Derleme
BibTex RIS Kaynak Göster

Salmonella klasik virulans faktörleri ve patojenite adaları (11, 12, 13, 14, 15, 16, SGA-1, YPA)

Yıl 2012, Cilt: 23 Sayı: 1, 32 - 38, 01.06.2012

Öz

Salmonella genusunun yol açtığı infeksiyonlar konağın yapılanmasına ve suşun virulensine bağlı olarak hafif infeksiyondan
şiddetli infeksiyona kadar geniş bir dağılım gösterir. Salmonella suşunun virulansı, virulans faktörleri diye
adlandırılan, yapılarca belirlenir. Günümüze kadar çok sayıda virulans faktörü tespit edilse de, bilinen virulens faktörleri
virulans-plazmidleri, toksinler, serum dirençliliği, sideroforlar, adhezinler, invazinler diye adlandırılan klasik virulans
faktörleri ve patojenite adaları olarak özetlenebilir.

Kaynakça

  • Grimiont PAD, Weill FX, (2007). Antigenic formulae of Salmonella serovars. WHO Collaborating Centre for Reference and Research on Salmonella, Institute Pasteur, 9th revision.
  • Muthukkaruppan VR, Borysenko M, Ridi REl, (1982). RES structure and function in reptilia. Cohen N, Sigel MM. eds. The Reticuloendothelial System. Plenum Pres, New York. p.461-508.
  • Glick B, (1982). RES structure and function in aves. Cohen N, Sigel M M. Eds. The Reticuloendothelial System. Plenum Pres, New York. p.509-540.
  • Manning MJ, (1979). Evolution of the vertebrate immune system. J R Soc Med. 72, 683-688.
  • Du Pasquier L, (1993). Phylogeny of B-cell development. Curr Opin Immunol. 5, 185-193.
  • Zapata AG, Torroba M, Vicente A, Varas A, Sacedon R, and Jimenez E, (1995). The relevance of cell microenvironments for the appearance of lymphohaemopoietic tissues in primitive vertebrates. Histol Histopathol. 10, 761-778.
  • Du Pasquier L, (1982). Antibody diversity in lower vertebrates-why is it so restricted? Nature. 290, 311-313.
  • Jonsson V, (1985). Comparison and definition of spleen and lymph node: a phylogenetic analysis. J Theor Biol. 117, 691-699.
  • Du Pasquire L, (1989). Evolution of the immune system. Paul WE. eds. Fundamental Immunology. Raven Pres, New York. p. 139- 165.
  • Barrow PA, Huggins MB, Lovell MA, (1994). Host specificity of Salmonella infection in chickens and mice is expressed in vivo primarily at the level of the reticuloendothelial system. Infect Immun. 62, 4602-4610.
  • Fields P I, Swanson RV, Haidaris CG, Heffron F, (1986). Mutants of Salmonella typhimurium that cannot survive within the macrophage are avirulent. Proc Natl Acad Sci. 83, 5189-5193.
  • Vladoianu IR, Chang HR, Peche´re JC, (1990). Expression of host resistance to Salmonella typhi and salmonella typhimurium: bacterial survival within macrophages of murine and human origin. Microb Pathog. 8, 83-90.
  • Suarez M, Rüssmann, (1998). Molecular mechanisms of Salmonella invasion: the type III secretion system of the pathogenicity island 1. Microbiol. 1, 197-204.
  • Kusters JG, Mulders-Kremers GAWM, van Doornik CEM, van der Zeijst, (1993). Effects of multiplycity of infection, bacterial protein synthesis, and growth phase on adhesion to and invasion of human cell lines by Salmonella typhimurium. Infect Immun. 61, 5013-5020.
  • MacBeth KJ, Lee CA, (1993). Prolonged inhibition of bacterial protein synthesis abolishes Salmonella invasion. Infect Immun. 61, 1544-1546.
  • Amin IL, Douce GR, Osborne MP, Stephen J, (1994). Quantitative studies of invasion of rabit ileal mucosa by Salmonella typhimurium strain which differ in virulence in a model of gastroenteritis. Infect Immun. 62, 569-578.
  • Ernst RK, Dombroski DM, Merrick JM, (1990). Anaerobiosis, type 1 fimbriae, and growth phase are factors that affect invasion of Hep-2 cells by salmonella typhimurium. Infect Immun. 58, 2014-2016.
  • Lee CA, Falkow S, (1990). The ability of Salmonella to enter mammalian cells is affected by bacterial growth state. Proc Natl Acad Sci USA. 87, 4304-4308.
  • Fields PI, Swanson RV, Haidaris CG, Heffron F, (1986). Mutants of Salmonella typhimurium that can not survive within macrophage are avirulent. Proc Natl Acad Sci USA. 83, 5189-5193.
