Araştırma Makalesi
BibTex RIS Kaynak Göster

Hayvanlarda Klinik Vakalardan İzole Edilmiş Çoklu Antibiyotik Direnci Bulunan Bakterilerde Dezenfektan Dirençliliği

Yıl 2025, Cilt: 36 Sayı: 2, 135 - 148, 13.01.2026
https://doi.org/10.35864/evmd.1778647

Öz

Bu çalışmada, klinik vakalardan izole edilmiş çoklu antibiyotik direncine (MDR) sahip bakterilerde, qacA/B, qacC/D, qacE, qac∆E1, qacG, qacH, qacJ ve acrA gibi dezenfektan direnç genlerinin varlığının PCR yöntemiyle araştırılması amaçlandı. Bu amaçla 10 adet Staphylococcus aureus, 22 adet Escherichia coli, 6 adet Pseudomonas aeruginosa ve 3 adet Klebsiella pneumoniae ve birer adet Salmonella Kentaky, Salmonella Typhymirıum, Salmonella Infantum olmak üzere toplamda 44 adet izolat kullanıldı. Dezenfektan direnç genlerinin belirlenmesi için qacG (275 bp), qacJ (306 bp), qacE (350 bp), acrA (567 bp) genleri birinci grupta, qacC/D (249 bp), qacH (295 bp), qacΔE (335 bp) ve qacA/B (629 bp) genleri ise ikinci grupta olmak üzere multipleks PCR yapılarak araştırıldı. Çalışmada direnç genleri pozitif bulunan izolatlar için benzalkonyum klorür ve klorhekzidin glukonat etken maddelerini içeren ve ticari temin edilen preparatlar kullanılarak MİK değerleri belirlendi. Antibiyotik duyarlılıkları araştırılan 22 E. coli izolatının ikisi 5, üçü 6, dördü 7, biri 8, biri 9, sekizi 10, ikisi 11 ve biri 13 farklı antibiyotiğe dirençli bulundu. Toplam 6 adet P. aeruginosa izolatının biri 3, ikisi 4, ikisi 7 ve biri 8 antibiyotiğe, 3 adet K. pneumoniae izolatından ikisi 7, biri 12 antibiyotiğe dirençli olarak değerlendirildi. S. Kentucky 5, S. Typhimurium ve S. Infantis ise 7’şer antibiyotiğe direnç gösterdi. Test edilen S. aureus izolatlarından biri 5, biri 6, altısı 7 ve ikisi ise 12 antibiyotiğe dirençli bulundu. Test edilen 14 antibiyotik için %0-100 arasında dirençlilik oranları belirlendi. Yapılan multipleks PCR sonucunda qacG (275 bp), qacJ (306 bp), qacE (350 bp), acrA (567 bp), qacC/D (249 bp) ve qacH (295 bp) genleri çalışılan izolatların tamamında negatif olarak değerlendirildi. Sadece E. coli suşlarında qacΔE (335 bp) geni 7 izolatta pozitif olarak saptanırken qacA/B (629 bp) geni ise 13 izolatta pozitif olarak değerlendirildi. qacΔE (335 bp) geni pozitif bulunan 7 örneğin tamamı qacA/B (629 bp) geni ile birlikte görüldü. Geriye kalan 6 örnekte ise qacA/B (629 bp) geni tek olarak belirlendi. Direnç genleri pozitif bulunan suşlarda MİK değerleri benzalkonyum klorür için 32-128 (mg/L), klorhekzidin glukonat için 2-32 (mg/L) olarak belirlendi. Sonuç olarak, Tek Sağlık kapsamında büyük öneme sahip olan biyosit/dezenfektan dirençliliğinin ve beraberinde çapraz antibiyotik direncinin daha detaylı araştırılmasının, antibiyotik direnci için farkındalık oluşturulmaya çalışılırken dezenfektan direncinin göz ardı edilmemesinin önemli olacağı kanısına varıldı.

Etik Beyan

Bu araştırma konusunun etik kurul denetimine tabi olmadığı Harran Üniversitesi Hayvan Deneyleri Yerel Etik Kurulu’nun 09/11/2023 tarih ve 2023/007-02 nolu kararında belirtilmiştir.

Destekleyen Kurum

Bu çalışma Harran Üniversitesi BAP birimince 24022 nolu yüksek lisans tez projesi ile finanse edilmiştir.

Proje Numarası

Harran Üniversitesi BAP birimince 24022 nolu yüksek lisans tez projesi

Teşekkür

Çalışmamızı destekleyen Harran Üniversitesi BAP birimine teşekkür ederiz.

