Araştırma Makalesi
BibTex RIS Kaynak Göster

Antimicrobial resistance patterns of Streptococcus uberis isolates recovered from bovine mastitis

Yıl 2025, Cilt: 36 Sayı: 2, 101 - 106, 13.01.2026
https://doi.org/10.35864/evmd.1776357

Öz

Streptococcus uberis, which is a major cause of bovine mastitis in the dairy industry, is commonly treated with antimicrobials. The objective of this study was to investigate antimicrobial resistance (AMR) patterns of S. uberis isolates recovered from bovine mastitis. Totally 120 milk samples were collected in 2025 from cows with mastitis on a farm. S. uberis isolates were identified using standard bacteriological analyses and confirmed by sequence analysis of the 16S rRNA gene. Six different antimicrobials (gentamicin, streptomycin, penicillin, vancomycin, erythromycin, and tetracycline) were used for AMR test by the Kirby-Bauer disc diffusion method. Eighteen S. uberis isolates (15.0%, 18/120) were recovered, none of which were susceptible to all the tested antimicrobials. All isolates (100.0%, 18/18) were resistant to aminoglycosides, gentamycin, and streptomycin. In contrast, all isolates (100.0%, 18/18) were susceptible to penicillin and vancomycin. This finding supports the use of beta lactams as first-line antimicrobials to treat S. uberis infections. Additionally, 27.8% (5/18) and 61.1% (11/18) of the isolates were resistant to erythromycin and tetracycline, respectively. The high resistance rate for tetracycline indicates that it is not an effective treatment option for S. uberis infections. Four different AMR patterns were determined. Isolates with the CN-S-E-TE pattern were defined as multidrug-resistant (MDR) (16.7%, 3/18). The identification of MDR isolates emphasizes the necessity of conducting AMR testing prior to initiating antimicrobial treatment for bovine mastitis. In conclusion, these findings align with existing literature and demonstrate the significance of regular surveillance to guide evidence-based and sustainable approaches in bovine mastitis management.

