Hidrojen peroksit dekontaminasyon etkinliğinin belirlenmesine yönelik mikrofluidik katalaz biyosensörü: Mikrobiyal optimizasyon
Yıl 2021,
Cilt: 32 Sayı: 2, 157 - 163, 30.12.2021
Ahmet Keskin
,
Ahmet Koluman
Öz
Biyolojik suçlar (biyoterörizm dahil) gibi biyolojik riskler, mikroorganizmaların bulaşmasına yol açarak dekontaminasyon gerektirmektedir. Dekontaminasyon, mikroorganizmanın yayılmasını kontrol etmek için kritik bir noktadır. Dekontaminasyon için birçok kimyasal kullanılmaktadır. Ancak ekonomik ve seçkin antimikrobiyal özelliklerinden dolayı hidrojenperoksitin (H2O2) uygulamasıda sıktır. Dekontaminasyon sürecini izlemek için uygun bir sistem bulunamamıştır. Bu çalışmada, H2O2 uygulamalarının etkinliğini taramak için katalaz pozitif olduğu bilinen Staphylococcus aureus kullanarak bir bakteriyel mikrofluidic (mikroakışkan) biyosensör tasarladık. Bu çalışmada öncelikle, kurutma prosesi ve prosesin validasyonu ile ilgili olarak çalışmanın mikrobiyal optimizasyon kısmı hazırlanmıştır. Sonuçlar, kurutmanın katalaz reaksiyonu üzerinde hiçbir etkisi olmadığını ve satışta bulunan dekontaminantların bu yaklaşımla değerlendirilebileceğini göstermiştir.
Destekleyen Kurum
PAMUKKALE ÜNİVERSİTESİ
Proje Numarası
2020FEBE037
Teşekkür
Bu makale içerisinde yer alan veriler, Pamukkale Üniversitesi Bilimsel Araştırma Projeleri Yüksek Lisans Projesi desteği alınarak yürütülen 2020FEBE037 kodlu “Hidrojen peroksit dekontaminasyon etkinliğinin belirlenmesine yönelik mikrofluidik katalaz biyosensörü” projesi kapsamında üretilmiştir. Yazarlar arasında çıkar çatışması yoktur.
Kaynakça
- Ahn JM, Hwang ET, Youn CH, Banu DL, Kim BC, Niazi JH, Gu MB. Prediction and classification of the modes of genotoxic actions using bacterial biosensors specific for DNA damages. Biosens Bioelectron. 2009 Dec 15;25(4):767-72. doi: 10.1016/j.bios.2009.08.025.
- Alfonso-Prieto M, Biarnés X, Vidossich P, Rovira C. The molecular mechanism of the catalase reaction. J Am Chem Soc. 2009 Aug 26;131(33):11751-61. doi: 10.1021/ja9018572.
- Alhadrami HA. Biosensors: Classifications, medical applications, and future prospective. Biotechnol Appl Biochem. 2018 May;65(3):497-508. doi: 10.1002/bab.1621. Epub 2017 Nov 23.
- Ali S, Muzslay M, Bruce M, Jeanes A, Moore G, Wilson AP. Efficacy of two hydrogen peroxide vapour aerial decontamination systems for enhanced disinfection of meticillin-resistant Staphylococcus aureus, Klebsiella pneumoniae and Clostridium difficile in single isolation rooms. J Hosp Infect. 2016 May;93(1):70-7. doi: 10.1016/j.jhin.2016.01.016. Epub 2016 Feb 9.
- Anonim (2016a) Internartional Standardization Organization. ISO 16140-2:2019 Microbiology of the food chain — Method validation.
- Anonim (2016b) Internartional Standardization Organization ISO 13485:2016 Medical devices — Quality management systems — Requirements for regulatory purposes
- Anonim (2017) Internartional Standardization Organization ISO 17468:2016 Microbiology of the food chain — Technical requirements and guidance on establishment or revision of a standardized reference method
- Anonim (2019) Internartional Standardization Organization ISO/TC 34/SC9 Validation requirements on establishment or revision of a standardized reference method.