Kaynakça

  • Abuzaid A, Hamouda A, Amyes SG. (2012) Klebsiella pneumoniae susceptibility to biocides and its association with cepA, qacΔE and qacE efflux pump genes and antibiotic resistance. J Hosp Infect. 81(2), 87-91. https://doi.org/10.1016/j.jhin.2012.03.003
  • Akgeyik M. (2018) Tavuk ve insan orijinli Salmonella enterica subspecies enterica serovar Infantis suşlarında antibiyotik direnç genlerinin polimeraz zincir reaksiyonları yöntemi ile araştırılması. Yüksek lisans tezi. Ankara Üniversitesi Sağlık Bilimleri Enstitüsü, Ankara.
  • Akin M, Özcan B, Cantekin Z, Ergün Y, Bulanık D. (2020). Investigation of antiseptic resistance genes in Staphylococcus spp. isolates. NESciences, 5(3), 136-143. https://doi.org/10.28978/nesciences.832970
  • Alanlı R, Beşirbellioğlu BA, Çelik G. (2021) Toplum kaynaklı üriner enfeksiyon etkeni Escherichia coli suşlarında antibiyotik direnci. Hitit Med J. 3(2),1-5. https://doi.org/10.52827/hititmedj.888932
  • Altunay E, Akkan Kuzucu E, Öcal DN, Erdem G. (2019). Çeşitli klinik örneklerden izole edilen Pseudomonas aeruginosa izolatlarında antimikrobiyal direnci. Anadolu Güncel Tıp Derg. 1(3), 63-67. https://doi.org/10.38053/agtd.543714
  • Bes TM, Nagano DS, Marchi AP, Camilo G, Perdigão-Neto LV, Martins RR, Levin AS, Costa SF. (2021) Conjugative transfer of plasmid p_8N_qac(MN687830.1) carrying qacA gene from Staphylococcus aureus to Escherichia coli C600: potential mechanism for spreading chlorhexidine resistance. Rev Inst Med Trop Sao Paulo. 6;63:e82. https://doi.org/10.1590/S1678-9946202163082
  • Biçer E. (2022). Klinik Bakteri İzolatlarında Dezenfektan Direnç Genlerinin Araştırılması. Yüksek Lisans Tezi. Hatay Mustafa Kemal Üniversitesi Fen Bilimleri Enstitüsü, Hatay.
  • Bozkır MA, Uysal A, Arslan E. (2020) Üropatojenik Escherichia coli suşlarının antibiyotik direnç profilleri ve genişlemiş spektrumlu beta laktamaz (GSBL) özelliklerinin değerlendirilmesi. SÜ Fen Fakültesi Fen Dergisi, 46(2), 41-65.
  • Buffet-Bataillon S, Tattevin P, Bonnaure-Mallet M, Jolivet-Gougeon A. (2012). Emergence of resistance to antibacterial agents: the role of quaternary ammonium compounds--a critical review. Int J Antimicrob Agents, 39(5):381–389. https://doi.org/10.1016/j.ijantimicag.2012.01.011
  • Chapman, J. S. (2003). Disinfectant resistance mechanisms, cross-resistance, and co-resistance. International Biodeterioration & Biodegradation, 51(4), 271–276. https://doi.org/10.1016/S0964-8305(03)00044-1
  • Chen S, Fu J, Zhao K, Yang S, Li C, Penttinen P, Ao X, Liu A, Hu K, Li J, Yang Y, Liu S, Bai, L, Zou L. (2023) Class 1 integron carrying qacEΔ1 gene confers resistance to disinfectant and antibiotics in Salmonella. Int J Food Microbiol, 404, 110319. https://doi.org/10.1016/j.ijfoodmicro.2023.110319
  • Chen Y, Liao K, Huang Y, Guo P, Huang H, Wu Z. Liu M. (2020) Determining the susceptibility of carbapenem resistant Klebsiella pneumoniae and Escherichia coli strains against common disinfectants at a tertiary hospital in China. BMC Infect Dis, 20(1), 88. https://doi.org/10.1186/s12879- 020-4813-6
  • Chuanchuen R, Khemtong S, Padungtod P. (2007) Occurrence of qacE/qacEDelta1 genes and their correlation with class 1 integrons in salmonella enterica isolates from poultry and swine. Southeast Asian J Trop Med Public Health. 2007 Sep;38(5):855-62. PMID: 18041302.
  • CLSI National Committee for Clinical Laboratory Standarts (2024). Performance Standards for Antimicrobial Susceptibility Testing Guideline M100, 34th ed.; Clinical and Laboratory Standards Institute: Malvern, PA, USA.
  • EFSA and ECDC (2024). The European Union summary report on antimicrobialresistance in zoonotic and indicator bacteria from humans, animals and food in 2021–2022. EFSA J. 22:e8583. https://doi.org/10.2903/j.efsa.2024.8583
  • El-Tawab ASA, Soad AN, Fatma IE, Ola AI. (2017) Prevalence of eaeA and qacEΔ1 genes in Escherichia coli isolated from omphalitis in baby chicks. Benha Vet. Med. J., 32(1): 184-192.
  • Enany ME, Eid S, Mohamed BA, Al-Atfeehy NM. (2023) Detection of Antibiotic and Disinfectant Resistant Genes in E. coli Isolated from Broilers Chickens. J Adv Vet Res. 13(10), 1977-1981.
  • Eryılmaz M, Akın A. (2008) Dezenfeksiyon ve antisepsi. Ankara Ecz. Fak. Derg. 37(4), 311-331. https://doi.org/10.1501/Eczfak_0000000510
  • Fanelli G, Pasqua M, Prosseda G, Grossi M, Colonna B. (2023) AcrAB efflux pump impacts on the survival of adherent-invasive Escherichia coli strain LF82 inside macrophages. Sci Rep. 13(1), 2692. https://doi.org/10.1038/s41598-023-29817-0
  • GBD 2021 Antimicrobial Resistance Collaborators. (2024). Global burden of bacterial antimicrobial resistance 1990-2021: a systematic analysis with forecasts to 2050. Lancet, 404(10459):1199-1226. https://doi.org/10.1016/S0140-6736(24)01867-1
  • Guo W, Shan K, Xu B, Li J. (2015) Determining the resistance of carbapenem- resistant Klebsiella pneumoniae to common disinfectants and elucidating the underlying resistance mechanisms. Pathog Glob Health. 109(4), 184–192. https://doi.org/10.1179/2047773215Y.0000000022
