Araştırma Makalesi
BibTex RIS Kaynak Göster

MİRİSETİN OKSİDATİF STRESİ VE HİPOKSİ İNDÜKLENEBİLİR FAKTÖR-1α DÜZEYLERİNİ DÜZENLEYEREK SİSPLATİN KAYNAKLI AKCİĞER HASARINI AZALTIR

Yıl 2025, Cilt: 34 Sayı: 1, 1 - 7

Öz

Sisplatin, katı tümörlerin tedavisinde sıklıkla kullanılan bir antikanser ajandır. Ancak yaygın organ toksisitesi kullanımını kısıtlayan en önemli faktördür. Akciğer toksisitesi de son yıllarda giderek artan bir endişe haline gelmiştir. Bu çalışmada bitkilerde bulunan doğal bir antioksidan olan mirisetinin sisplatin kaynaklı akciğer hasarında koruyucu rolünün değerlendirilmesi amaçlandı. Bu amaçla 28 adet erkek Wistar sıçanı rastgele dört eşit gruba (n=7) ayrıldı: kontrol, mirisetin, sisplatin ve mirisetin+sisplatin. Kontrol grubuna fizyolojik salin verildi; mirisetin grubuna artarda yedi gün boyunca periton içinden mirisetin (10 mg/kg) verildi. Sisplatin grubuna yedinci gün tek doz sisplatin (7.5 mg/kg) intraperitoneal olarak verildi. Mirisetin+sisplatin grubuna art arda yedi gün boyunca mirisetin tedavisi uygulandı ve yedinci günün sonunda sisplatin uygulandı. Bir gün sonra sıçanlar sakrifiye edildi ve akciğerleri çıkarıldı. Akciğerlerden alınan kesitler hematoksilen&eozin ile boyanarak histopatolojik hasar değerlendirildi. Biyokimyasal analizler toplam oksidan durumu, toplam antioksidan durumu ve hipoksi ile indüklenebilir faktör-1α kullanılarak yapıldı. Sonuç olarak sisplatin grubunda belirgin inflamatuar hücre infiltrasyonu, hücresel bozulma ve doku bütünlüğünde kayıp gözlendi. Buna karşılık mirisetin+sisplatin grubunda hücresel yapı ve alveoler düzen büyük ölçüde korunmuş, inflamatuar infiltrasyon ise minimal düzeyde kalmıştır. Mirisetin ile ön tedavi toplam oksidan statusu ve hipoksi ile indüklenebilir faktör-1α'yı azaltırken toplam antioksidan status seviyelerini arttırdı. Birlikte ele alındığında bu çalışma, mirisetin ön tedavisinin sisplatin kaynaklı akciğer hasarında terapötik amaçlara hizmet edebileceğini göstermektedir.