- Banerjee P, Kintzios S, Prabhakarpandian B. Biotoxin detection using cell-based sensors. Toxins (Basel). 2013 Nov 29;5(12):2366-83. doi: 10.3390/toxins5122366.
- Basiri A, Heidari A, Nadi MF, Fallahy MTP, Nezamabadi SS, Sedighi M, Saghazadeh A, Rezaei N. Microfluidic devices for detection of RNA viruses. Rev Med Virol. 2021 Jan;31(1):1-11. doi: 10.1002/rmv.2154. Epub 2020 Aug 26.
- Chen Z, Lu M, Zhuang G, Wang H. Enhanced bacterial biosensor for fast and sensitive detection of oxidatively DNA damaging agents. Anal Chem. 2011 May 1;83(9):3248-51. doi: 10.1021/ac200426x. Epub 2011 Mar 31.
- Chen Z, Lu M, Zou D, Wang H. An E. coli SOS-EGFP biosensor for fast and sensitive detection of DNA damaging agents. J Environ Sci (China). 2012;24(3):541-9. doi: 10.1016/s1001-0742(11)60722-5.
- DeQueiroz GA, Day DF. Antimicrobial activity and effectiveness of a combination of sodium hypochlorite and hydrogen peroxide in killing and removing Pseudomonas aeruginosa biofilms from surfaces. J Appl Microbiol. 2007 Oct;103(4):794-802. doi: 10.1111/j.1365-2672.2007.03299.x.
- Dushek O, Lellouch AC, Vaux DJ, Shahrezaei V. Biosensor architectures for high-fidelity reporting of cellular signaling. Biophys J. 2014 Aug 5;107(3):773-782. doi: 10.1016/j.bpj.2014.06.021.
- Falagas ME, Thomaidis PC, Kotsantis IK, Sgouros K, Samonis G, Karageorgopoulos DE. Airborne hydrogen peroxide for disinfection of the hospital environment and infection control: a systematic review. J Hosp Infect. 2011 Jul;78(3):171-7. doi: 10.1016/j.jhin.2010.12.006. Epub 2011 Mar 9.
- Fares H, Abbass Y, Valle M, Seminara L. Validation of Screen-Printed Electronic Skin Based on Piezoelectric Polymer Sensors. Sensors (Basel). 2020 Feb 20;20(4):1160. doi: 10.3390/s20041160.
- Goode JA, Rushworth JV, Millner PA. Biosensor Regeneration: A Review of Common Techniques and Outcomes. Langmuir. 2015 Jun 16;31(23):6267-76. doi: 10.1021/la503533g. Epub 2014 Dec 2.
- Goyal SM, Chander Y, Yezli S, Otter JA. Evaluating the virucidal efficacy of hydrogen peroxide vapour. J Hosp Infect. 2014 Apr;86(4):255-9. doi: 10.1016/j.jhin.2014.02.003. Epub 2014 Feb 27
- H. Muguruma, Biosensors: Enzyme Immobilization Chemistry, Editor(s): Klaus Wandelt, Encyclopedia of Interfacial Chemistry, Elsevier, 2018, Pages 64-71, ISBN 9780128098943, https://doi.org/10.1016/B978-0-12-409547-2.13486-9.
- Humayun T, Qureshi A, Al Roweily SF, Carig J, Humayun F. Efficacy Of Hydrogen Peroxide Fumigation In Improving Disinfection Of Hospital Rooms And Reducing The Number Of Microorganisms. J Ayub Med Coll Abbottabad. 2019 Oct-Dec;31(Suppl 1)(4):S646-S650.
- K. Yabuta, H.Futamura, K. Kawasaki, M. Hirao, H. Sugiyama, Design-oriented regression models for H2O2 decontamination processes in sterile drug product manufacturing considering rapidity and sterility, International Journal of Pharmaceutics, Volume 548, Issue 1, 2018, Pages 466-473, ISSN 0378-5173, https://doi.org/10.1016/j.ijpharm.2018.06.055.