  • Gülbudak H, Emiroğlu E, Görgülü Y, Tezcan Ülger S, Delialioğlu N, Aslan G. (2023a) Karbapenem dirençli Pseudomonas aeruginosa izolatlarında qacE, qacE∆1 ve cepA biyosit direnç genlerinin araştırılması. Turk Hij Den Biyol Derg. 80(3): 277 – 284. https://doi.org/10.5505/TurkHijyen.2023.44538
  • Gülbudak H, Görgülü G, Gültekin EO, Tezcan Ülger S, Delialioğlu N. Aslan G. (2023b) Acinetobacter baumannii izolatlarında biyosit direnç genlerinin araştırılması, Mersin Univ Saglık Bilim Derg. 16(2), 191-199. https://doi.org/10.26559/mersinsbd.1196943
  • Habibollah-Pourzereshki N, Peymani A, Keshavarz-Saleh F. (2020) The emergence of quaternary ammonium compounds resistance in Escherichia coli isolated from Hospitals of Qazvin, Iran. Infect Disord Drug Targets. 20(4), 455–460. https://doi.org/10.2174/1871526519666191009145825
  • Ibrahim WA, Marouf SA, Erfan AM, Nasef SA, Jakee JKE. (2019) The occurrence of disinfectant and antibiotic-resistant genes in Escherichia coli isolated from chickens in Egypt. Vet World, 12(1), 141–145. https://doi.org/10.14202/vetworld.2019.141-145
  • Kahraman EP, Karakeçe E, Erdoğan F, Uluyurt H, Köroğlu M, Çiftci İH. (2017) Klebsiella pneumoniae izolatlarının antibiyotiklere direnç durumlarının değerlendirilmesi. Ortadoğu Tıp Dergisi, 9(1), 12-18.
  • Kahraman G, Duran PK, Kayabaşı E, Öksüz Ş, Çalışkan E. (2024). Staphylococcus aureus suşlarının antibiyotik direnç oranlarını COVID-19 pandemisi etkiledi mi? Turk Mikrobiyol Cemiy Derg. 54(2):118-125. https://doi.org/10.54453/TMCD.2024.26121
  • Kazama H, Hamashima H, Sasatsu M, Arai T. (1998) Distribution of the antiseptic-resistance genes qacE and qacEΔ1 in Gram-negative bacteria. FEMS Microbiol Lett. 159(2), 173–178. https://doi.org/10.1111/j.1574- 6968.1998.tb12857.x
  • Kuznetsova MV, Nesterova LY, Mihailovskaya VS, Selivanova PA, Kochergina DA, Karipova MO, Valtsifer IV, Averkina AS, Starčič Erjavec M. (2025) Nosocomial Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Staphylococcus aureus: Sensitivity to Chlorhexidine-Based Biocides and Prevalence of Efflux Pump Genes. Int J Mol Sci. 26(1), 355. https://doi.org/10.3390/ijms26010355
  • Kücken, D., Feucht, H., & Kaulfers, P. (2000). Association of qacE and qacEDelta1 with multiple resistance to antibiotics and antiseptics in clinical isolates of Gram- negative bacteria. FEMS Microbiol Lett.183(1), 95–98. https://doi.org/10.1111/j.1574-6968.2000.tb08939.x
  • Leelaporn A, Paulsen IT, Tennent JM, Littlejohn TG, Skurray RA. (1994) Multidrug resistance to antiseptics and disinfectants in coagulase-negative staphylococci. J Med Microbiol. 40(3), 214–220. https://doi.org/10.1099/00222615-40-3-214
  • Liu WJ, Fu L, Huang M, Zhang JP, Wu Y, Zhou YS, Zeng J, Wang GX. (2017) Frequency of antiseptic resistance genes and reduced susceptibility to biocides in carbapenem-resistant Acinetobacter baumannii. J Med Microbiol. 66(1), 13–17. https://doi.org/10.1099/jmm.0.000403
  • Longtin J, Seah C, Siebert K, McGeer A, Simor A, Longtin Y, Low DE, Melano RG. (2011) Distribution of antiseptic resistance genes qacA, qacB, and smr in methicillin-resistant Staphylococcus aureus isolated in Toronto, Canada, from 2005 to 2009. Antimicrob Agents Chemother. (6), 2999–3001. https://doi.org/10.1128/AAC.01707-10 Mahzounieh M, Khoshnood S, Ebrahimi A, Habibian S, Yaghoubian M. (2014) Detection of antiseptic-resistance genes in Pseudomonas and Acinetobacter spp. ısolated from burn patients. Jundishapur J Nat Pharm Prod. 9(2), e15402. https://doi.org/10.17795/jjnpp-15402
  • Maillard JY. (2022). Impact of benzalkonium chloride, benzethonium chloride and chloroxylenol on bacterial antimicrobial resistance. J Appl Microbiol. 133(6):3322-3346. https://doi.org/10.1111/jam.15739
  • Mayer S, Boos M, Beyer A, Fluit AC, Schmitz FJ. (2001) Distribution of the antiseptic resistance genes qacA, qacB and qacC in 497 methicillin-resistant and -susceptible European isolates of Staphylococcus aureus. J Antimicrob Chemother. 47(6), 896–897. https://doi.org/10.1093/jac/47.6.896
  • Moen B, Rudi K, Bore E, Langsrud, S. (2012) Subminimal Inhibitory Concentrations of the Disinfectant Benzalkonium Chloride Select for a Tolerant Subpopulation of Escherichia coli with Inheritable Characteristics. Int. J. Mol. Sci. 13:4101-4123; doi:10.3390/ijms13044101
  • Morrissey I, Magnet S, Hawser S, Shapiro S, Knechtle P. (2019) In vitro activity of cefepime-enmetazobactam against Gram-negative isolates collected from U.S. and European Hospitals during 2014-2015. Antimicrob Agents Chemother. 63(7), e00514-19. https://doi.org/10.1128/AAC.00514-19
  • Morrissey I, Oggioni MR, Knight D, Curiao T, Coque T, Kalkanci A, Martinez JL. (2014) Evaluation of Epidemiological Cut-Off Values Indicates that Biocide Resistant Subpopulations Are Uncommon in Natural Isolates of Clinically-Relevant Microorganisms. PLoS ONE 9(1): e86669. https://doi.org/10.1371/journal.pone.0086669
  • Nakipoğlu Y, İğnak S, Gürler N, Gürler B. (2012) Klinik Staphylococcus aureus suşlarında antiseptik direnç genlerinin (qacA/B ve smr) ve antibiyotik maddelere direnç prevalansının araştırılması. Mikrobiyol Bul. 46(2), 180-189.