Kaynakça

  • Abd El-Aziz NK, Ammar AM, El Damaty HM, Abd Elkader RA, Saad HA, El-Kazzaz W, Khalifa E. (2021).
  • Environmental Streptococcus uberis associated with clinical mastitis in dairy cows: Virulence traits, antimicrobial and biocide resistance, and epidemiological typing. Animals (Basel). 11. 1849. https://doi.org/10.3390/ani11071849
  • Bal EB, Bayar S, Bal MA. (2010). Antimicrobial susceptibilities of coagulase-negative staphylococci (CNS) and streptococci from bovine subclinical mastitis cases. J Microbiol. 48(3), 267-74. https://doi.org/10.1007/s12275-010-9373-9
  • Bauer AW, Perry DM, Kirby WMM. (1959). Single disc antibiotic sensitivity testing of Staphylococci. Arch. Intern. Med. 104(2), 208-216
  • Boireau C, Cazeau G, Jarrige N, Calavas D, Madec JY, Leblond A, Haenni M, Gay E. (2018). Antimicrobial resistance in bacteria isolated from mastitis in dairy cattle in France, 2006-2016. JDS. 101, 9451-9462. https://doi.org/10.3168/jds.2018-14835
  • Cameron M, Saab M, Heider L, McClure JT, Rodriguez-Lecompte JC, Sanchez J. (2016). Antimicrobial susceptibility patterns of environmental Streptococci recovered from bovine milk samples in the maritime provinces of Canada. Front. Vet. Sci. 3. 79. https://doi.org/10.3389/fvets.2016.00079
  • Clinical and Laboratory Standards Institute (CLSI). (2008). Performance standards for antimicrobial disk and dilution susceptibility for bacteria isolated from animals; approved standard. Second ed. CLSI Document M31-A3. Wayne, PA ABD.
  • De Jong A, Garch FE, Simjee S, Moyaert H, Rose M, Youala M, Siegwart E, VetPath Study Group (2018). Monitoring of antimicrobial susceptibility of udder pathogens recovered from cases of clinical mastitis in dairy cows across Europe: VetPath results. Vet. Microbiol. 213, 73-81. https://doi.org/10.1016/j.vetmic.2017.11.021
  • Denamiel G, Llorente P, Carabella M, Rebuelto M, Gentilini E. (2005). Anti-microbial susceptibility of Streptococcus spp. isolated from bovine mastitis in Argentina. J. Vet. Med. 52, 125-128. https://doi.org/10.1111/j.1439-0450.2005.00830.x
  • Diana L, Mastroianni L, Diana V, Puentes R. (2024). Streptococcus spp. isolated from bovine mastitis: Antimicrobial sensitivity studies and disagreement evaluation between routine phenotypic diagnosis and molecular identification. RAM. 56, 351-358. https://doi.org/10.1016/j.ram.2024.07.006
  • Durso LM, Cook KL (2014). Impacts of antibiotic use in agriculture: what are the benefits and risks? COMICR. 19, 37-44. https://doi.org/10.1016/j.mib.2014.05.019
  • European Commission (EC). (2011). Communication from the Commission to the European Parliament and the Council–Action Plan against the rising threats from antimicrobial resistance, COM (2011) 748–AMR Road Map –Action no. 10.
  • Guner B, Ozturk B, Erkan A, Erturk M, Ucan N, Keskin A. (2024). Distribution of bacterial pathogens and antimicrobial resistance in cows with clinical mastitis in a dairy farm, Türkiye. J. Hellenic Vet. Med. Soc. 75(3), 7675–7684. https://doi.org/10.12681/jhvms.33819
  • Hassan J, Bag MAS, Ali MW, Kabir A, Hoque MN, Hossain MM, Rahman MT, Islam MS, Khan MSR. (2023). Diversity of Streptococcus spp. and genomic characteristics of Streptococcus uberis isolated from clinical mastitis of cattle in Bangladesh. Front. Vet. Sci. 10. 1198393. https://doi.org/10.3389/fvets.2023.1198393
  • Hsieh JC, Yen YS, Chuang ST. (2019). Identification of Streptococcus spp. isolated from bovine milk and characterization of their antimicrobial susceptibility profiles in Taiwan. Thai J. Vet. Med. 49(1). 8. https://doi.org/10.56808/2985-1130.2974
  • Kaczorek E, Malaczewska J, Wojcik R, Rekawek W, Siwicki AK. (2017). Phenotypic and genotypic antimicrobial susceptibility pattern of Streptococcus spp. isolated from cases of clinical mastitis in dairy cattle in Poland. JDS. 100, 6442-6453. https://doi.org/10.3168/jds.2017-12660
  • Kang HJH, Hong S, Park D, Kim HY, Moon JS. (2022). Prevalence and antimicrobial susceptibility of Streptococcus species isolated from bovine mastitis. Korean J Vet Serv. 45,181-189. https://doi.org/10.7853/kjvs.2022.45.3.181
  • Krukowski H, Lassa H, Zastempowska E, Smulski S, Bis-WenceL H. (2020). Etiological agents of bovine mastitis in Poland. Med. Weter. 76(4), 221-225. https://doi.org/dx.doi.org/10.21521/mw.6339
