BibTex RIS Kaynak Göster

Merada Beslenen Siğirlarin Kesim Sonrasi Kemik Iliği Yağ Asit Kompozisyonu: Beslenmeye Uygulanmasi

Yıl 2018, Cilt: 27 Sayı: 2, 149 - 155, 01.07.2018

Öz

The objective of the present work was to investigate
how grass feeding in cattle influences the fatty acid
(FA) composition in marrow tissue. For a split plot
designed experiment, marrow was obtained from
the femur, humerus, radius and tibia of four crossbred steers slaughtered at 28 mo of age and fed o n
mixture of cool season grasses and legumes. There
were no bone type by location within bone interactions
(P > 0.42), and the only within bone effect was for
trans-vaccenic acid (TVA) where values for medial
bone were lowest (P = 0.03) and highest for distal and
proximal bone. Total monounsaturated FA and desaturation index were lower (P = 0.01) and total saturated
FA were greater (P = 0.01) for proximal vs. distal
bone marrow lipids. Marrow conjugated linoleic acid
(CLA) was greater (P = 0.02) for distal bones (1.32 %)
than for proximal bones (0.86 %). Overall, proportions
of 18:3 n-3, CLA, and TVA were 0.60 %, 1.09 % and
2.50 %, respectively. We conclude that the FA profile
of marrow in grass-fed cattle represents a healthy, nonatherogenic, animal-based fat source.