- Kim J, Park HD, Chung S. Microfluidic approaches to bacterial biofilm formation. Molecules. 2012 Aug 15;17(8):9818-34. doi: 10.3390/molecules17089818.
- Kirkman HN, Gaetani GF. Mammalian catalase: a venerable enzyme with new mysteries. Trends Biochem Sci. 2007 Jan;32(1):44-50. doi: 10.1016/j.tibs.2006.11.003. Epub 2006 Dec 8.
Knight AW. Using yeast to shed light on DNA damaging toxins and irradiation. Analyst. 2004 Oct;129(10):866-9. doi: 10.1039/b404874c.
- Leman Tarhan, Use of immobilised catalase to remove H2O2 used in the sterilisation of milk, Process Biochemistry, Volume 30, Issue 7, 1995, Pages 623-628, ISSN 1359-5113, https://doi.org/10.1016/0032-9592(94)00066-2
- Lineback CB, Nkemngong CA, Wu ST, Li X, Teska PJ, Oliver HF. Hydrogen peroxide and sodium hypochlorite disinfectants are more effective against Staphylococcus aureus and Pseudomonas aeruginosa biofilms than quaternary ammonium compounds. Antimicrob Resist Infect Control. 2018 Dec 17;7:154. doi: 10.1186/s13756-018-0447-5.
- Mahmoud H. Hadwan, New Method for Assessment of Serum Catalase Activity, Indian Journal of Science and Technology, Vol 9(4), DOI: 10.17485/ijst/2016/v9i4/80499, January 2016
- Mehrotra P. (2016). Biosensors and their applications - A review. Journal of oral biology and craniofacial research, 6(2), 153–159. https://doi.org/10.1016/j.jobcr.2015.12.002
- Mitchell RJ, Gu MB. An Escherichia coli biosensor capable of detecting both genotoxic and oxidative damage. Appl Microbiol Biotechnol. 2004 Mar;64(1):46-52. doi: 10.1007/s00253-003-1418-0. Epub 2003 Aug 23.
- Oral E. , K.K. Wannomae, R. Connolly, J. Gardecki, H. M. Leung, O. Muratoglu, A. Griffiths, A. N. Honko, L. E. Avena, L. G. A. McKay, N.Flynn, N. Storm, S.N. Downs, R. Jones, B. Emmal, Vapor H2O2 sterilization as a decontamination method for the reuse of N95 respirators in the COVID-19 emergency medRxiv 2020.04.11.20062026; doi: https://doi.org/10.1101/2020.04.11.20062026
- Palüzar H, Özcan HM (). Katalaz Temelli PANI Biyosensörü ile Deltametrinin Belirlenmesi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 2017, 21(2), 644-651.
- Peimian Ou, Simon P. Wolff, A discontinuous method for catalase determination at ‘near physiological’ concentrations of H2O2 and its application to the study of H2O2 fluxes within cells, Journal of Biochemical and Biophysical Methods, Volume 31, Issues 1–2, 1996,Pages 59-67, ISSN 0165-022X, https://doi.org/10.1016/0165-022X(95)00039-T.
- Ríos-Castillo AG, González-Rivas F, Rodríguez-Jerez JJ. Bactericidal Efficacy of Hydrogen Peroxide-Based Disinfectants Against Gram-Positive and Gram-Negative Bacteria on Stainless Steel Surfaces. J Food Sci. 2017 Oct;82(10):2351-2356. doi: 10.1111/1750-3841.13790. Epub 2017 Aug 23.
- Rosendale ME. Decontamination strategies. Vet Clin North Am Small Anim Pract. 2002 Mar;32(2):311-21, v. doi: 10.1016/s0195-5616(01)00007-9.
- Shang Y, Sun J, Ye Y, Zhang J, Zhang Y, Sun X. Loop-mediated isothermal amplification-based microfluidic chip for pathogen detection. Crit Rev Food Sci Nutr. 2020;60(2):201-224. doi: 10.1080/10408398.2018.1518897. Epub 2018 Dec 20.