  • Prag G, Falk-Brynhildsen K, Jacobsson S, Hellmark B, Unemo M, Söderquist B. (2014) Decreased susceptibility to chlorhexidine and prevalence of disinfectant resistance genes among clinical isolates of Staphylococcus epidermidis. APMIS. 122(10), 961–967. https://doi.org/10.1111/apm.12239
  • Radmehr M, Moghbeli M, Ghasemzadeh-Moghaddam H, Azimian A, van Belkum A. (2023) High prevalence of antiseptic resistance encoding genes and reduced phenotypic antiseptic susceptibility among antibiotic-resistant Pseudomonas aeruginosa isolates. Jundishapur J Nat Pharm Prod. 16(3):e135911. https://doi.org/10.5812/jjm-135911
  • Roca I, Akova M, Baquero F, Carlet J, Cavaleri M, Coenen S, Cohen J, Findlay D, Gyssens I, Heuer OE, Kahlmeter G, Kruse H, Laxminarayan R, Liébana E, López-Cerero L, MacGowan A, Martins M, Rodríguez-Baño J, Rolain JM, Segovia C, Sigauque B, Tacconelli E, Wellington E, Vila J. (2015) The global threat of antimicrobial resistance: science for intervention. New Microbes New Infect, 6, 22–29. https://doi.org/10.1016/j.nmni.2015.02.007
  • Rozman U, Duh D, Cimerman M, Turk SŠ. (2022). Hygiene of Medical Devices and Minimum Inhibitory Concentrations for Alcohol-Based and QAC Disinfectants among Isolates from Physical Therapy Departments. Int J Environ Res Public Health. 9;19(22):14690. doi: 10.3390/ijerph192214690.
  • Rozman U, Pušnik M, Kmetec S, Duh D, Šostar Turk S. (2021). Reduced Susceptibility and Increased Resistance of Bacteria against Disinfectants: A Systematic Review. Microorganisms, 9(12), 2550. https://doi.org/10.3390/microorganisms9122550
  • Shafaati M, Boroumand M, Nowroozi J, Amiri P, Kazemian H. (2016) Correlation Between qacE and qacE∆1 Efflux Pump Genes, Antibiotic and Disinfectant Resistant Among Clinical Isolates of E. coli. Recent Pat Anticancer Drug Discov. 11(2), 189–195. https://doi.org/10.2174/1574891X11666160815094718
  • Shamsudin MN, Alreshidi MA, Hamat RA, Alshrari AS, Atshan SS, Neela V. (2012) High prevalence of qacA/Bcarriage among clinical isolates of meticillin- resistant Staphylococcus aureus in Malaysia. J Hosp Infect. 81(3), 206-208. https://doi.org/10.1016/j.jhin.2012.04.015
  • Smith K, Gemmell CG, Hunter IS. (2008) The association between biocide tolerance and the presence or absence of qac genes among hospital-acquired and community-acquired MRSA isolates. J Antimicrob Chemother. 61(1), 78-84. https://doi.org/10.1093/jac/dkm395
  • Spellberg B, Gilbert DN. (2014) The future of antibiotics and resistance: a tribute to a career of leadership by John Bartlett. Clin Infect Dis. 59(29), 71–75. https://doi.org/10.1093/cid/ciu392
  • Stokes HW, Hall RM. (1989) A novel family of potentially mobile DNA elements encoding site-specific gene-integration functions: Integrons. Mol. Microbiol. 3(12),1669-1683. https://doi.org/10.1111/j.1365-2958.1989.tb00153.x
  • Şenel Y, Başoğlu F. (2002) Gıda işletmelerinde kullanılan bazı dezenfektanların mikroorganizmalar üzerine etkisi. Bursa Uludag Üniv. Ziraat Fak. Derg, (16),105-115.
  • Vijayakumar R, Sandle T, Al-Aboody MS, AlFonaisan MK, Alturaiki W, Mickymaray S, Premanathan M, Alsagaby SA. (2018) Distribution of biocide resistant genes and biocides susceptibility in multidrug-resistant Klebsiella pneumoniae, Pseudomonas aeruginosa and Acinetobacter baumannii - A first report from the Kingdom of Saudi Arabia. J Infect Public Health. 11(6), 812–816. https://doi.org/10.1016/j.jiph.2018.05.011
  • Wassenaar TM, Ussery D, Nielsen LN, Ingmer H. (2015) Review and phylogenetic analysis of qac genes that reduce susceptibility to quaternary ammonium compounds in Staphylococcus species. Eur J Microbiol Immunol (Bp). 5(1), 44-61. https://doi.org/10.1556/EUJMI-D-14-00038
  • Wieland N, Boss J, Lettmann S, Fritz B, Schwaiger K, Bauer J, Hölzel CS. (2017) Susceptibility to disinfectants in antimicrobial-resistant and -susceptible isolates of Escherichia coli, Enterococcus faecalis and Enterococcus faecium from poultry-ESBL/AmpC-phenotype of E. coli is not associated with resistance to a quaternary ammonium compound, DDAC. J Appl applied Microbiol. 122(6), 1508–1517. https://doi.org/10.1111/jam.13440
  • Zhang Y, Zhao Y, Xu C, Zhang X, Li J, Dong G, Cao J, Zhou T. (2019) Chlorhexidine exposure of clinical Klebsiella pneumoniae strains leads to acquired resistance to this disinfectant and to colistin. Int J Antimicrob Agents, 53(6), 864–867. https://doi.org/10.1016/j.ijantimicag.2019.02.012
  • Zmantar T, Kouidhi B, Miladi H, Bakhrouf A. (2011) Detection of macrolide and disinfectant resistance genes in clinical Staphylococcus aureus and coagulase-negative staphylococci. BMC Res Notes. 4, 453. https://doi.org/10.1186/1756-0500-4-453
  • Zou L, Meng J, McDermott PF, Wang F, Yang Q, Cao G, Hoffmann M, Zhao S. (2014) Presence of disinfectant resistance genes in Escherichia coli isolated from retail meats in the USA. J Antimicrob Chemother. 69(10), 2644–2649. https://doi.org/10.1093/jac/dku197