Kaynakça

  • 1. Rabhi N, Hannou SA, Froguel P, Annicotte JS. Cofactors as metabolic sensors driving cell adaptation in physiology and disease. Front in Endoc 2017; 8:304-311.
  • 2. Laaksonen DE, Nyyssönen K, Niskanen L, et al. Prediction of cardiovascular mortality in middleaged men by dietary and serum linoleic and polyunsaturated fatty acids. JAMA Intern Med 2005; 165:93-199
  • 3. Hunter JE, Zhang J, Kris-Etherton PM. Cardiovascular disease risk of dietary stearic acid compared with trans, other saturated, and unsaturated fatty acids: a systematic review. Amer J Clin Nutr 2010; 91:46-63.
  • 4. Wilson PW, D’Agostino RB, Levy D, et al. Prediction of coronary heart disease using risk factor categories. Circulation 1998; 97:1837-1847.
  • 5. Baum SJ, Kris-Etherton PM, Willett WC, et al. Fatty acids in cardiovascular health and disease: a comprehensive update. J Clin Lipid 2012; 6:216-234.
  • 6. Field CJ, Blewett HH, Proctor S, Vine D. Human health benefits of vaccenic acid. Appl Physiol Nutr Metab 2009; 34:979-991.
  • 7. Ramsden CE, Zamora D, Leelarthaepin B, et al. Use of dietary linoleic acid for secondary prevention of coronary heart disease and death: evaluation of recovered data from the Sydney Diet Heart Study and updated meta-analysis. Brit Med J 2013; 4:346:e8707.
  • 8. Meng MS, West GC, Irving L. Fatty acid composition of caribou bone marrow. Comp Bioch Physiol B: Mol Biol 1969; 30:187-191.
  • 9. Soppela P, Nieminen M. The effect of wintertime undernutrition on the fatty acid composition of leg bone marrow fats in reindeer (Rangifer tarandus tarandus L.). Comp Biochem Physiol B: Mol Biol 2001; 128:63-72.
  • 10. West GC, Shaw DL. Fatty acid composition of dall sheep bone marrow. Comp Biochem Physiol B: Mol Biol 1975; 50B:599-601.
  • 11. Turner JC. Adaptive strategies of selective fatty acid deposition in the bone marrow of desert bighorn sheep. Comp Biochem Physiol B: Mol Biol 1979; 62A:599-604.
  • 12. Cordain L, Watkins BA, Florant GL, et al. Fatty acid analysis of wild ruminant tissues: evolutionary implications for reducing diet-related chronic disease. Eur J Clin Nutr 2002; 56:181-191.
  • 13. Miller GJ, Frey MR, Kunsman JE, Field RA. Bovine bone marrow lipids. J Food Sci 1982; 47:657 -660.
  • 14. Murrieta CM, Hess BW, Rule DC. Comparison of acidic and alkaline catalysts for preparation of fatty acid methyl esters from ovine muscle with emphasis on conjugated linoleic acid. Meat Sci 2003; 65:523-529.
  • 15. Kaps M, Lamberson W. Split-plot design. In: Kaps M, Lamberson W. (Eds.), Biostatistics for Animal Science. MA: CABI Publishing, Cambridge 2004; pp 342-354.
  • 16. Nuernberg K, Dannenberger D, Nuernberg G, et al. Effect of a grass-based and a concentrate feeding system on meat quality characteristics and fatty acid composition of longissimus muscle in different cattle breeds. Livest Prod Sci 2005; 94:137-147.
  • 17. Noci F, French P, Monahan FJ,Moloney AP. The fatty acid composition of muscle, fat, and subcutaneous adipose tissue of grazing heifers supplemented with plant oil-enriched concentrates. J Anim Sci 2007; 85:1062-1073.
  • 18. Weston TR, Derner JD, Murrieta CM, e t a l . Comparison of catalysts for direct transesterification of fatty acis in freeze-dried forage samples. Crop Sci 2008; 48:1636-1641.
  • 19. Altman KI, Richmond JE, Salomon K. A note on the synthesis of fatty acids in bone marrow homogenates as affected by X-radiation. Bioch Biophysica Acta 1951; 7:460-465.
  • 20. Vernon RG. Lipid metabolism in the adipose tissue of ruminant animals. In: Christie WW. (Ed), Lipid metabolism in ruminant animals. Pergamon Press, New York 1981; pp 279-362.
  • 21. Mel’uchova B, Blasko J, Kubinec R, et al. Seasonal variations in fatty acid composition of pasture forage plants and CLA content in ewe milk fat. Small Rum Res 2008; 78:56-65.
  • 22. Kucuk O, Hess BW, Ludden PA, Rule DC. Effect of forage:concentrate ratio on ruminal digestion and duodenal flow of fatty acids in ewes. J Anim Sci 2001; 79:2233-2240.
  • 23. Rule DC, Broughton KS, Shellito SM, Maiorano G. Comparison of muscle fatty acid profiles and cholesterol concentrations of bison, beef cattle, elk, and chicken. J Anim Sci 2002; 80:1202-1211.
  • 24. Scollan N, Hocquette J, Nuernberg K, et al. Innovations in beef production systems that enhance the nutritional and health value of beef lipids and their relationship with meat quality. Meat Sci 2006; 74:17–33.
  • 25. Muchenje V, Hugo A, Dzama K, et al. Cholesterol levels and fatty acid profiles of beef from three cattle breeds raised on natural pasture. J Food Comp Anal 2009; 22:354–358.
  • 26. Wood JD, Richardson RI, Nute GR, et al. Effects of fatty acids on meat quality: review. Meat Sci 2003; 66:21-32.
  • 27. Wang C, Harris WS, Chung M, et al. n-3 fatty acids from fish or fish-oil supplements, but not alpha linolenic acid, benefit cardiovascular disease outcomes in primary- and secondary-prevention studies: a systematic review. Amer J Clin Nutr 2006; 84:5-17.
  • 28. Ramsden CE, Faurot KR, Zamora D, et al. Targeted alteration of dietary n-3 and n-6 fatty acids for the treatment of chronic headaches: A randomized trial. Pain 2013; 154:1010-1016.
  • 29. Wijendran V, Hayes KC. Dietary n-6 and n-3 fatty acid balance and cardiovascular health. Ann Rev Nutr 2004; 24:597-615.
  • 30. Chin SF, Liu W, Storkson JM, et al. Dietary sources of conjugated dienoic isomers of linoleic acid, a newly recognized class of anticarcinogens. J Food Comp Anal 1992; 5:185-197.
  • 31. Griinari JM, Bauman DE. Biosynthesis of conjugated linoleic acid and its incorporation into meat and milk in ruminants. In: Yurawcez MP, Mossoba MM, Kramer JKG, Pariza MW, Nelson GJ. (Eds), AOCS Press, Illinois USA, 1999; pp 180-200.
  • 32. Ritzenthaler KL, McGuire MK, Falen R, et al. Estimation of conjugated linoleic acid intake by written dietary assessment methodologies underestimates actual intake evaluated by food duplicate methodology. J Nutr 2001; 131:1548-1554.
  • 33. De La Torre A, Gruffat D, Durand D, et al. Factors influencing proportion and composition of CLA in beef. Meat Sci 2006; 73:258-268.
  • 34. Hargrave-Barnes KM, Azain MJ, Milner JL. Conjugated linoleic acid induced fat loss dependence on delta 6-desaturase or cycolooxygenase. Obesity 2008; 16:2245-2252.
  • 35. Luna P, Fontecha J, Ju´arez M, de la Fuente MA. Conjugated linoleic acid in ewe milk fat. J Dairy Res 2005; 72:415-424.
  • 36. Raes K, De Smet S, Demeyer D. Effect of dietary fatty acids on incorporation of long chain polyunsaturated fatty acids, and conjugated linoleic acid in lamb, beef and pork meat: a review. Anim Feed Sci Techn 2004; 113:199-221.
  • 37. Dhiman TR, Anand GR, Satter LD, Pariza MW. Conjugated linoleic acid content of milk from cows fed different diets. J Dairy Sci 1999; 82:2146- 2156.
  • 38. French P, Stanton C, Lawless F, et al. Fatty acid composition, including conjugated linoleic acid, of intramuscular fat from steers offered grazed grass, grass silage, or concentrate-based diets. J Anim Sci 2000; 78:2849-2855.
  • 39. Poulson CS, Dhiman TR, Cornforth D, Olson KC, Walters J. Influence of diet on conjugated linoleic acid content of beef. J Anim Sci 2001; 79:159-164.
  • 40. Mello FC, Field RA, Forenze S, Kunsman JE. Lipid characterization of bovine bone marrow. J Food Sci 1976; 41:226-230.
  • 41. Rule DC, Busboom JR, Kercher CJ. Effect of dietary canola on fatty acid composition of bovine adipose tissue, muscle, kidney, and liver. J Anim Sci 1994; 72:2735-2744.
  • 42. Petrakis NL. Some physiological and developmental considerations of the temperaturegradient hypothesis of bone marrow distribution. Amer J Physic Anthr 1966; 25:119-130.