Kaynakça

  • Katanić Stanković JS, Selaković D, Rosić G. Oxidative damage as a fundament of systemic toxicities induced by cisplatin-the crucial limitation or potential therapeutic target? Int J Mol Sci. 2023;24(19):14574. doi: 10.3390/ijms241914574.
  • Pervushin NV, Yapryntseva MA, Panteleev MA, Zhivotovsky B, Kopeina GS. Cisplatin resistance and metabolism: Simplification of complexity. Cancers (Basel). 2024;16(17):3082. doi: 10.3390/cancers16173082.
  • Tan WJT, Vlajkovic SM. Molecular characteristics of cisplatin-induced ototoxicity and therapeutic interventions. Int J Mol Sci. 2023;24(22):16545. doi: 10.3390/ijms242216545.
  • Ristić L, Rančić M, Radović M, et al. Melatonin inhibits apoptosis and oxidative tissue damage in cisplatin-induced pulmonary toxicity in rats. Arch Med Sci. 2020;20(3):977-983. doi: 10.5114/aoms.2020.95952.
  • Rančić M, Ristić L, Rančić A, et al. Lycopene and caffeic acid phenethyl ester affect Caspase-3 activity, but do not alter the no pathway in lung tissue damage induced by cisplatin. Pharmacology. 2021;106(7-8):400-408. doi: 10.1159/000515935.
  • Hassanein EHM, Sayed GA, Alzoghaibi AM, et al. Azithromycin mitigates cisplatin-induced lung oxidative stress, inflammation and necroptosis by upregulating SIRT1, PPARγ, and Nrf2/HO-1 signaling. Pharmaceuticals (Basel). 2022;16(1):52. doi: 10.3390/ph16010052.
  • Liu G, Summer R. Cellular Metabolism in Lung Health and Disease. Annu Rev Physiol. 2019;81:403-428. doi: 10.1146/annurev-physiol-020518-114640.
  • Li L, Mok H, Jhaveri P, et al. Anticancer therapy and lung injury: molecular mechanisms. Expert Rev Anticancer Ther. 2018;18(10):1041-1057. doi: 10.1080/14737140.2018.1500180.
  • Han YK, Kim JS, Jang G, Park KM. Cisplatin induces lung cell cilia disruption and lung damage via oxidative stress. Free Radic Biol Med. 2021;177:270-277. doi: 10.1016/j.freeradbiomed.2021.10.032.
  • Trivedi A, Hasan A, Ahmad R, et al. Flavonoid myricetin as potent anticancer agent: A possibility towards development of potential anticancer nutraceuticals. Chin J Integr Med. 2024;30(1):75-84. doi: 10.1007/s11655-023-3701-5.
  • Rahmani AH, Almatroudi A, Allemailem KS, et al. Myricetin: A significant emphasis on its anticancer potential via the modulation of ınflammation and signal transduction pathways. Int J Mol Sci. 2023;24(11):9665. doi: 10.3390/ijms24119665.
  • Nadalin P, Kim JK, Park SU. Recent studies on myricetin and its biological and pharmacological activities. EXCLI J. 2023;22:1223-1231. doi: 10.17179/excli2023-6571.
  • Hassan SM, Khalaf MM, Sadek SA, Abo-Youssef AM. Protective effects of apigenin and myricetin against cisplatin-induced nephrotoxicity in mice. Pharm Biol. 2017;55(1):766-774. doi: 10.1080/13880209.2016.1275704.
  • Qi X, Wang J, Fei F, et al. Myricetin-loaded nanomicelles protect against cisplatin-induced acute kidney injury by inhibiting the DNA damage-cGAS-STING signaling pathway. Mol Pharm. 2023;20(1):136-146. doi: 10.1021/acs.molpharmaceut.2c00520.
  • Aksoy S, Kuloğlu N, Karabulut D, Yakan B. Investigation of the effect of myricetin on cisplatin-induced liver hepatotoxicity. Rev Assoc Med Bras. (1992). 2024;70(7):e20240136. doi: 10.1590/1806-9282.20240136
  • Zheng L, Zhou W, Wu Y, et al. Melatonin alleviates acute respiratory distress syndrome by inhibiting alveolar macrophage NLRP3 inflammasomes through the ROS/HIF-1α/GLUT1 pathway. Lab Invest. 2023;103(12):100266. doi: 10.1016/j.labinv.2023.100266.
  • Liu FC, Yang YH, Liao CC, Lee HC. Xanthoxylin attenuates lipopolysaccharide-induced lung ınjury through modulation of Akt/HIF-1α/NF-κB and Nrf2 pathways. Int J Mol Sci. 2024;25(16):8742. doi: 10.3390/ijms25168742.
  • Cengil O, Keçeci M. Histological scoring systems for the assessment of the degree of lung injury in rats. Batı Karadeniz Tıp Dergisi. 2024;8(2):104-112. doi: 10.29058/mjwbs.1472799.
  • Szentmihályi K, Blázovics A, May Z, et al. Metal element alteration in the lung by cisplatin and CV247 administration. Biomed Pharmacother. 2020;128:110307. doi: 10.1016/j.biopha.2020.110307.
  • Calderón Guzmán D, Osnaya Brizuela N, Ortíz Herrera M, et al. N-Acetylcysteine attenuates cisplatin toxicity in the cerebrum and lung of young rats with artificially induced protein deficiency. Int J Mol Sci. 2024;25(11):6239. doi: 10.3390/ijms25116239.
  • Wang ZH, Kang K A, Zhang R, et al. Myricetin suppresses oxidative stress-induced cell damage via both direct and indirect antioxidant action. Environmental toxicology and pharmacology. 2010;29(1): 12-18. doi: 10.1016/j.etap.2009.08.007.
  • Basheeruddin M, Qausain S. Hypoxia-Inducible Factor 1-Alpha (HIF-1α): An essential regulator in cellular metabolic control. Cureus. 2024;16(7):e63852. doi: 10.7759/cureus.63852.
  • Khedr M, Barakat N, Mohey El-Deen I, Zahran F. Impact of preconditioning stem cells with all-trans retinoic acid signaling pathway on cisplatin-induced nephrotoxicity by down-regulation of TGFβ1, IL-6, and caspase-3 and up-regulation of HIF1α and VEGF. Saudi J Biol Sci. 2022;29(2):831-839. doi: 10.1016/j.sjbs.2021.10.024.
  • Liu X, Huang Z, Zou X, Yang Y, Qiu Y, Wen Y. Possible mechanism of PNS protection against cisplatin-induced nephrotoxicity in rat models. Toxicol Mech Methods. 2015;25(5):347-54. doi: 10.3109/15376516.2015.1006492.
  • Schödel J, Klanke B, Weidemann A, et al. HIF-prolyl hydroxylases in the rat kidney: physiologic expression patterns and regulation in acute kidney injury. Am J Pathol. 2009;174(5):1663-1674. doi: 10.2353/ajpath.2009.080687.
  • Chen Y, Xu J, Shi S, et al. A DNA nanostructure-HIF-1α inducer complex as novel nanotherapy against cisplatin-induced acute kidney injury. Cell Prolif. 2024;57(6):e13601. doi: 10.1111/cpr.13601.
  • Wang WW, Li ZZ, Wang W, et al. Enhanced renoprotective effect of HIF-1α modified human adipose-derived stem cells on cisplatin-induced acute kidney injury in vivo. Sci Rep. 2015;5:10851. doi: 10.1038/srep10851.
  • Li Q, Liang X, Yang Y, Zeng X, Zhong X, Huang C. Panax notoginseng saponins ameliorate cisplatin-induced mitochondrial injury via the HIF-1α/mitochondria/ROS pathway. FEBS Open Bio. 2020;10(1):118-126. doi: 10.1002/2211-5463.12760.
  • Averill-Bates D. Reactive oxygen species and cell signaling. Review. Biochim Biophys Acta Mol Cell Res. 2024;1871(2):119573. doi: 10.1016/j.bbamcr.2023.119573.
  • Liu Y, Xiang D, Zhang H, Yao H, Wang Y. Hypoxia-Inducible Factor-1: A Potential Target to Treat Acute Lung Injury. Oxid Med Cell Longev. 2020;2020:8871476. doi: 10.1155/2020/8871476.
  • Geiger K, Muendlein A, Leiherer A, et al. Myricetin attenuates hypoxia-induced inflammation in human adipocytes. Mol Biol Rep. 2023;50(12):9833-9843. doi: 10.1007/s11033-023-08865-9.
  • Li L, Ma H, Li D, et al. Myricetin alleviates the formaldehyde-enhanced Warburg effect in tumor cells through inhibition of HIF-1α. Toxicol Appl Pharmacol. 2022;454:116246. doi: 10.1016/j.taap.2022.116246.