Disinfectant Resistance in Multiple Antibiotic Resistant Bacteria Isolated from Clinical Cases in Animals

Yıl 2025, Cilt: 36 Sayı: 2, 135 - 148, 13.01.2026
https://doi.org/10.35864/evmd.1778647

Öz

The aim of this study was to investigate the presence of disinfectant resistance genes, including qacA/B, qacC/D, qacE, qacΔE1, qacG, qacH, qacJ, and acrA, in bacteria exhibiting multiple drug resistance (MDR) isolated from clinical cases using the PCR method. For this purpose, a total of 44 bacterial isolates were examined, comprising 10 Staphylococcus aureus, 22 Escherichia coli, 6 Pseudomonas aeruginosa, 3 Klebsiella pneumoniae, and one isolate each of Salmonella Kentucky, Salmonella Typhimurium, and Salmonella Infantis. For the detection of disinfectant resistance genes, two multiplex PCR assays were conducted. The first group targeted qacG (275 bp), qacJ (306 bp), qacE (350 bp), and acrA (567 bp), while the second group focused on qacC/D (249 bp), qacH (295 bp), qacΔE (335 bp), and qacA/B (629 bp). Minimum inhibitory concentration (MIC) values were determined for isolates harboring resistance genes using commercially available preparations containing benzalkonium chloride and chlorhexidine gluconate. Among the 22 E. coli isolates, two exhibited resistance to 5 antibiotics, three to 6, four to 7, one to 8, one to 9, eight to 10, two to 11, and one to 13 different antibiotics. Of the 6 P. aeruginosa isolates, one was resistant to 3 antibiotics, two to 4, two to 7, and one to 8. Among the 3 K. pneumoniae isolates, two were resistant to 7 antibiotics and one to 12. S. Kentucky exhibited resistance to 5 antibiotics, while S. Typhimurium and S. Infantis were each resistant to 7 antibiotics. Among the S. aureus isolates, one exhibited resistance to 5 antibiotics, one to 6, six to 7, and two to 12 antibiotics. Overall, resistance rates between 0-100% were determined for the 14 antibiotics tested. Multiplex PCR results showed that qacG (275 bp), qacJ (306 bp), qacE (350 bp), acrA (567 bp), qacC/D (249 bp), and qacH (295 bp) genes were negative in all isolates. However, in E. coli strains, the qacΔE (335 bp) gene was detected in 7 isolates, while the qacA/B (629 bp) gene was present in 13 isolates. All 7 isolates positive for qacΔE (335 bp) also harbored the qacA/B (629 bp) gene, whereas the remaining 6 isolates contained only the qacA/B (629 bp) gene. MIC values for isolates harboring resistance genes ranged from 32 to 128 mg/L for benzalkonium chloride and from 2 to 32 mg/L for chlorhexidine gluconate. In conclusion, investigating biocide/disinfectant resistance and its potential association with cross-antibiotic resistance is crucial within the One Health framework. Therefore, while raising awareness about antibiotic resistance, the importance of disinfectant resistance should not be overlooked.