BONE MARROW FATTY ACID COMPOSITION IN GRASS-FED CATTLE AFTER SLAUGHTER: NUTRITIONAL IMPLICATIONS

Yıl 2018, Cilt: 27 Sayı: 2, 149 - 155, 01.07.2018

Öz

Bu çalışmanın amacı, merada beslenen sığırların kemik
iliği yağ asidi (YA) kompozisyonunu nasıl etkilediğini
araştırmak idi. Buğdaygil ve baklagil otlarından oluşan
bir merada otlayan ve 28 aylık yaşta kesime gönderilen
kısırlaştırılmış besi sığırlarından elde edilen femur,
humerus, radius ve tibia kemik ilikleri split plot deneme
düzeneğinde toplanmıştır. Kemik türü ve örnek alınan
kemik bölgesi arasında interaksiyon tespit edilmemiş
olup (P > 0,42), sadece trans-vaksenik asit (TVA) için
örnek alınan kemik bölgelerde distal ve proksimal kemikler için en yüksek ve medail kemikler için en düşük
(P = 0,03) değerler bulunmuştur. Proksimal kemik bölgelerindeki kemik iliğinde distal kemik bölgelerindekine
oranla desaturasyon indeksi ve toplam tekli doymamış
YA oranı daha düşük (P = 0,01) ancak total doymuş YA
oranı daha fazla (P = 0,01) tespit edilmiştir. Distal kemik bölgelerindeki ilikte bulunan konjuge linoleik asit
(CLA) proksimal bölgelerdeki iliklere oranla daha fazla
bulunmuştur (P = 0,02, %0,86’e karşı %1,32). Genel
olarak 18:3, n-3, CLA, TVA oranları sırasıyla %0,60, %
1,09 ve %2,50 olarak bulunmuştur. Çalışma sonuçlarına
göre merada beslenen sığırların kemik iliğinde bulunan
yağ asitlerinin sağlıklı, aterojenik olmayan hayvansal
kaynaklı yağlar olduğu sonucuna varılmıştır