- Stupak EÉ, Stupak IV. [Cyclic digene system as a control element of a bacterial biosensor]. Prikl Biokhim Mikrobiol. 2012 Jan-Feb;48(1):18-22. Russian.
- Volker Sigwarth, Claude Moirandat Development and Quantification of H2O2 Decontamination Cycles, PDA Journal of Pharmaceutical Science and Technology Jul 2000, 54 (4) 286-304
- Weber DJ, Kanamori H, Rutala WA. 'No touch' technologies for environmental decontamination: focus on ultraviolet devices and hydrogen peroxide systems. Curr Opin Infect Dis. 2016 Aug;29(4):424-31. doi: 10.1097/QCO.0000000000000284.
- William Hennessy, CHAPTER 10 - Flow and Level Sensors, Editor(s): Jon S. Wilson, Sensor Technology Handbook, Newnes, 2005, Pages 237-254, ISBN 9780750677295, https://doi.org/10.1016/B978-075067729-5/50050-1.
- Wood JP, Adrion AC. Review of Decontamination Techniques for the Inactivation of Bacillus anthracis and Other Spore-Forming Bacteria Associated with Building or Outdoor Materials. Environ Sci Technol. 2019 Apr 16;53(8):4045-4062. doi: 10.1021/acs.est.8b05274. Epub 2019 Apr 2.
- Yagi K. Applications of whole-cell bacterial sensors in biotechnology and environmental science. Appl Microbiol Biotechnol. 2007 Jan;73(6):1251-8. doi: 10.1007/s00253-006-0718-6. Epub 2006 Nov 17.
- Young H. Lee, Raj Mutharasan, CHAPTER 6 - Biosensors, Editor(s): Jon S. Wilson, Sensor Technology Handbook, Newnes, 2005, Pages 161-180, ISBN 9780750677295, https://doi.org/10.1016/B978-075067729-5/50046-X.
- Zulauf KE, Green AB, Nguyen Ba AN, Jagdish T, Reif D, Seeley R, Dale A, Kirby JE. Microwave-Generated Steam Decontamination of N95 Respirators Utilizing Universally Accessible Materials. mBio. 2020 Jun 25;11(3):e00997-20. doi: 10.1128/mBio.00997-20.
- Zutz C, Wagener K, Yankova D, Eder S, Möstl E, Drillich M, Rychli K, Wagner M, Strauss J. A robust high-throughput fungal biosensor assay for the detection of estrogen activity. Steroids. 2017 Oct;126:57-65. doi: 10.1016/j.steroids.2017.07.005. Epub 2017 Jul 14.
Microfluidic catalase biosensor designed for efficacy of hydrogenperoxide decontamination: Microbial optimization
Yıl 2021,
Cilt: 32 Sayı: 2, 157 - 163, 30.12.2021
Ahmet Keskin
,
Ahmet Koluman
Öz
Bio-risks, like bio-crimes (including bioterrorism), lead contamination with microorganism that needs decontamination. Decontamination is a critical point for controlling spread of microorganism. Many chemicals are used for decontamination where hydrogenperoxide (H2O2) is massively applied due to its antimicrobial properties. However, no applicable system found to screen the process of decontamination. We designed a bacterial microfluidic biosensor using Staphylococcus aureus, which is known to be catalase positive, to screen efficacy of H2O2 applications. In this study we are representing the microbial optimization part of the study with respect to drying process and validation of the process. The results showed that drying had no effect on the catalase reaction and retail decontaminants can be evaluated with this approach.
Proje Numarası
2020FEBE037
Kaynakça
- Ahn JM, Hwang ET, Youn CH, Banu DL, Kim BC, Niazi JH, Gu MB. Prediction and classification of the modes of genotoxic actions using bacterial biosensors specific for DNA damages. Biosens Bioelectron. 2009 Dec 15;25(4):767-72. doi: 10.1016/j.bios.2009.08.025.