Proje Numarası

Harran Üniversitesi BAP birimince 24022 nolu yüksek lisans tez projesi

Kaynakça

  • Abuzaid A, Hamouda A, Amyes SG. (2012) Klebsiella pneumoniae susceptibility to biocides and its association with cepA, qacΔE and qacE efflux pump genes and antibiotic resistance. J Hosp Infect. 81(2), 87-91. https://doi.org/10.1016/j.jhin.2012.03.003
  • Akgeyik M. (2018) Tavuk ve insan orijinli Salmonella enterica subspecies enterica serovar Infantis suşlarında antibiyotik direnç genlerinin polimeraz zincir reaksiyonları yöntemi ile araştırılması. Yüksek lisans tezi. Ankara Üniversitesi Sağlık Bilimleri Enstitüsü, Ankara.
  • Akin M, Özcan B, Cantekin Z, Ergün Y, Bulanık D. (2020). Investigation of antiseptic resistance genes in Staphylococcus spp. isolates. NESciences, 5(3), 136-143. https://doi.org/10.28978/nesciences.832970
  • Alanlı R, Beşirbellioğlu BA, Çelik G. (2021) Toplum kaynaklı üriner enfeksiyon etkeni Escherichia coli suşlarında antibiyotik direnci. Hitit Med J. 3(2),1-5. https://doi.org/10.52827/hititmedj.888932
  • Altunay E, Akkan Kuzucu E, Öcal DN, Erdem G. (2019). Çeşitli klinik örneklerden izole edilen Pseudomonas aeruginosa izolatlarında antimikrobiyal direnci. Anadolu Güncel Tıp Derg. 1(3), 63-67. https://doi.org/10.38053/agtd.543714
  • Bes TM, Nagano DS, Marchi AP, Camilo G, Perdigão-Neto LV, Martins RR, Levin AS, Costa SF. (2021) Conjugative transfer of plasmid p_8N_qac(MN687830.1) carrying qacA gene from Staphylococcus aureus to Escherichia coli C600: potential mechanism for spreading chlorhexidine resistance. Rev Inst Med Trop Sao Paulo. 6;63:e82. https://doi.org/10.1590/S1678-9946202163082
  • Biçer E. (2022). Klinik Bakteri İzolatlarında Dezenfektan Direnç Genlerinin Araştırılması. Yüksek Lisans Tezi. Hatay Mustafa Kemal Üniversitesi Fen Bilimleri Enstitüsü, Hatay.
  • Bozkır MA, Uysal A, Arslan E. (2020) Üropatojenik Escherichia coli suşlarının antibiyotik direnç profilleri ve genişlemiş spektrumlu beta laktamaz (GSBL) özelliklerinin değerlendirilmesi. SÜ Fen Fakültesi Fen Dergisi, 46(2), 41-65.
  • Buffet-Bataillon S, Tattevin P, Bonnaure-Mallet M, Jolivet-Gougeon A. (2012). Emergence of resistance to antibacterial agents: the role of quaternary ammonium compounds--a critical review. Int J Antimicrob Agents, 39(5):381–389. https://doi.org/10.1016/j.ijantimicag.2012.01.011
  • Chapman, J. S. (2003). Disinfectant resistance mechanisms, cross-resistance, and co-resistance. International Biodeterioration & Biodegradation, 51(4), 271–276. https://doi.org/10.1016/S0964-8305(03)00044-1
  • Chen S, Fu J, Zhao K, Yang S, Li C, Penttinen P, Ao X, Liu A, Hu K, Li J, Yang Y, Liu S, Bai, L, Zou L. (2023) Class 1 integron carrying qacEΔ1 gene confers resistance to disinfectant and antibiotics in Salmonella. Int J Food Microbiol, 404, 110319. https://doi.org/10.1016/j.ijfoodmicro.2023.110319
  • Chen Y, Liao K, Huang Y, Guo P, Huang H, Wu Z. Liu M. (2020) Determining the susceptibility of carbapenem resistant Klebsiella pneumoniae and Escherichia coli strains against common disinfectants at a tertiary hospital in China. BMC Infect Dis, 20(1), 88. https://doi.org/10.1186/s12879- 020-4813-6
  • Chuanchuen R, Khemtong S, Padungtod P. (2007) Occurrence of qacE/qacEDelta1 genes and their correlation with class 1 integrons in salmonella enterica isolates from poultry and swine. Southeast Asian J Trop Med Public Health. 2007 Sep;38(5):855-62. PMID: 18041302.
  • CLSI National Committee for Clinical Laboratory Standarts (2024). Performance Standards for Antimicrobial Susceptibility Testing Guideline M100, 34th ed.; Clinical and Laboratory Standards Institute: Malvern, PA, USA.
  • EFSA and ECDC (2024). The European Union summary report on antimicrobialresistance in zoonotic and indicator bacteria from humans, animals and food in 2021–2022. EFSA J. 22:e8583. https://doi.org/10.2903/j.efsa.2024.8583
  • El-Tawab ASA, Soad AN, Fatma IE, Ola AI. (2017) Prevalence of eaeA and qacEΔ1 genes in Escherichia coli isolated from omphalitis in baby chicks. Benha Vet. Med. J., 32(1): 184-192.
  • Enany ME, Eid S, Mohamed BA, Al-Atfeehy NM. (2023) Detection of Antibiotic and Disinfectant Resistant Genes in E. coli Isolated from Broilers Chickens. J Adv Vet Res. 13(10), 1977-1981.
  • Eryılmaz M, Akın A. (2008) Dezenfeksiyon ve antisepsi. Ankara Ecz. Fak. Derg. 37(4), 311-331. https://doi.org/10.1501/Eczfak_0000000510
  • Fanelli G, Pasqua M, Prosseda G, Grossi M, Colonna B. (2023) AcrAB efflux pump impacts on the survival of adherent-invasive Escherichia coli strain LF82 inside macrophages. Sci Rep. 13(1), 2692. https://doi.org/10.1038/s41598-023-29817-0
  • GBD 2021 Antimicrobial Resistance Collaborators. (2024). Global burden of bacterial antimicrobial resistance 1990-2021: a systematic analysis with forecasts to 2050. Lancet, 404(10459):1199-1226. https://doi.org/10.1016/S0140-6736(24)01867-1
  • Guo W, Shan K, Xu B, Li J. (2015) Determining the resistance of carbapenem- resistant Klebsiella pneumoniae to common disinfectants and elucidating the underlying resistance mechanisms. Pathog Glob Health. 109(4), 184–192. https://doi.org/10.1179/2047773215Y.0000000022
  • Gülbudak H, Emiroğlu E, Görgülü Y, Tezcan Ülger S, Delialioğlu N, Aslan G. (2023a) Karbapenem dirençli Pseudomonas aeruginosa izolatlarında qacE, qacE∆1 ve cepA biyosit direnç genlerinin araştırılması. Turk Hij Den Biyol Derg. 80(3): 277 – 284. https://doi.org/10.5505/TurkHijyen.2023.44538