  • Magagula S, Petzer IM, Famuyide IM, Karzis J. (2023). Biofilm expression and antimicrobial resistance patterns of Streptococcus uberis isolated from milk samples of dairy cows in South Africa. J. Dairy Res. 90, 42-46. https://doi.org/10.1017/S0022029923000158
  • Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, Harbarth S, Hindler JF, Kahlmeter G, Olsson-Liljequist B, Paterson DL, Rice LB, Stelling J, Struelens MJ, Vatopoulos A, Weber JT, Monnet DL. (2012). Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. CMI. 18(3), 268-281. https://doi.org/10.1111/j.1469-0691.2011.03570.x
  • Markey B, Leonard F, Archambault M, Cullinane A, Maguire D. (2013). Clinical Veterinary Microbiology. Second edition. Dublin, Ireland: Mosby Elsevier, p.121-134.
  • Monistero V, Barberio A, Cremonesi P, Castiglioni B, Morandi S, Lassen DCK, Astrup LB, Locatelli C, Piccinini R, Addis MF, Bronzo V, Moroni P. (2021). Genotyping and antimicrobial susceptibility profiling of Streptococcus uberis isolated from a clinical bovine mastitis outbreak in a dairy farm. Antibiotics (Basel). 10. 644. https://doi.org/10.3390/antibiotics10060644
  • Ocak F, Turkyilmaz MK, Turkyilmaz S. (2024). The relationship between biofilm formation and multiple antibiotic resistance of Streptococcus isolates from bovine milk with mastitis. Isr. J. Vet. Med. 79(1), 50-62.
  • Rato MG, Bexiga R, Florindo C, Cavaco LM, Vilela CL, Santos-Sanches I. (2013). Antimicrobial resistance and molecular epidemiology of streptococci from bovine mastitis. Vet. Microbiol. 161, 286-294. https://doi.org/10.1016/j.vetmic.2012.07.043
  • Saini V, McClure JT, Leger D, Dufour S, Sheldon AG, Scholl DT, Barkema HW. (2012). Antimicrobial use on Canadian dairy farms. JDS. 95(3), 1209-1221. https://doi.org/10.3168/jds.2011-4527
  • Schmitt-Van de Leemput E, Zadoks RN. (2007). Genotypic and phenotypic detection of macrolide and lincosamide resistance in Streptococcus uberis. J Dairy Sci. 90(11), 5089-5096. https://doi.org/10.3168/jds.2007-0101. PMID: 17954749
  • Shome BR, Bhuvana M, Mitra SD, Krithiga N, Shome R, Velu D, Banerjee A, Barbuddhe SB, Prabhudas K, Rahman H. (2012). Molecular characterization of Streptococcus agalactiae and Streptococcus uberis isolates from bovine milk. Trop. Anim. Health Prod. 44(8), 1981-1992. https://doi.org/10.1007/s11250-012-0167-4
  • Sorge US, Huber-Schlenstedt R, Schierling K. (2021). In vitro antimicrobial resistance profiles of Streptococcus uberis, Lactococcus spp., and Enterococcus spp. from quarter milk samples of cows between 2015 and 2019 in Southern Germany. JDS. 104(5), 5998-6012. https://doi.org/10.3168/jds.2020-19896
  • Thomas C, Linde J, El-Adawy H, Wedlich N, Hruschka K, Einax E, Donat K, Berens C, Tomaso H. (2024). Whole-genome sequencing of Streptococcus uberis isolated from cows with mastitis in Thuringia. J. Med.Microbiol. 73. 001887. https://doi.org/10.1099/jmm.0.001887
  • Tsuyuki Y, Maeda T, Torii K, Yoshida H, Ikeda N, Yoshida S, Ito M, Goto M, Takahashi T. (2024). Antimicrobial resistance patterns of Streptococcus uberis isolates from bovine milk in Chiba prefecture, Japan: association between multidrug resistance and clonal complex 996. J. Vet. Med. Sci. 86(5), 468-473. https://doi.org/10.1292/jvms.23-0526
  • Turutoğlu H, Mudul S, Pehlivanoğlu F. (2002). Antibiotic susceptibilityand β-lactamase prevalence for staphylococci isolated frombovine mastitic milk samples. Acta Vet (Beograd). 52, 337–344.
  • Zhang T, Niu G, Boonyayatra S, Pichpol D. (2021). Antimicrobial resistance profiles and genes in Streptococcus uberis associated with bovine mastitis in Thailand. Front. Vet. Sci. 8. 705338. https://doi.org/10.3389/fvets.2021.705338
  • Zhang WW, Chen YY, Shi Q, Hou BX, Yang QB. (2020). Identification of bacteria associated with periapical abscesses of primary teeth by sequence analysis of 16S rDNA clone libraries. Microb. Pathog. 141. 103954. https://doi.org/10.1016/j.micpath.2019.103954
  • Zouharova M, Nedbalcova K, Matiaskova K, Slama P, Matiasovic J. (2023). Antimicrobial susceptibility and resistance genes in Streptococcus uberis isolated from bovine mastitis in the Czech Republic. Antibiotics (Basel). 12. 1527. https://doi.org/10.3390/antibiotics12101527