MYRICETIN REDUCES CISPLATIN-INDUCED LUNG INJURY BY REGULATING OXIDATIVE STRESS AND HYPOXIA INDUCIBLE FACTOR-1α LEVELS

Yıl 2025, Cilt: 34 Sayı: 1, 1 - 7

Öz

Cisplatin is an anticancer agent that is frequently used in the treatment of solid tumors. However, widespread organ toxicity is the most important factor limiting its use. Lung toxicity has also become an increasing concern in recent years. This study aimed to evaluate the protective roles of myricetin, a natural antioxidant found in plants, in cisplatin-induced lung injury. For this purpose, twenty-eight male Wistar rats were randomly assigned to four equal groups (n=7): control, myricetin, cisplatin, and myricetin+cisplatin. The control group received physiological saline; the myricetin group was given myricetin (10 mg/kg) intraperitoneally for seven consecutive days. The cisplatin group was given a single dose of cisplatin (7.5 mg/kg) intraperitoneally on the seventh day. The myricetin+cisplatin group was treated with myricetin for seven consecutive days, and at the end of the seventh day, cisplatin was administered. One day later, the rats were sacrificed, and their lungs were removed. The sections obtained from the lungs were stained with hematoxylin & eosin, and histopathological damage was evaluated. Biochemical analyses were performed using total oxidant status, total antioxidant status, and hypoxia-inducible factor-1α. In results, significant inflammatory cell infiltration, cellular deterioration, and loss of tissue integrity were observed in the cisplatin group. In contrast, in the myricetin+cisplatin group, the cellular structure and alveolar order were largely preserved, and inflammatory infiltration was minimal. Pretreatment with myricetin reduced total oxidant status and hypoxia-inducible factor-1α while increasing total antioxidant status levels. Taken together, this study indicates that pretreatment of myricetin could serve therapeutic purposes in cisplatin-induced lung injury.