  • Gülbudak H, Görgülü G, Gültekin EO, Tezcan Ülger S, Delialioğlu N. Aslan G. (2023b) Acinetobacter baumannii izolatlarında biyosit direnç genlerinin araştırılması, Mersin Univ Saglık Bilim Derg. 16(2), 191-199. https://doi.org/10.26559/mersinsbd.1196943
  • Habibollah-Pourzereshki N, Peymani A, Keshavarz-Saleh F. (2020) The emergence of quaternary ammonium compounds resistance in Escherichia coli isolated from Hospitals of Qazvin, Iran. Infect Disord Drug Targets. 20(4), 455–460. https://doi.org/10.2174/1871526519666191009145825
  • Ibrahim WA, Marouf SA, Erfan AM, Nasef SA, Jakee JKE. (2019) The occurrence of disinfectant and antibiotic-resistant genes in Escherichia coli isolated from chickens in Egypt. Vet World, 12(1), 141–145. https://doi.org/10.14202/vetworld.2019.141-145
  • Kahraman EP, Karakeçe E, Erdoğan F, Uluyurt H, Köroğlu M, Çiftci İH. (2017) Klebsiella pneumoniae izolatlarının antibiyotiklere direnç durumlarının değerlendirilmesi. Ortadoğu Tıp Dergisi, 9(1), 12-18.
  • Kahraman G, Duran PK, Kayabaşı E, Öksüz Ş, Çalışkan E. (2024). Staphylococcus aureus suşlarının antibiyotik direnç oranlarını COVID-19 pandemisi etkiledi mi? Turk Mikrobiyol Cemiy Derg. 54(2):118-125. https://doi.org/10.54453/TMCD.2024.26121
  • Kazama H, Hamashima H, Sasatsu M, Arai T. (1998) Distribution of the antiseptic-resistance genes qacE and qacEΔ1 in Gram-negative bacteria. FEMS Microbiol Lett. 159(2), 173–178. https://doi.org/10.1111/j.1574- 6968.1998.tb12857.x
  • Kuznetsova MV, Nesterova LY, Mihailovskaya VS, Selivanova PA, Kochergina DA, Karipova MO, Valtsifer IV, Averkina AS, Starčič Erjavec M. (2025) Nosocomial Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Staphylococcus aureus: Sensitivity to Chlorhexidine-Based Biocides and Prevalence of Efflux Pump Genes. Int J Mol Sci. 26(1), 355. https://doi.org/10.3390/ijms26010355
  • Kücken, D., Feucht, H., & Kaulfers, P. (2000). Association of qacE and qacEDelta1 with multiple resistance to antibiotics and antiseptics in clinical isolates of Gram- negative bacteria. FEMS Microbiol Lett.183(1), 95–98. https://doi.org/10.1111/j.1574-6968.2000.tb08939.x
  • Leelaporn A, Paulsen IT, Tennent JM, Littlejohn TG, Skurray RA. (1994) Multidrug resistance to antiseptics and disinfectants in coagulase-negative staphylococci. J Med Microbiol. 40(3), 214–220. https://doi.org/10.1099/00222615-40-3-214
  • Liu WJ, Fu L, Huang M, Zhang JP, Wu Y, Zhou YS, Zeng J, Wang GX. (2017) Frequency of antiseptic resistance genes and reduced susceptibility to biocides in carbapenem-resistant Acinetobacter baumannii. J Med Microbiol. 66(1), 13–17. https://doi.org/10.1099/jmm.0.000403
  • Longtin J, Seah C, Siebert K, McGeer A, Simor A, Longtin Y, Low DE, Melano RG. (2011) Distribution of antiseptic resistance genes qacA, qacB, and smr in methicillin-resistant Staphylococcus aureus isolated in Toronto, Canada, from 2005 to 2009. Antimicrob Agents Chemother. (6), 2999–3001. https://doi.org/10.1128/AAC.01707-10 Mahzounieh M, Khoshnood S, Ebrahimi A, Habibian S, Yaghoubian M. (2014) Detection of antiseptic-resistance genes in Pseudomonas and Acinetobacter spp. ısolated from burn patients. Jundishapur J Nat Pharm Prod. 9(2), e15402. https://doi.org/10.17795/jjnpp-15402
  • Maillard JY. (2022). Impact of benzalkonium chloride, benzethonium chloride and chloroxylenol on bacterial antimicrobial resistance. J Appl Microbiol. 133(6):3322-3346. https://doi.org/10.1111/jam.15739
  • Mayer S, Boos M, Beyer A, Fluit AC, Schmitz FJ. (2001) Distribution of the antiseptic resistance genes qacA, qacB and qacC in 497 methicillin-resistant and -susceptible European isolates of Staphylococcus aureus. J Antimicrob Chemother. 47(6), 896–897. https://doi.org/10.1093/jac/47.6.896
  • Moen B, Rudi K, Bore E, Langsrud, S. (2012) Subminimal Inhibitory Concentrations of the Disinfectant Benzalkonium Chloride Select for a Tolerant Subpopulation of Escherichia coli with Inheritable Characteristics. Int. J. Mol. Sci. 13:4101-4123; doi:10.3390/ijms13044101
  • Morrissey I, Magnet S, Hawser S, Shapiro S, Knechtle P. (2019) In vitro activity of cefepime-enmetazobactam against Gram-negative isolates collected from U.S. and European Hospitals during 2014-2015. Antimicrob Agents Chemother. 63(7), e00514-19. https://doi.org/10.1128/AAC.00514-19
  • Morrissey I, Oggioni MR, Knight D, Curiao T, Coque T, Kalkanci A, Martinez JL. (2014) Evaluation of Epidemiological Cut-Off Values Indicates that Biocide Resistant Subpopulations Are Uncommon in Natural Isolates of Clinically-Relevant Microorganisms. PLoS ONE 9(1): e86669. https://doi.org/10.1371/journal.pone.0086669
  • Nakipoğlu Y, İğnak S, Gürler N, Gürler B. (2012) Klinik Staphylococcus aureus suşlarında antiseptik direnç genlerinin (qacA/B ve smr) ve antibiyotik maddelere direnç prevalansının araştırılması. Mikrobiyol Bul. 46(2), 180-189.
  • Prag G, Falk-Brynhildsen K, Jacobsson S, Hellmark B, Unemo M, Söderquist B. (2014) Decreased susceptibility to chlorhexidine and prevalence of disinfectant resistance genes among clinical isolates of Staphylococcus epidermidis. APMIS. 122(10), 961–967. https://doi.org/10.1111/apm.12239