Sığır mastitinden izole edilen Streptococcus uberis suşlarının antimikrobiyal direnç profilleri

Yıl 2025, Cilt: 36 Sayı: 2, 101 - 106, 13.01.2026
https://doi.org/10.35864/evmd.1776357

Öz

Süt sığırı yetiştiriciliğinde sığır mastitisinin başlıca etkenlerinden biri olan Streptococcus uberis, genellikle antimikrobiyal ajanlarla tedavi edilmektedir. Bu çalışmanın amacı, mastitisli sığırlardan izole edilen S. uberis suşlarının antimikrobiyal direnç (AMR) profillerini araştırmaktı. Bu amaçla, 2025 yılında bir çiftlikteki mastitisli ineklerden toplam 120 adet süt numunesi toplandı. S. uberis izolatları, standart bakteriyolojik yöntemler ile tanımlandı ve 16S rRNA geni dizi analizi ile doğrulandı. Kirby-Bauer disk difüzyon yöntemi ile gerçekleştirilen AMR testi için altı farklı antimikrobiyal ajan (gentamisin, streptomisin, penisilin, vankomisin, eritromisin ve tetrasiklin) kullanıldı. Toplam 18 adet S. uberis izolatı (%15,0, 18/120) elde edildi ve test edilen antimikrobiyallerin tamamına duyarlı izolat bulunmadı. Tüm izolatlar (%100,0, 18/18), aminoglikozitler olan gentamisin ve streptomisine dirençli bulundu. Buna karşılık, tüm izolatlar (%100,0, 18/18) penisilin ve vankomisine duyarlı bulundu. Bu bulgu, S. uberis enfeksiyonlarının tedavisinde beta laktamların birinci basamak antimikrobiyaller olarak kullanılmasını desteklemektedir. Ayrıca izolatların %27,8’i (5/18) eritromisine ve %61,1’i (11/18) tetrasikline dirençli bulundu. Tetrasikline karşı saptanan yüksek direnç oranı, bu antimikrobiyalin S. uberis enfeksiyonları tedavisinde etkili bir seçenek olmadığını göstermektedir. Dört farklı AMR profili saptandı. CN-S-E-TE (gentamisin, streptomisin, eritromisin, tetrasiklin) direnç profiline sahip izolatlar çoklu ilaç dirençli (MDR) izolatlar (%16,7, 3/18) olarak tanımlandı. MDR izolatlarının varlığı, sığır mastitisinin tedavisine başlanmadan önce AMR testlerinin yapılmasının gerekliliğini vurgulamaktadır. Sonuç olarak, bu bulgular mevcut literatür ile uyumludur ve sığır mastitisinin yönetiminde kanıta dayalı ve sürdürülebilir yaklaşımları yönlendirmek amacıyla düzenli izleme çalışmalarının önemini ortaya koymaktadır.

Etik Beyan

Bu çalışmanın herhangi bir etik kaygı göstermediğini beyan ederim.