Kaynakça

  • 1. Rabhi N, Hannou SA, Froguel P, Annicotte JS. Cofactors as metabolic sensors driving cell adaptation in physiology and disease. Front in Endoc 2017; 8:304-311.
  • 2. Laaksonen DE, Nyyssönen K, Niskanen L, et al. Prediction of cardiovascular mortality in middleaged men by dietary and serum linoleic and polyunsaturated fatty acids. JAMA Intern Med 2005; 165:93-199
  • 3. Hunter JE, Zhang J, Kris-Etherton PM. Cardiovascular disease risk of dietary stearic acid compared with trans, other saturated, and unsaturated fatty acids: a systematic review. Amer J Clin Nutr 2010; 91:46-63.
  • 4. Wilson PW, D’Agostino RB, Levy D, et al. Prediction of coronary heart disease using risk factor categories. Circulation 1998; 97:1837-1847.
  • 5. Baum SJ, Kris-Etherton PM, Willett WC, et al. Fatty acids in cardiovascular health and disease: a comprehensive update. J Clin Lipid 2012; 6:216-234.
  • 6. Field CJ, Blewett HH, Proctor S, Vine D. Human health benefits of vaccenic acid. Appl Physiol Nutr Metab 2009; 34:979-991.
  • 7. Ramsden CE, Zamora D, Leelarthaepin B, et al. Use of dietary linoleic acid for secondary prevention of coronary heart disease and death: evaluation of recovered data from the Sydney Diet Heart Study and updated meta-analysis. Brit Med J 2013; 4:346:e8707.
  • 8. Meng MS, West GC, Irving L. Fatty acid composition of caribou bone marrow. Comp Bioch Physiol B: Mol Biol 1969; 30:187-191.
  • 9. Soppela P, Nieminen M. The effect of wintertime undernutrition on the fatty acid composition of leg bone marrow fats in reindeer (Rangifer tarandus tarandus L.). Comp Biochem Physiol B: Mol Biol 2001; 128:63-72.
  • 10. West GC, Shaw DL. Fatty acid composition of dall sheep bone marrow. Comp Biochem Physiol B: Mol Biol 1975; 50B:599-601.
  • 11. Turner JC. Adaptive strategies of selective fatty acid deposition in the bone marrow of desert bighorn sheep. Comp Biochem Physiol B: Mol Biol 1979; 62A:599-604.
  • 12. Cordain L, Watkins BA, Florant GL, et al. Fatty acid analysis of wild ruminant tissues: evolutionary implications for reducing diet-related chronic disease. Eur J Clin Nutr 2002; 56:181-191.
  • 13. Miller GJ, Frey MR, Kunsman JE, Field RA. Bovine bone marrow lipids. J Food Sci 1982; 47:657 -660.
  • 14. Murrieta CM, Hess BW, Rule DC. Comparison of acidic and alkaline catalysts for preparation of fatty acid methyl esters from ovine muscle with emphasis on conjugated linoleic acid. Meat Sci 2003; 65:523-529.
  • 15. Kaps M, Lamberson W. Split-plot design. In: Kaps M, Lamberson W. (Eds.), Biostatistics for Animal Science. MA: CABI Publishing, Cambridge 2004; pp 342-354.
  • 16. Nuernberg K, Dannenberger D, Nuernberg G, et al. Effect of a grass-based and a concentrate feeding system on meat quality characteristics and fatty acid composition of longissimus muscle in different cattle breeds. Livest Prod Sci 2005; 94:137-147.
  • 17. Noci F, French P, Monahan FJ,Moloney AP. The fatty acid composition of muscle, fat, and subcutaneous adipose tissue of grazing heifers supplemented with plant oil-enriched concentrates. J Anim Sci 2007; 85:1062-1073.
  • 18. Weston TR, Derner JD, Murrieta CM, e t a l . Comparison of catalysts for direct transesterification of fatty acis in freeze-dried forage samples. Crop Sci 2008; 48:1636-1641.
  • 19. Altman KI, Richmond JE, Salomon K. A note on the synthesis of fatty acids in bone marrow homogenates as affected by X-radiation. Bioch Biophysica Acta 1951; 7:460-465.
  • 20. Vernon RG. Lipid metabolism in the adipose tissue of ruminant animals. In: Christie WW. (Ed), Lipid metabolism in ruminant animals. Pergamon Press, New York 1981; pp 279-362.
  • 21. Mel’uchova B, Blasko J, Kubinec R, et al. Seasonal variations in fatty acid composition of pasture forage plants and CLA content in ewe milk fat. Small Rum Res 2008; 78:56-65.