  • Radmehr M, Moghbeli M, Ghasemzadeh-Moghaddam H, Azimian A, van Belkum A. (2023) High prevalence of antiseptic resistance encoding genes and reduced phenotypic antiseptic susceptibility among antibiotic-resistant Pseudomonas aeruginosa isolates. Jundishapur J Nat Pharm Prod. 16(3):e135911. https://doi.org/10.5812/jjm-135911
  • Roca I, Akova M, Baquero F, Carlet J, Cavaleri M, Coenen S, Cohen J, Findlay D, Gyssens I, Heuer OE, Kahlmeter G, Kruse H, Laxminarayan R, Liébana E, López-Cerero L, MacGowan A, Martins M, Rodríguez-Baño J, Rolain JM, Segovia C, Sigauque B, Tacconelli E, Wellington E, Vila J. (2015) The global threat of antimicrobial resistance: science for intervention. New Microbes New Infect, 6, 22–29. https://doi.org/10.1016/j.nmni.2015.02.007
  • Rozman U, Duh D, Cimerman M, Turk SŠ. (2022). Hygiene of Medical Devices and Minimum Inhibitory Concentrations for Alcohol-Based and QAC Disinfectants among Isolates from Physical Therapy Departments. Int J Environ Res Public Health. 9;19(22):14690. doi: 10.3390/ijerph192214690.
  • Rozman U, Pušnik M, Kmetec S, Duh D, Šostar Turk S. (2021). Reduced Susceptibility and Increased Resistance of Bacteria against Disinfectants: A Systematic Review. Microorganisms, 9(12), 2550. https://doi.org/10.3390/microorganisms9122550
  • Shafaati M, Boroumand M, Nowroozi J, Amiri P, Kazemian H. (2016) Correlation Between qacE and qacE∆1 Efflux Pump Genes, Antibiotic and Disinfectant Resistant Among Clinical Isolates of E. coli. Recent Pat Anticancer Drug Discov. 11(2), 189–195. https://doi.org/10.2174/1574891X11666160815094718
  • Shamsudin MN, Alreshidi MA, Hamat RA, Alshrari AS, Atshan SS, Neela V. (2012) High prevalence of qacA/Bcarriage among clinical isolates of meticillin- resistant Staphylococcus aureus in Malaysia. J Hosp Infect. 81(3), 206-208. https://doi.org/10.1016/j.jhin.2012.04.015
  • Smith K, Gemmell CG, Hunter IS. (2008) The association between biocide tolerance and the presence or absence of qac genes among hospital-acquired and community-acquired MRSA isolates. J Antimicrob Chemother. 61(1), 78-84. https://doi.org/10.1093/jac/dkm395
  • Spellberg B, Gilbert DN. (2014) The future of antibiotics and resistance: a tribute to a career of leadership by John Bartlett. Clin Infect Dis. 59(29), 71–75. https://doi.org/10.1093/cid/ciu392
  • Stokes HW, Hall RM. (1989) A novel family of potentially mobile DNA elements encoding site-specific gene-integration functions: Integrons. Mol. Microbiol. 3(12),1669-1683. https://doi.org/10.1111/j.1365-2958.1989.tb00153.x
  • Şenel Y, Başoğlu F. (2002) Gıda işletmelerinde kullanılan bazı dezenfektanların mikroorganizmalar üzerine etkisi. Bursa Uludag Üniv. Ziraat Fak. Derg, (16),105-115.
  • Vijayakumar R, Sandle T, Al-Aboody MS, AlFonaisan MK, Alturaiki W, Mickymaray S, Premanathan M, Alsagaby SA. (2018) Distribution of biocide resistant genes and biocides susceptibility in multidrug-resistant Klebsiella pneumoniae, Pseudomonas aeruginosa and Acinetobacter baumannii - A first report from the Kingdom of Saudi Arabia. J Infect Public Health. 11(6), 812–816. https://doi.org/10.1016/j.jiph.2018.05.011
  • Wassenaar TM, Ussery D, Nielsen LN, Ingmer H. (2015) Review and phylogenetic analysis of qac genes that reduce susceptibility to quaternary ammonium compounds in Staphylococcus species. Eur J Microbiol Immunol (Bp). 5(1), 44-61. https://doi.org/10.1556/EUJMI-D-14-00038
  • Wieland N, Boss J, Lettmann S, Fritz B, Schwaiger K, Bauer J, Hölzel CS. (2017) Susceptibility to disinfectants in antimicrobial-resistant and -susceptible isolates of Escherichia coli, Enterococcus faecalis and Enterococcus faecium from poultry-ESBL/AmpC-phenotype of E. coli is not associated with resistance to a quaternary ammonium compound, DDAC. J Appl applied Microbiol. 122(6), 1508–1517. https://doi.org/10.1111/jam.13440
  • Zhang Y, Zhao Y, Xu C, Zhang X, Li J, Dong G, Cao J, Zhou T. (2019) Chlorhexidine exposure of clinical Klebsiella pneumoniae strains leads to acquired resistance to this disinfectant and to colistin. Int J Antimicrob Agents, 53(6), 864–867. https://doi.org/10.1016/j.ijantimicag.2019.02.012
  • Zmantar T, Kouidhi B, Miladi H, Bakhrouf A. (2011) Detection of macrolide and disinfectant resistance genes in clinical Staphylococcus aureus and coagulase-negative staphylococci. BMC Res Notes. 4, 453. https://doi.org/10.1186/1756-0500-4-453
  • Zou L, Meng J, McDermott PF, Wang F, Yang Q, Cao G, Hoffmann M, Zhao S. (2014) Presence of disinfectant resistance genes in Escherichia coli isolated from retail meats in the USA. J Antimicrob Chemother. 69(10), 2644–2649. https://doi.org/10.1093/jac/dku197
Toplam 56 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Veteriner Mikrobiyolojisi
Bölüm Araştırma Makalesi
Yazarlar

Cengiz Karataş Bu kişi benim 0009-0002-9985-6126

Oktay Keskin 0000-0002-5977-7872

Proje Numarası Harran Üniversitesi BAP birimince 24022 nolu yüksek lisans tez projesi
Gönderilme Tarihi 5 Eylül 2025
Kabul Tarihi 30 Kasım 2025
Yayımlanma Tarihi 13 Ocak 2026
Yayımlandığı Sayı Yıl 2025 Cilt: 36 Sayı: 2

Kaynak Göster

APA Karataş, C., & Keskin, O. (2026). Hayvanlarda Klinik Vakalardan İzole Edilmiş Çoklu Antibiyotik Direnci Bulunan Bakterilerde Dezenfektan Dirençliliği. Etlik Veteriner Mikrobiyoloji Dergisi, 36(2), 135-148. https://doi.org/10.35864/evmd.1778647


15430