Kaynakça

  • Abd El-Aziz NK, Ammar AM, El Damaty HM, Abd Elkader RA, Saad HA, El-Kazzaz W, Khalifa E. (2021).
  • Environmental Streptococcus uberis associated with clinical mastitis in dairy cows: Virulence traits, antimicrobial and biocide resistance, and epidemiological typing. Animals (Basel). 11. 1849. https://doi.org/10.3390/ani11071849
  • Bal EB, Bayar S, Bal MA. (2010). Antimicrobial susceptibilities of coagulase-negative staphylococci (CNS) and streptococci from bovine subclinical mastitis cases. J Microbiol. 48(3), 267-74. https://doi.org/10.1007/s12275-010-9373-9
  • Bauer AW, Perry DM, Kirby WMM. (1959). Single disc antibiotic sensitivity testing of Staphylococci. Arch. Intern. Med. 104(2), 208-216
  • Boireau C, Cazeau G, Jarrige N, Calavas D, Madec JY, Leblond A, Haenni M, Gay E. (2018). Antimicrobial resistance in bacteria isolated from mastitis in dairy cattle in France, 2006-2016. JDS. 101, 9451-9462. https://doi.org/10.3168/jds.2018-14835
  • Cameron M, Saab M, Heider L, McClure JT, Rodriguez-Lecompte JC, Sanchez J. (2016). Antimicrobial susceptibility patterns of environmental Streptococci recovered from bovine milk samples in the maritime provinces of Canada. Front. Vet. Sci. 3. 79. https://doi.org/10.3389/fvets.2016.00079
  • Clinical and Laboratory Standards Institute (CLSI). (2008). Performance standards for antimicrobial disk and dilution susceptibility for bacteria isolated from animals; approved standard. Second ed. CLSI Document M31-A3. Wayne, PA ABD.
  • De Jong A, Garch FE, Simjee S, Moyaert H, Rose M, Youala M, Siegwart E, VetPath Study Group (2018). Monitoring of antimicrobial susceptibility of udder pathogens recovered from cases of clinical mastitis in dairy cows across Europe: VetPath results. Vet. Microbiol. 213, 73-81. https://doi.org/10.1016/j.vetmic.2017.11.021
  • Denamiel G, Llorente P, Carabella M, Rebuelto M, Gentilini E. (2005). Anti-microbial susceptibility of Streptococcus spp. isolated from bovine mastitis in Argentina. J. Vet. Med. 52, 125-128. https://doi.org/10.1111/j.1439-0450.2005.00830.x
  • Diana L, Mastroianni L, Diana V, Puentes R. (2024). Streptococcus spp. isolated from bovine mastitis: Antimicrobial sensitivity studies and disagreement evaluation between routine phenotypic diagnosis and molecular identification. RAM. 56, 351-358. https://doi.org/10.1016/j.ram.2024.07.006
  • Durso LM, Cook KL (2014). Impacts of antibiotic use in agriculture: what are the benefits and risks? COMICR. 19, 37-44. https://doi.org/10.1016/j.mib.2014.05.019
  • European Commission (EC). (2011). Communication from the Commission to the European Parliament and the Council–Action Plan against the rising threats from antimicrobial resistance, COM (2011) 748–AMR Road Map –Action no. 10.
  • Guner B, Ozturk B, Erkan A, Erturk M, Ucan N, Keskin A. (2024). Distribution of bacterial pathogens and antimicrobial resistance in cows with clinical mastitis in a dairy farm, Türkiye. J. Hellenic Vet. Med. Soc. 75(3), 7675–7684. https://doi.org/10.12681/jhvms.33819
  • Hassan J, Bag MAS, Ali MW, Kabir A, Hoque MN, Hossain MM, Rahman MT, Islam MS, Khan MSR. (2023). Diversity of Streptococcus spp. and genomic characteristics of Streptococcus uberis isolated from clinical mastitis of cattle in Bangladesh. Front. Vet. Sci. 10. 1198393. https://doi.org/10.3389/fvets.2023.1198393
  • Hsieh JC, Yen YS, Chuang ST. (2019). Identification of Streptococcus spp. isolated from bovine milk and characterization of their antimicrobial susceptibility profiles in Taiwan. Thai J. Vet. Med. 49(1). 8. https://doi.org/10.56808/2985-1130.2974
  • Kaczorek E, Malaczewska J, Wojcik R, Rekawek W, Siwicki AK. (2017). Phenotypic and genotypic antimicrobial susceptibility pattern of Streptococcus spp. isolated from cases of clinical mastitis in dairy cattle in Poland. JDS. 100, 6442-6453. https://doi.org/10.3168/jds.2017-12660
  • Kang HJH, Hong S, Park D, Kim HY, Moon JS. (2022). Prevalence and antimicrobial susceptibility of Streptococcus species isolated from bovine mastitis. Korean J Vet Serv. 45,181-189. https://doi.org/10.7853/kjvs.2022.45.3.181
  • Krukowski H, Lassa H, Zastempowska E, Smulski S, Bis-WenceL H. (2020). Etiological agents of bovine mastitis in Poland. Med. Weter. 76(4), 221-225. https://doi.org/dx.doi.org/10.21521/mw.6339
  • Magagula S, Petzer IM, Famuyide IM, Karzis J. (2023). Biofilm expression and antimicrobial resistance patterns of Streptococcus uberis isolated from milk samples of dairy cows in South Africa. J. Dairy Res. 90, 42-46. https://doi.org/10.1017/S0022029923000158
  • Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, Harbarth S, Hindler JF, Kahlmeter G, Olsson-Liljequist B, Paterson DL, Rice LB, Stelling J, Struelens MJ, Vatopoulos A, Weber JT, Monnet DL. (2012). Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. CMI. 18(3), 268-281. https://doi.org/10.1111/j.1469-0691.2011.03570.x
  • Markey B, Leonard F, Archambault M, Cullinane A, Maguire D. (2013). Clinical Veterinary Microbiology. Second edition. Dublin, Ireland: Mosby Elsevier, p.121-134.
  • Monistero V, Barberio A, Cremonesi P, Castiglioni B, Morandi S, Lassen DCK, Astrup LB, Locatelli C, Piccinini R, Addis MF, Bronzo V, Moroni P. (2021). Genotyping and antimicrobial susceptibility profiling of Streptococcus uberis isolated from a clinical bovine mastitis outbreak in a dairy farm. Antibiotics (Basel). 10. 644. https://doi.org/10.3390/antibiotics10060644
  • Ocak F, Turkyilmaz MK, Turkyilmaz S. (2024). The relationship between biofilm formation and multiple antibiotic resistance of Streptococcus isolates from bovine milk with mastitis. Isr. J. Vet. Med. 79(1), 50-62.
  • Rato MG, Bexiga R, Florindo C, Cavaco LM, Vilela CL, Santos-Sanches I. (2013). Antimicrobial resistance and molecular epidemiology of streptococci from bovine mastitis. Vet. Microbiol. 161, 286-294. https://doi.org/10.1016/j.vetmic.2012.07.043
  • Saini V, McClure JT, Leger D, Dufour S, Sheldon AG, Scholl DT, Barkema HW. (2012). Antimicrobial use on Canadian dairy farms. JDS. 95(3), 1209-1221. https://doi.org/10.3168/jds.2011-4527
  • Schmitt-Van de Leemput E, Zadoks RN. (2007). Genotypic and phenotypic detection of macrolide and lincosamide resistance in Streptococcus uberis. J Dairy Sci. 90(11), 5089-5096. https://doi.org/10.3168/jds.2007-0101. PMID: 17954749
  • Shome BR, Bhuvana M, Mitra SD, Krithiga N, Shome R, Velu D, Banerjee A, Barbuddhe SB, Prabhudas K, Rahman H. (2012). Molecular characterization of Streptococcus agalactiae and Streptococcus uberis isolates from bovine milk. Trop. Anim. Health Prod. 44(8), 1981-1992. https://doi.org/10.1007/s11250-012-0167-4
  • Sorge US, Huber-Schlenstedt R, Schierling K. (2021). In vitro antimicrobial resistance profiles of Streptococcus uberis, Lactococcus spp., and Enterococcus spp. from quarter milk samples of cows between 2015 and 2019 in Southern Germany. JDS. 104(5), 5998-6012. https://doi.org/10.3168/jds.2020-19896
  • Thomas C, Linde J, El-Adawy H, Wedlich N, Hruschka K, Einax E, Donat K, Berens C, Tomaso H. (2024). Whole-genome sequencing of Streptococcus uberis isolated from cows with mastitis in Thuringia. J. Med.Microbiol. 73. 001887. https://doi.org/10.1099/jmm.0.001887
  • Tsuyuki Y, Maeda T, Torii K, Yoshida H, Ikeda N, Yoshida S, Ito M, Goto M, Takahashi T. (2024). Antimicrobial resistance patterns of Streptococcus uberis isolates from bovine milk in Chiba prefecture, Japan: association between multidrug resistance and clonal complex 996. J. Vet. Med. Sci. 86(5), 468-473. https://doi.org/10.1292/jvms.23-0526
  • Turutoğlu H, Mudul S, Pehlivanoğlu F. (2002). Antibiotic susceptibilityand β-lactamase prevalence for staphylococci isolated frombovine mastitic milk samples. Acta Vet (Beograd). 52, 337–344.
  • Zhang T, Niu G, Boonyayatra S, Pichpol D. (2021). Antimicrobial resistance profiles and genes in Streptococcus uberis associated with bovine mastitis in Thailand. Front. Vet. Sci. 8. 705338. https://doi.org/10.3389/fvets.2021.705338
  • Zhang WW, Chen YY, Shi Q, Hou BX, Yang QB. (2020). Identification of bacteria associated with periapical abscesses of primary teeth by sequence analysis of 16S rDNA clone libraries. Microb. Pathog. 141. 103954. https://doi.org/10.1016/j.micpath.2019.103954
  • Zouharova M, Nedbalcova K, Matiaskova K, Slama P, Matiasovic J. (2023). Antimicrobial susceptibility and resistance genes in Streptococcus uberis isolated from bovine mastitis in the Czech Republic. Antibiotics (Basel). 12. 1527. https://doi.org/10.3390/antibiotics12101527
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Veteriner Bakteriyoloji
Bölüm Araştırma Makalesi
Yazarlar

Seyyide Sarıçam İnce 0000-0002-2386-6857

Gönderilme Tarihi 2 Eylül 2025
Kabul Tarihi 10 Aralık 2025
Yayımlanma Tarihi 13 Ocak 2026
Yayımlandığı Sayı Yıl 2025 Cilt: 36 Sayı: 2

Kaynak Göster

APA Sarıçam İnce, S. (2026). Antimicrobial resistance patterns of Streptococcus uberis isolates recovered from bovine mastitis. Etlik Veteriner Mikrobiyoloji Dergisi, 36(2), 101-106. https://doi.org/10.35864/evmd.1776357


15430