Physiol Gastrointest Liver Physiol 2012; 303:589–599.
  • 34. Davila AM, Blachier F, Gotteland M, et al. Re-print of “Intestinal luminal nitrogen metabolism: role of the gut microbiota and consequences for the host”. Pharmacol Res 2013; 69:114–126.
  • 35. Windey K, De Preter V, Verbeke K. Relevance of protein fermentation to gut health. Mol Nutr Food Res 2012; 56:184–196.
  • 36. Yoo SR, Kim YJ, Park DY, et al. Probiotics L. plantarum and L. curvatus in combination alter hepatic lipid metabolism and suppress diet-induced obesity. Obesity 2013; 21:2571–2578.
  • 37. Lee HY, Park JH, Seok SH, et al. Human originated bacteria, Lactobacillus rhamnosus PL60, produce conjugated linoleic acid and show anti-obesity effects in diet-induced obese mice. Biochim Biophys Acta 2006; 1761:736–744.
  • 38. Cani PD, Lecourt E, Dewulf EM, et al. Gut microbiota fermentation of prebiotics increases satietogenic and incretin gut peptide production with consequences for appetite sensation and glucose response after a meal. Am J Clin Nutr 2009; 90:1236–1243.
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Diğer ID JA49CR82GZ
Bölüm Araştırma Makalesi
Yazarlar

Tuba Tekin Bu kişi benim

Betül Çiçek Bu kişi benim

Nurefşan Konyalıgil Bu kişi benim

Yayımlanma Tarihi 1 Mart 2018
Gönderilme Tarihi 1 Mart 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 27 Sayı: 1

Kaynak Göster

APA Tekin, T., Çiçek, B., & Konyalıgil, N. (2018). İNTESTİNAL MİKROBİYOTA VE OBEZİTE İLİŞKİSİ. Sağlık Bilimleri Dergisi, 27(1), 95-99.
AMA Tekin T, Çiçek B, Konyalıgil N. İNTESTİNAL MİKROBİYOTA VE OBEZİTE İLİŞKİSİ. JHS. Mart 2018;27(1):95-99.
Chicago Tekin, Tuba, Betül Çiçek, ve Nurefşan Konyalıgil. “İNTESTİNAL MİKROBİYOTA VE OBEZİTE İLİŞKİSİ”. Sağlık Bilimleri Dergisi 27, sy. 1 (Mart 2018): 95-99.
EndNote Tekin T, Çiçek B, Konyalıgil N (01 Mart 2018) İNTESTİNAL MİKROBİYOTA VE OBEZİTE İLİŞKİSİ. Sağlık Bilimleri Dergisi 27 1 95–99.
IEEE T. Tekin, B. Çiçek, ve N. Konyalıgil, “İNTESTİNAL MİKROBİYOTA VE OBEZİTE İLİŞKİSİ”, JHS, c. 27, sy. 1, ss. 95–99, 2018.
ISNAD Tekin, Tuba vd. “İNTESTİNAL MİKROBİYOTA VE OBEZİTE İLİŞKİSİ”. Sağlık Bilimleri Dergisi 27/1 (Mart 2018), 95-99.
JAMA Tekin T, Çiçek B, Konyalıgil N. İNTESTİNAL MİKROBİYOTA VE OBEZİTE İLİŞKİSİ. JHS. 2018;27:95–99.
MLA Tekin, Tuba vd. “İNTESTİNAL MİKROBİYOTA VE OBEZİTE İLİŞKİSİ”. Sağlık Bilimleri Dergisi, c. 27, sy. 1, 2018, ss. 95-99.
Vancouver Tekin T, Çiçek B, Konyalıgil N. İNTESTİNAL MİKROBİYOTA VE OBEZİTE İLİŞKİSİ. JHS. 2018;27(1):95-9.