  • Groisman EA, PArra-Lopez C, Salcedo M, Lipps CJ, Heffron F, (1992). Resistance to host antimicrobial peptides is necessary for Salmonella virulence. Proc Natl Acad Sci USA, 11, 939-943.
  • Sandra LM, Brumell JH, Pfeifer CG, Finlay BB, (2000). Salmonella pathogenicty islands: big virulence in small packages. Microb Infec. 2, 145-156.
  • Hensel M, (2004). Evolution of pathogenicity islands of Salmonella enterica. Int J Med Biol. 291, 95-102.
  • Hensel M, Shea JE, Waterman SR, Mundy R, Nikolaus T, Banks G, Vazquez-Torres A, Gleeson C, Fang FC, Holden DW, (1998). Genes encoding putative effector proteins of the type III secretion system of Salmonella pathogenicity island 2 are required for bacterial virulence and proliferation in macrophages. Mol. Microbiol. 30, 163-174.
  • Günaydın E, Şen S, (2011). Salmonella patojenite adaları (1-10). J Etlik Vet Microbiol Derg. 22, 79-82.
  • Chu C, Hong SF, Tsai C, Lin WS, Liu TP, Ou JT, (1999). Comparative physical and genetic maps of the virulence plasmids of Salmonella enterica serovars typhimurium, enteritidis, choleraesuis, and Dublin. Infect Immun. 67, 2611-2614.
  • Rychlik I, Gregorova D, Hradecka H, (2006). Distribution and function of plasmids in Salmonella enterica. Vet Microbiol. 112, 1-10.
  • Fierer J, Eckmann L, Fang F, Pfeifer C, Finlay BB, Guiney D, (1993). Expression of the Salmonella virulence plasmid gene spvB in cultured macrophages and nonphagocytic cells. Infect Immun. 61, 5231-5236.
  • Guilloteau LA, Wallis TS, Gautier AV, Macintyre S, Platt DJ, Lax AJ, (1996). The Salmonella virulence plasmid enhances Salmonella-induced lysis of macrophages and influences inflammatory responses. Infect Immun. 64, 3385-3393.
  • Rhen M, Riikonen P, Taira S, (1993). Transcriptional regulation of Salmonella enterica virulence plasmid genes in cultured macrophages. Mol Microbiol. 10, 45-56.
  • Riikonen P, Makela PH, Saarilahti H, Sukupolvi S, Taira S, Rhen M, (1992). The virulence plasmid does not contribute to growth of Salmonella in cultured murine macrophages. Microb Pathog. 13, 281-291.
  • Gulig PA, Doyle TJ, Hughes JA, Matsui H, (1998). Analysis of host cells associated with the Spv-mediated increased intracellular growth rate of Salmonella typhimurium in mice. Infect Immun. 66, 2471-2485.
  • Vassiloyanakopoulos AP, Okamoto S, Fierer J, (1998). The crucial role of polymorphonuclear leukocytes in resistance to Salmonella dublin infections in genetically susceptible and resistant mice. Proc Natl Acad Sci. 95, 7676-7681.
  • Visca P, Filetici E, Anastasia MP, Vetriani C, Fantasia M, Orsi N, (1991). Siderophore production by Salmonella species isolated from different sources. FEMS Microb Letters. 79, 225-231.
  • Hantke K, Nicholson G, Rabsch W, Winkelmann (2003). Salmochellins, siderophores of Salmonella enterica and uropathogenic Escherichia coli strains, are recognized by the outer membrane receptor IroN. PNAS. 100, 3677-3682.
  • Diker KS, (2005). İmmunoloji. İkinci baskı. Medisan Yayın Evi, Ankara, p. 125-137.
  • Chart H, Row B, Threlfall, Ward LR, (1989). Conversion of Salmonella enteritidis phage type 4 to phage 7 involves loss of lipopoisaccharide concomitant loss of virulence. FEMS Microbiol Lett. 60, 37-40.
  • Guard-Petter J, Keller LH, Rahman MM, Carlson RW, Silvers S, (1996). A novel relationship between O-antigen variation, matrix formation, and invasiveness of Salmonella enteritidis. Epidemiol Infect. 117, 219-231.
  • Chopra AK, Hoang JH, Xu XJ, Burden K, Niesel DW, Rosenbaum MW, Popov VL, Peterson JW, (1999). Role of Salmonella enterotoxin in overall virulence of the organism. Microb Pathogen. 27, 155-171.
  • Haghjoo E, Galan JE, (2004). Salmonella typhi encodes a functional cytolethal distending toxin that is delivered into host cells by a bacterial internaliztion pathway. Proc Natl Acad Sci USA. 101, 4614-4619.