- Alfonso-Prieto M, Biarnés X, Vidossich P, Rovira C. The molecular mechanism of the catalase reaction. J Am Chem Soc. 2009 Aug 26;131(33):11751-61. doi: 10.1021/ja9018572.
- Alhadrami HA. Biosensors: Classifications, medical applications, and future prospective. Biotechnol Appl Biochem. 2018 May;65(3):497-508. doi: 10.1002/bab.1621. Epub 2017 Nov 23.
- Ali S, Muzslay M, Bruce M, Jeanes A, Moore G, Wilson AP. Efficacy of two hydrogen peroxide vapour aerial decontamination systems for enhanced disinfection of meticillin-resistant Staphylococcus aureus, Klebsiella pneumoniae and Clostridium difficile in single isolation rooms. J Hosp Infect. 2016 May;93(1):70-7. doi: 10.1016/j.jhin.2016.01.016. Epub 2016 Feb 9.
- Anonim (2016a) Internartional Standardization Organization. ISO 16140-2:2019 Microbiology of the food chain — Method validation.
- Anonim (2016b) Internartional Standardization Organization ISO 13485:2016 Medical devices — Quality management systems — Requirements for regulatory purposes
- Anonim (2017) Internartional Standardization Organization ISO 17468:2016 Microbiology of the food chain — Technical requirements and guidance on establishment or revision of a standardized reference method
- Anonim (2019) Internartional Standardization Organization ISO/TC 34/SC9 Validation requirements on establishment or revision of a standardized reference method.
- Banerjee P, Kintzios S, Prabhakarpandian B. Biotoxin detection using cell-based sensors. Toxins (Basel). 2013 Nov 29;5(12):2366-83. doi: 10.3390/toxins5122366.
- Basiri A, Heidari A, Nadi MF, Fallahy MTP, Nezamabadi SS, Sedighi M, Saghazadeh A, Rezaei N. Microfluidic devices for detection of RNA viruses. Rev Med Virol. 2021 Jan;31(1):1-11. doi: 10.1002/rmv.2154. Epub 2020 Aug 26.
- Chen Z, Lu M, Zhuang G, Wang H. Enhanced bacterial biosensor for fast and sensitive detection of oxidatively DNA damaging agents. Anal Chem. 2011 May 1;83(9):3248-51. doi: 10.1021/ac200426x. Epub 2011 Mar 31.
- Chen Z, Lu M, Zou D, Wang H. An E. coli SOS-EGFP biosensor for fast and sensitive detection of DNA damaging agents. J Environ Sci (China). 2012;24(3):541-9. doi: 10.1016/s1001-0742(11)60722-5.
- DeQueiroz GA, Day DF. Antimicrobial activity and effectiveness of a combination of sodium hypochlorite and hydrogen peroxide in killing and removing Pseudomonas aeruginosa biofilms from surfaces. J Appl Microbiol. 2007 Oct;103(4):794-802. doi: 10.1111/j.1365-2672.2007.03299.x.
- Dushek O, Lellouch AC, Vaux DJ, Shahrezaei V. Biosensor architectures for high-fidelity reporting of cellular signaling. Biophys J. 2014 Aug 5;107(3):773-782. doi: 10.1016/j.bpj.2014.06.021.
- Falagas ME, Thomaidis PC, Kotsantis IK, Sgouros K, Samonis G, Karageorgopoulos DE. Airborne hydrogen peroxide for disinfection of the hospital environment and infection control: a systematic review. J Hosp Infect. 2011 Jul;78(3):171-7. doi: 10.1016/j.jhin.2010.12.006. Epub 2011 Mar 9.
- Fares H, Abbass Y, Valle M, Seminara L. Validation of Screen-Printed Electronic Skin Based on Piezoelectric Polymer Sensors. Sensors (Basel). 2020 Feb 20;20(4):1160. doi: 10.3390/s20041160.
- Goode JA, Rushworth JV, Millner PA. Biosensor Regeneration: A Review of Common Techniques and Outcomes. Langmuir. 2015 Jun 16;31(23):6267-76. doi: 10.1021/la503533g. Epub 2014 Dec 2.