Etik Beyan

Ethics committee approval was received for this study from the Animal Ethical Committee of Erciyes University, Turkey (Approval number :23/130, Date: June 2023).

Kaynakça

  • Katanić Stanković JS, Selaković D, Rosić G. Oxidative damage as a fundament of systemic toxicities induced by cisplatin-the crucial limitation or potential therapeutic target? Int J Mol Sci. 2023;24(19):14574. doi: 10.3390/ijms241914574.
  • Pervushin NV, Yapryntseva MA, Panteleev MA, Zhivotovsky B, Kopeina GS. Cisplatin resistance and metabolism: Simplification of complexity. Cancers (Basel). 2024;16(17):3082. doi: 10.3390/cancers16173082.
  • Tan WJT, Vlajkovic SM. Molecular characteristics of cisplatin-induced ototoxicity and therapeutic interventions. Int J Mol Sci. 2023;24(22):16545. doi: 10.3390/ijms242216545.
  • Ristić L, Rančić M, Radović M, et al. Melatonin inhibits apoptosis and oxidative tissue damage in cisplatin-induced pulmonary toxicity in rats. Arch Med Sci. 2020;20(3):977-983. doi: 10.5114/aoms.2020.95952.
  • Rančić M, Ristić L, Rančić A, et al. Lycopene and caffeic acid phenethyl ester affect Caspase-3 activity, but do not alter the no pathway in lung tissue damage induced by cisplatin. Pharmacology. 2021;106(7-8):400-408. doi: 10.1159/000515935.
  • Hassanein EHM, Sayed GA, Alzoghaibi AM, et al. Azithromycin mitigates cisplatin-induced lung oxidative stress, inflammation and necroptosis by upregulating SIRT1, PPARγ, and Nrf2/HO-1 signaling. Pharmaceuticals (Basel). 2022;16(1):52. doi: 10.3390/ph16010052.
  • Liu G, Summer R. Cellular Metabolism in Lung Health and Disease. Annu Rev Physiol. 2019;81:403-428. doi: 10.1146/annurev-physiol-020518-114640.
  • Li L, Mok H, Jhaveri P, et al. Anticancer therapy and lung injury: molecular mechanisms. Expert Rev Anticancer Ther. 2018;18(10):1041-1057. doi: 10.1080/14737140.2018.1500180.
  • Han YK, Kim JS, Jang G, Park KM. Cisplatin induces lung cell cilia disruption and lung damage via oxidative stress. Free Radic Biol Med. 2021;177:270-277. doi: 10.1016/j.freeradbiomed.2021.10.032.
  • Trivedi A, Hasan A, Ahmad R, et al. Flavonoid myricetin as potent anticancer agent: A possibility towards development of potential anticancer nutraceuticals. Chin J Integr Med. 2024;30(1):75-84. doi: 10.1007/s11655-023-3701-5.
  • Rahmani AH, Almatroudi A, Allemailem KS, et al. Myricetin: A significant emphasis on its anticancer potential via the modulation of ınflammation and signal transduction pathways. Int J Mol Sci. 2023;24(11):9665. doi: 10.3390/ijms24119665.
  • Nadalin P, Kim JK, Park SU. Recent studies on myricetin and its biological and pharmacological activities. EXCLI J. 2023;22:1223-1231. doi: 10.17179/excli2023-6571.
  • Hassan SM, Khalaf MM, Sadek SA, Abo-Youssef AM. Protective effects of apigenin and myricetin against cisplatin-induced nephrotoxicity in mice. Pharm Biol. 2017;55(1):766-774. doi: 10.1080/13880209.2016.1275704.
  • Qi X, Wang J, Fei F, et al. Myricetin-loaded nanomicelles protect against cisplatin-induced acute kidney injury by inhibiting the DNA damage-cGAS-STING signaling pathway. Mol Pharm. 2023;20(1):136-146. doi: 10.1021/acs.molpharmaceut.2c00520.
  • Aksoy S, Kuloğlu N, Karabulut D, Yakan B. Investigation of the effect of myricetin on cisplatin-induced liver hepatotoxicity. Rev Assoc Med Bras. (1992). 2024;70(7):e20240136. doi: 10.1590/1806-9282.20240136
  • Zheng L, Zhou W, Wu Y, et al. Melatonin alleviates acute respiratory distress syndrome by inhibiting alveolar macrophage NLRP3 inflammasomes through the ROS/HIF-1α/GLUT1 pathway. Lab Invest. 2023;103(12):100266. doi: 10.1016/j.labinv.2023.100266.