  • 22. Kucuk O, Hess BW, Ludden PA, Rule DC. Effect of forage:concentrate ratio on ruminal digestion and duodenal flow of fatty acids in ewes. J Anim Sci 2001; 79:2233-2240.
  • 23. Rule DC, Broughton KS, Shellito SM, Maiorano G. Comparison of muscle fatty acid profiles and cholesterol concentrations of bison, beef cattle, elk, and chicken. J Anim Sci 2002; 80:1202-1211.
  • 24. Scollan N, Hocquette J, Nuernberg K, et al. Innovations in beef production systems that enhance the nutritional and health value of beef lipids and their relationship with meat quality. Meat Sci 2006; 74:17–33.
  • 25. Muchenje V, Hugo A, Dzama K, et al. Cholesterol levels and fatty acid profiles of beef from three cattle breeds raised on natural pasture. J Food Comp Anal 2009; 22:354–358.
  • 26. Wood JD, Richardson RI, Nute GR, et al. Effects of fatty acids on meat quality: review. Meat Sci 2003; 66:21-32.
  • 27. Wang C, Harris WS, Chung M, et al. n-3 fatty acids from fish or fish-oil supplements, but not alpha linolenic acid, benefit cardiovascular disease outcomes in primary- and secondary-prevention studies: a systematic review. Amer J Clin Nutr 2006; 84:5-17.
  • 28. Ramsden CE, Faurot KR, Zamora D, et al. Targeted alteration of dietary n-3 and n-6 fatty acids for the treatment of chronic headaches: A randomized trial. Pain 2013; 154:1010-1016.
  • 29. Wijendran V, Hayes KC. Dietary n-6 and n-3 fatty acid balance and cardiovascular health. Ann Rev Nutr 2004; 24:597-615.
  • 30. Chin SF, Liu W, Storkson JM, et al. Dietary sources of conjugated dienoic isomers of linoleic acid, a newly recognized class of anticarcinogens. J Food Comp Anal 1992; 5:185-197.
  • 31. Griinari JM, Bauman DE. Biosynthesis of conjugated linoleic acid and its incorporation into meat and milk in ruminants. In: Yurawcez MP, Mossoba MM, Kramer JKG, Pariza MW, Nelson GJ. (Eds), AOCS Press, Illinois USA, 1999; pp 180-200.
  • 32. Ritzenthaler KL, McGuire MK, Falen R, et al. Estimation of conjugated linoleic acid intake by written dietary assessment methodologies underestimates actual intake evaluated by food duplicate methodology. J Nutr 2001; 131:1548-1554.
  • 33. De La Torre A, Gruffat D, Durand D, et al. Factors influencing proportion and composition of CLA in beef. Meat Sci 2006; 73:258-268.
  • 34. Hargrave-Barnes KM, Azain MJ, Milner JL. Conjugated linoleic acid induced fat loss dependence on delta 6-desaturase or cycolooxygenase. Obesity 2008; 16:2245-2252.
  • 35. Luna P, Fontecha J, Ju´arez M, de la Fuente MA. Conjugated linoleic acid in ewe milk fat. J Dairy Res 2005; 72:415-424.
  • 36. Raes K, De Smet S, Demeyer D. Effect of dietary fatty acids on incorporation of long chain polyunsaturated fatty acids, and conjugated linoleic acid in lamb, beef and pork meat: a review. Anim Feed Sci Techn 2004; 113:199-221.
  • 37. Dhiman TR, Anand GR, Satter LD, Pariza MW. Conjugated linoleic acid content of milk from cows fed different diets. J Dairy Sci 1999; 82:2146- 2156.
  • 38. French P, Stanton C, Lawless F, et al. Fatty acid composition, including conjugated linoleic acid, of intramuscular fat from steers offered grazed grass, grass silage, or concentrate-based diets. J Anim Sci 2000; 78:2849-2855.
  • 39. Poulson CS, Dhiman TR, Cornforth D, Olson KC, Walters J. Influence of diet on conjugated linoleic acid content of beef. J Anim Sci 2001; 79:159-164.
  • 40. Mello FC, Field RA, Forenze S, Kunsman JE. Lipid characterization of bovine bone marrow. J Food Sci 1976; 41:226-230.
  • 41. Rule DC, Busboom JR, Kercher CJ. Effect of dietary canola on fatty acid composition of bovine adipose tissue, muscle, kidney, and liver. J Anim Sci 1994; 72:2735-2744.
  • 42. Petrakis NL. Some physiological and developmental considerations of the temperaturegradient hypothesis of bone marrow distribution. Amer J Physic Anthr 1966; 25:119-130.
Toplam 42 adet kaynakça vardır.