- Goyal SM, Chander Y, Yezli S, Otter JA. Evaluating the virucidal efficacy of hydrogen peroxide vapour. J Hosp Infect. 2014 Apr;86(4):255-9. doi: 10.1016/j.jhin.2014.02.003. Epub 2014 Feb 27
- H. Muguruma, Biosensors: Enzyme Immobilization Chemistry, Editor(s): Klaus Wandelt, Encyclopedia of Interfacial Chemistry, Elsevier, 2018, Pages 64-71, ISBN 9780128098943, https://doi.org/10.1016/B978-0-12-409547-2.13486-9.
- Humayun T, Qureshi A, Al Roweily SF, Carig J, Humayun F. Efficacy Of Hydrogen Peroxide Fumigation In Improving Disinfection Of Hospital Rooms And Reducing The Number Of Microorganisms. J Ayub Med Coll Abbottabad. 2019 Oct-Dec;31(Suppl 1)(4):S646-S650.
- K. Yabuta, H.Futamura, K. Kawasaki, M. Hirao, H. Sugiyama, Design-oriented regression models for H2O2 decontamination processes in sterile drug product manufacturing considering rapidity and sterility, International Journal of Pharmaceutics, Volume 548, Issue 1, 2018, Pages 466-473, ISSN 0378-5173, https://doi.org/10.1016/j.ijpharm.2018.06.055.
- Kim J, Park HD, Chung S. Microfluidic approaches to bacterial biofilm formation. Molecules. 2012 Aug 15;17(8):9818-34. doi: 10.3390/molecules17089818.
- Kirkman HN, Gaetani GF. Mammalian catalase: a venerable enzyme with new mysteries. Trends Biochem Sci. 2007 Jan;32(1):44-50. doi: 10.1016/j.tibs.2006.11.003. Epub 2006 Dec 8.
Knight AW. Using yeast to shed light on DNA damaging toxins and irradiation. Analyst. 2004 Oct;129(10):866-9. doi: 10.1039/b404874c.
- Leman Tarhan, Use of immobilised catalase to remove H2O2 used in the sterilisation of milk, Process Biochemistry, Volume 30, Issue 7, 1995, Pages 623-628, ISSN 1359-5113, https://doi.org/10.1016/0032-9592(94)00066-2
- Lineback CB, Nkemngong CA, Wu ST, Li X, Teska PJ, Oliver HF. Hydrogen peroxide and sodium hypochlorite disinfectants are more effective against Staphylococcus aureus and Pseudomonas aeruginosa biofilms than quaternary ammonium compounds. Antimicrob Resist Infect Control. 2018 Dec 17;7:154. doi: 10.1186/s13756-018-0447-5.
- Mahmoud H. Hadwan, New Method for Assessment of Serum Catalase Activity, Indian Journal of Science and Technology, Vol 9(4), DOI: 10.17485/ijst/2016/v9i4/80499, January 2016
- Mehrotra P. (2016). Biosensors and their applications - A review. Journal of oral biology and craniofacial research, 6(2), 153–159. https://doi.org/10.1016/j.jobcr.2015.12.002
- Mitchell RJ, Gu MB. An Escherichia coli biosensor capable of detecting both genotoxic and oxidative damage. Appl Microbiol Biotechnol. 2004 Mar;64(1):46-52. doi: 10.1007/s00253-003-1418-0. Epub 2003 Aug 23.
- Oral E. , K.K. Wannomae, R. Connolly, J. Gardecki, H. M. Leung, O. Muratoglu, A. Griffiths, A. N. Honko, L. E. Avena, L. G. A. McKay, N.Flynn, N. Storm, S.N. Downs, R. Jones, B. Emmal, Vapor H2O2 sterilization as a decontamination method for the reuse of N95 respirators in the COVID-19 emergency medRxiv 2020.04.11.20062026; doi: https://doi.org/10.1101/2020.04.11.20062026
- Palüzar H, Özcan HM (). Katalaz Temelli PANI Biyosensörü ile Deltametrinin Belirlenmesi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 2017, 21(2), 644-651.