  • Liu FC, Yang YH, Liao CC, Lee HC. Xanthoxylin attenuates lipopolysaccharide-induced lung ınjury through modulation of Akt/HIF-1α/NF-κB and Nrf2 pathways. Int J Mol Sci. 2024;25(16):8742. doi: 10.3390/ijms25168742.
  • Cengil O, Keçeci M. Histological scoring systems for the assessment of the degree of lung injury in rats. Batı Karadeniz Tıp Dergisi. 2024;8(2):104-112. doi: 10.29058/mjwbs.1472799.
  • Szentmihályi K, Blázovics A, May Z, et al. Metal element alteration in the lung by cisplatin and CV247 administration. Biomed Pharmacother. 2020;128:110307. doi: 10.1016/j.biopha.2020.110307.
  • Calderón Guzmán D, Osnaya Brizuela N, Ortíz Herrera M, et al. N-Acetylcysteine attenuates cisplatin toxicity in the cerebrum and lung of young rats with artificially induced protein deficiency. Int J Mol Sci. 2024;25(11):6239. doi: 10.3390/ijms25116239.
  • Wang ZH, Kang K A, Zhang R, et al. Myricetin suppresses oxidative stress-induced cell damage via both direct and indirect antioxidant action. Environmental toxicology and pharmacology. 2010;29(1): 12-18. doi: 10.1016/j.etap.2009.08.007.
  • Basheeruddin M, Qausain S. Hypoxia-Inducible Factor 1-Alpha (HIF-1α): An essential regulator in cellular metabolic control. Cureus. 2024;16(7):e63852. doi: 10.7759/cureus.63852.
  • Khedr M, Barakat N, Mohey El-Deen I, Zahran F. Impact of preconditioning stem cells with all-trans retinoic acid signaling pathway on cisplatin-induced nephrotoxicity by down-regulation of TGFβ1, IL-6, and caspase-3 and up-regulation of HIF1α and VEGF. Saudi J Biol Sci. 2022;29(2):831-839. doi: 10.1016/j.sjbs.2021.10.024.
  • Liu X, Huang Z, Zou X, Yang Y, Qiu Y, Wen Y. Possible mechanism of PNS protection against cisplatin-induced nephrotoxicity in rat models. Toxicol Mech Methods. 2015;25(5):347-54. doi: 10.3109/15376516.2015.1006492.
  • Schödel J, Klanke B, Weidemann A, et al. HIF-prolyl hydroxylases in the rat kidney: physiologic expression patterns and regulation in acute kidney injury. Am J Pathol. 2009;174(5):1663-1674. doi: 10.2353/ajpath.2009.080687.
  • Chen Y, Xu J, Shi S, et al. A DNA nanostructure-HIF-1α inducer complex as novel nanotherapy against cisplatin-induced acute kidney injury. Cell Prolif. 2024;57(6):e13601. doi: 10.1111/cpr.13601.
  • Wang WW, Li ZZ, Wang W, et al. Enhanced renoprotective effect of HIF-1α modified human adipose-derived stem cells on cisplatin-induced acute kidney injury in vivo. Sci Rep. 2015;5:10851. doi: 10.1038/srep10851.
  • Li Q, Liang X, Yang Y, Zeng X, Zhong X, Huang C. Panax notoginseng saponins ameliorate cisplatin-induced mitochondrial injury via the HIF-1α/mitochondria/ROS pathway. FEBS Open Bio. 2020;10(1):118-126. doi: 10.1002/2211-5463.12760.
  • Averill-Bates D. Reactive oxygen species and cell signaling. Review. Biochim Biophys Acta Mol Cell Res. 2024;1871(2):119573. doi: 10.1016/j.bbamcr.2023.119573.
  • Liu Y, Xiang D, Zhang H, Yao H, Wang Y. Hypoxia-Inducible Factor-1: A Potential Target to Treat Acute Lung Injury. Oxid Med Cell Longev. 2020;2020:8871476. doi: 10.1155/2020/8871476.
  • Geiger K, Muendlein A, Leiherer A, et al. Myricetin attenuates hypoxia-induced inflammation in human adipocytes. Mol Biol Rep. 2023;50(12):9833-9843. doi: 10.1007/s11033-023-08865-9.
  • Li L, Ma H, Li D, et al. Myricetin alleviates the formaldehyde-enhanced Warburg effect in tumor cells through inhibition of HIF-1α. Toxicol Appl Pharmacol. 2022;454:116246. doi: 10.1016/j.taap.2022.116246.
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Metabolik Tıp
Bölüm Araştırma Makalesi
Yazarlar