Ayrıntılar

Diğer ID JA85AD54RG
Bölüm Araştırma Makalesi
Yazarlar

Osman Küçük

Loren Cordaın Bu kişi benim

Kevin T. Fulton Bu kişi benim

Daniel C. Rul Bu kişi benim

Yayımlanma Tarihi 1 Temmuz 2018
Gönderilme Tarihi 1 Temmuz 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 27 Sayı: 2

Kaynak Göster

APA Küçük, O., Cordaın, L., Fulton, K. T., Rul, D. C. (2018). BONE MARROW FATTY ACID COMPOSITION IN GRASS-FED CATTLE AFTER SLAUGHTER: NUTRITIONAL IMPLICATIONS. Sağlık Bilimleri Dergisi, 27(2), 149-155.
AMA Küçük O, Cordaın L, Fulton KT, Rul DC. BONE MARROW FATTY ACID COMPOSITION IN GRASS-FED CATTLE AFTER SLAUGHTER: NUTRITIONAL IMPLICATIONS. JHS. Temmuz 2018;27(2):149-155.
Chicago Küçük, Osman, Loren Cordaın, Kevin T. Fulton, ve Daniel C. Rul. “BONE MARROW FATTY ACID COMPOSITION IN GRASS-FED CATTLE AFTER SLAUGHTER: NUTRITIONAL IMPLICATIONS”. Sağlık Bilimleri Dergisi 27, sy. 2 (Temmuz 2018): 149-55.
EndNote Küçük O, Cordaın L, Fulton KT, Rul DC (01 Temmuz 2018) BONE MARROW FATTY ACID COMPOSITION IN GRASS-FED CATTLE AFTER SLAUGHTER: NUTRITIONAL IMPLICATIONS. Sağlık Bilimleri Dergisi 27 2 149–155.
IEEE O. Küçük, L. Cordaın, K. T. Fulton, ve D. C. Rul, “BONE MARROW FATTY ACID COMPOSITION IN GRASS-FED CATTLE AFTER SLAUGHTER: NUTRITIONAL IMPLICATIONS”, JHS, c. 27, sy. 2, ss. 149–155, 2018.
ISNAD Küçük, Osman vd. “BONE MARROW FATTY ACID COMPOSITION IN GRASS-FED CATTLE AFTER SLAUGHTER: NUTRITIONAL IMPLICATIONS”. Sağlık Bilimleri Dergisi 27/2 (Temmuz 2018), 149-155.
JAMA Küçük O, Cordaın L, Fulton KT, Rul DC. BONE MARROW FATTY ACID COMPOSITION IN GRASS-FED CATTLE AFTER SLAUGHTER: NUTRITIONAL IMPLICATIONS. JHS. 2018;27:149–155.
MLA Küçük, Osman vd. “BONE MARROW FATTY ACID COMPOSITION IN GRASS-FED CATTLE AFTER SLAUGHTER: NUTRITIONAL IMPLICATIONS”. Sağlık Bilimleri Dergisi, c. 27, sy. 2, 2018, ss. 149-55.
Vancouver Küçük O, Cordaın L, Fulton KT, Rul DC. BONE MARROW FATTY ACID COMPOSITION IN GRASS-FED CATTLE AFTER SLAUGHTER: NUTRITIONAL IMPLICATIONS. JHS. 2018;27(2):149-55.