- Peimian Ou, Simon P. Wolff, A discontinuous method for catalase determination at ‘near physiological’ concentrations of H2O2 and its application to the study of H2O2 fluxes within cells, Journal of Biochemical and Biophysical Methods, Volume 31, Issues 1–2, 1996,Pages 59-67, ISSN 0165-022X, https://doi.org/10.1016/0165-022X(95)00039-T.
- Ríos-Castillo AG, González-Rivas F, Rodríguez-Jerez JJ. Bactericidal Efficacy of Hydrogen Peroxide-Based Disinfectants Against Gram-Positive and Gram-Negative Bacteria on Stainless Steel Surfaces. J Food Sci. 2017 Oct;82(10):2351-2356. doi: 10.1111/1750-3841.13790. Epub 2017 Aug 23.
- Rosendale ME. Decontamination strategies. Vet Clin North Am Small Anim Pract. 2002 Mar;32(2):311-21, v. doi: 10.1016/s0195-5616(01)00007-9.
- Shang Y, Sun J, Ye Y, Zhang J, Zhang Y, Sun X. Loop-mediated isothermal amplification-based microfluidic chip for pathogen detection. Crit Rev Food Sci Nutr. 2020;60(2):201-224. doi: 10.1080/10408398.2018.1518897. Epub 2018 Dec 20.
- Stupak EÉ, Stupak IV. [Cyclic digene system as a control element of a bacterial biosensor]. Prikl Biokhim Mikrobiol. 2012 Jan-Feb;48(1):18-22. Russian.
- Volker Sigwarth, Claude Moirandat Development and Quantification of H2O2 Decontamination Cycles, PDA Journal of Pharmaceutical Science and Technology Jul 2000, 54 (4) 286-304
- Weber DJ, Kanamori H, Rutala WA. 'No touch' technologies for environmental decontamination: focus on ultraviolet devices and hydrogen peroxide systems. Curr Opin Infect Dis. 2016 Aug;29(4):424-31. doi: 10.1097/QCO.0000000000000284.
- William Hennessy, CHAPTER 10 - Flow and Level Sensors, Editor(s): Jon S. Wilson, Sensor Technology Handbook, Newnes, 2005, Pages 237-254, ISBN 9780750677295, https://doi.org/10.1016/B978-075067729-5/50050-1.
- Wood JP, Adrion AC. Review of Decontamination Techniques for the Inactivation of Bacillus anthracis and Other Spore-Forming Bacteria Associated with Building or Outdoor Materials. Environ Sci Technol. 2019 Apr 16;53(8):4045-4062. doi: 10.1021/acs.est.8b05274. Epub 2019 Apr 2.
- Yagi K. Applications of whole-cell bacterial sensors in biotechnology and environmental science. Appl Microbiol Biotechnol. 2007 Jan;73(6):1251-8. doi: 10.1007/s00253-006-0718-6. Epub 2006 Nov 17.
- Young H. Lee, Raj Mutharasan, CHAPTER 6 - Biosensors, Editor(s): Jon S. Wilson, Sensor Technology Handbook, Newnes, 2005, Pages 161-180, ISBN 9780750677295, https://doi.org/10.1016/B978-075067729-5/50046-X.
- Zulauf KE, Green AB, Nguyen Ba AN, Jagdish T, Reif D, Seeley R, Dale A, Kirby JE. Microwave-Generated Steam Decontamination of N95 Respirators Utilizing Universally Accessible Materials. mBio. 2020 Jun 25;11(3):e00997-20. doi: 10.1128/mBio.00997-20.
- Zutz C, Wagener K, Yankova D, Eder S, Möstl E, Drillich M, Rychli K, Wagner M, Strauss J. A robust high-throughput fungal biosensor assay for the detection of estrogen activity. Steroids. 2017 Oct;126:57-65. doi: 10.1016/j.steroids.2017.07.005. Epub 2017 Jul 14.