  • Bravo D, Silva C, Carter JA, Hoare A, Alverez SA, Blondel CJ, Zaldivar M, Valvano MA, Contreras I, (2008). Growth pahse regulation of lipopolisaccharide O-antigen chain length influences serum resistance in serovars of Salmonella. J Med Microbiol. 57, 938-946.
  • Rotger R, Casadesús I, (1999). The virulence plasmids of Salmonella. J Internatl Microbiol. 2,177–184.
  • Cirillo DM, Heffernan EJ, Wu L, Harwood J, Fierer J, Guiney DG, (1996). Identification of a domain in Rck, a product of the Salmonella typhimurium virulence plasmid, required for both serum resistance and cell invasion. Infect Immun. 64, 2019-2023.
  • Heffernan EJ, Harwood J, Fierer J, Guiney D, (1992). The Salmonella typhimurium virulence plasmid complement resistance gene rck is homologous to a family of virulence-related outer membrane protein genes, including pagC and ail. J Bacteriol. 174, 84- 91.
  • Heffernan EJ, Wu L, Louie J, Okamoto S, Fierer J, Guiney DG, (1994). Specificity of the complement resistance and cell association phenotypes encoded by the outer membrane protein genes rck from Salmonella typhimurium and ail from Yersinia enterocolitica. Infect Immun. 62, 5183-5186.
  • Chiu CH, Tang P, Chu C, Hu S, Bao Q, Yu J, Chou YY, Wang HS, Lee YS, (2005). The genome sequence of Salmonella enterica serovar Choleraesuis, a highly invasive and resistant zoonotic pathogen. Nucleic Acids Res. 21, 1690-1698.
  • Gunn JS, Alpuche-Aranda CM, Loomis WP, Belden WJ, Miller SI, (1995). Characterization of the Salmonella typhimurium pagC/ pagD chromosomal region. J Bacteriol. 177, 5040-5047.
  • Navarre WW, Halsey TA, Walthers D, Frye J, McClelland M, Potter JL, Kenney LJ, Gunn JS, Fang FC, Libby SJ, (2005). Co-regulation of Salmonella enterica genes required for virulence and resistance to antimicrobial peptides by SlyA and PhoP/PhoQ. Mol Microbiol. 56, 492-508.
  • Miller SI, Kukral AM, Mekalanos JJ, (1989). A two-component regulatory system (phoP phoQ) controls Salmonella typhimurium virulence. Proc Natl Acad Sci U S A. 86, 5054-5058.
  • Nishio M, Okada N, Miki T, Haneda T, Danbara H, (2005) Identification of the outer-membrane protein PagC required for the serum resistance phenotype in Salmonella enterica serovar Choleraesuis. Microbiology. 151, 863-873.
  • Hansen-Wester I, Hensel M, (2002). Genome-based identification of chromosomal regions specific for Salmonella spp. Infect Immun. 70, 2351-2560.
  • Miao EA, Brittnacher M, Haraga A, Jeng RL, Welch MD, Miller SI, (2003). Salmonella effectors translocated across the vacuolar membrane interact with the actin cytoskeleton. Mol Microbiol. 48, 401-415.
  • Miao EA, Scherer CA, Tsolis RM, Kingsley RA, Adams LG, Bäumler AJ, Miller SI, (1999). Salmonella typhimurium leucinerich repeat proteins are targeted to the SPI1 and SPI2 type III secretion systems. Mol Microbiol. 34, 850-864.
  • Shah DH, Lee MJ, Park JH, Lee JH, Eo SK, Kwon JT, Chae JS, (2005). Identification of Salmonella gallinarum virulence genes in a chicken infection model using PCR-based signature-tagged mutagenesis. Microbiology. 151, 3957-3568.
  • Boyd D, Peters GA, Cloeckaert A, Boumedine KS, Chaslus- Dancla E, Imberechts H, Mulvey MR, (2001). Complete nucleotide sequence of a 43-kilobase genomic island associated with the multidrug resistance region of Salmonella enterica serovar Typhimurium DT104 and its identification in phage type DT120 and serovar Agona. J Bacteriol. 183, 5725-532.
  • Doublet B, Boyd D, Mulvey MR, Cloeckaert A, (2005). The Salmonella genomic island 1 is an integrative mobilizable element. Mol Microbiol. 55, 1911-1924.
  • Oelschlaeger TA, Zhang D, Schubert S, Carniel E, Rabsch W, Karch H, Hacker J, (2003). The high-pathogenicity island is absent in human pathogens of Salmonella enterica subspecies I but present in isolates of subspecies III and VI. J Bacteriol. 185, 1107- 1111.