Inayet Gunturk 0000-0002-8299-1359

Sümeyye Aksoy 0009-0001-9698-0749

Nurhan Kuloğlu 0000-0002-1199-2784

Necla Değer 0000-0001-7239-3331

Derya Karabulut 0000-0003-2067-6174

Cevat Yazıcı 0000-0003-0625-9542

Birkan Yakan 0000-0002-5456-4579

Erken Görünüm Tarihi 17 Mart 2025
Yayımlanma Tarihi
Gönderilme Tarihi 11 Kasım 2024
Kabul Tarihi 26 Aralık 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 34 Sayı: 1

Kaynak Göster

APA Gunturk, I., Aksoy, S., Kuloğlu, N., Değer, N., vd. (2025). MYRICETIN REDUCES CISPLATIN-INDUCED LUNG INJURY BY REGULATING OXIDATIVE STRESS AND HYPOXIA INDUCIBLE FACTOR-1α LEVELS. Sağlık Bilimleri Dergisi, 34(1), 1-7.
AMA Gunturk I, Aksoy S, Kuloğlu N, Değer N, Karabulut D, Yazıcı C, Yakan B. MYRICETIN REDUCES CISPLATIN-INDUCED LUNG INJURY BY REGULATING OXIDATIVE STRESS AND HYPOXIA INDUCIBLE FACTOR-1α LEVELS. JHS. Mart 2025;34(1):1-7.
Chicago Gunturk, Inayet, Sümeyye Aksoy, Nurhan Kuloğlu, Necla Değer, Derya Karabulut, Cevat Yazıcı, ve Birkan Yakan. “MYRICETIN REDUCES CISPLATIN-INDUCED LUNG INJURY BY REGULATING OXIDATIVE STRESS AND HYPOXIA INDUCIBLE FACTOR-1α LEVELS”. Sağlık Bilimleri Dergisi 34, sy. 1 (Mart 2025): 1-7.
EndNote Gunturk I, Aksoy S, Kuloğlu N, Değer N, Karabulut D, Yazıcı C, Yakan B (01 Mart 2025) MYRICETIN REDUCES CISPLATIN-INDUCED LUNG INJURY BY REGULATING OXIDATIVE STRESS AND HYPOXIA INDUCIBLE FACTOR-1α LEVELS. Sağlık Bilimleri Dergisi 34 1 1–7.
IEEE I. Gunturk, S. Aksoy, N. Kuloğlu, N. Değer, D. Karabulut, C. Yazıcı, ve B. Yakan, “MYRICETIN REDUCES CISPLATIN-INDUCED LUNG INJURY BY REGULATING OXIDATIVE STRESS AND HYPOXIA INDUCIBLE FACTOR-1α LEVELS”, JHS, c. 34, sy. 1, ss. 1–7, 2025.
ISNAD Gunturk, Inayet vd. “MYRICETIN REDUCES CISPLATIN-INDUCED LUNG INJURY BY REGULATING OXIDATIVE STRESS AND HYPOXIA INDUCIBLE FACTOR-1α LEVELS”. Sağlık Bilimleri Dergisi 34/1 (Mart 2025), 1-7.
JAMA Gunturk I, Aksoy S, Kuloğlu N, Değer N, Karabulut D, Yazıcı C, Yakan B. MYRICETIN REDUCES CISPLATIN-INDUCED LUNG INJURY BY REGULATING OXIDATIVE STRESS AND HYPOXIA INDUCIBLE FACTOR-1α LEVELS. JHS. 2025;34:1–7.
MLA Gunturk, Inayet vd. “MYRICETIN REDUCES CISPLATIN-INDUCED LUNG INJURY BY REGULATING OXIDATIVE STRESS AND HYPOXIA INDUCIBLE FACTOR-1α LEVELS”. Sağlık Bilimleri Dergisi, c. 34, sy. 1, 2025, ss. 1-7.
Vancouver Gunturk I, Aksoy S, Kuloğlu N, Değer N, Karabulut D, Yazıcı C, Yakan B. MYRICETIN REDUCES CISPLATIN-INDUCED LUNG INJURY BY REGULATING OXIDATIVE STRESS AND HYPOXIA INDUCIBLE FACTOR-1α LEVELS. JHS. 2025;34(1):1-7.