Salmonella classical virulence factors and pathogenicity islands (11, 12, 13, 14, 15, 16, SGI- 1, HPA)

Yıl 2012, Cilt: 23 Sayı: 1, 32 - 38, 01.06.2012

Öz

Infections which are leaded by Salmonella genus show large range from mild to serious infection depending
on the constitution of the host and virulence of the strain. The virulence of the strain is determined by so-called virulence
factors. Till now, altough many virulence factors were determined, well-known virulence factors are summarized as
classical virulence factors termed such as virulence plasmids, toxins, serum resistance, siderophores, adhesions, invasions
and pathogenicity islands.

Kaynakça

  • Grimiont PAD, Weill FX, (2007). Antigenic formulae of Salmonella serovars. WHO Collaborating Centre for Reference and Research on Salmonella, Institute Pasteur, 9th revision.
  • Muthukkaruppan VR, Borysenko M, Ridi REl, (1982). RES structure and function in reptilia. Cohen N, Sigel MM. eds. The Reticuloendothelial System. Plenum Pres, New York. p.461-508.
  • Glick B, (1982). RES structure and function in aves. Cohen N, Sigel M M. Eds. The Reticuloendothelial System. Plenum Pres, New York. p.509-540.
  • Manning MJ, (1979). Evolution of the vertebrate immune system. J R Soc Med. 72, 683-688.
  • Du Pasquier L, (1993). Phylogeny of B-cell development. Curr Opin Immunol. 5, 185-193.
  • Zapata AG, Torroba M, Vicente A, Varas A, Sacedon R, and Jimenez E, (1995). The relevance of cell microenvironments for the appearance of lymphohaemopoietic tissues in primitive vertebrates. Histol Histopathol. 10, 761-778.
  • Du Pasquier L, (1982). Antibody diversity in lower vertebrates-why is it so restricted? Nature. 290, 311-313.
  • Jonsson V, (1985). Comparison and definition of spleen and lymph node: a phylogenetic analysis. J Theor Biol. 117, 691-699.
  • Du Pasquire L, (1989). Evolution of the immune system. Paul WE. eds. Fundamental Immunology. Raven Pres, New York. p. 139- 165.
  • Barrow PA, Huggins MB, Lovell MA, (1994). Host specificity of Salmonella infection in chickens and mice is expressed in vivo primarily at the level of the reticuloendothelial system. Infect Immun. 62, 4602-4610.
  • Fields P I, Swanson RV, Haidaris CG, Heffron F, (1986). Mutants of Salmonella typhimurium that cannot survive within the macrophage are avirulent. Proc Natl Acad Sci. 83, 5189-5193.
  • Vladoianu IR, Chang HR, Peche´re JC, (1990). Expression of host resistance to Salmonella typhi and salmonella typhimurium: bacterial survival within macrophages of murine and human origin. Microb Pathog. 8, 83-90.
  • Suarez M, Rüssmann, (1998). Molecular mechanisms of Salmonella invasion: the type III secretion system of the pathogenicity island 1. Microbiol. 1, 197-204.
  • Kusters JG, Mulders-Kremers GAWM, van Doornik CEM, van der Zeijst, (1993). Effects of multiplycity of infection, bacterial protein synthesis, and growth phase on adhesion to and invasion of human cell lines by Salmonella typhimurium. Infect Immun. 61, 5013-5020.
  • MacBeth KJ, Lee CA, (1993). Prolonged inhibition of bacterial protein synthesis abolishes Salmonella invasion. Infect Immun. 61, 1544-1546.
  • Amin IL, Douce GR, Osborne MP, Stephen J, (1994). Quantitative studies of invasion of rabit ileal mucosa by Salmonella typhimurium strain which differ in virulence in a model of gastroenteritis. Infect Immun. 62, 569-578.
  • Ernst RK, Dombroski DM, Merrick JM, (1990). Anaerobiosis, type 1 fimbriae, and growth phase are factors that affect invasion of Hep-2 cells by salmonella typhimurium. Infect Immun. 58, 2014-2016.
  • Lee CA, Falkow S, (1990). The ability of Salmonella to enter mammalian cells is affected by bacterial growth state. Proc Natl Acad Sci USA. 87, 4304-4308.
  • Fields PI, Swanson RV, Haidaris CG, Heffron F, (1986). Mutants of Salmonella typhimurium that can not survive within macrophage are avirulent. Proc Natl Acad Sci USA. 83, 5189-5193.
  • Groisman EA, PArra-Lopez C, Salcedo M, Lipps CJ, Heffron F, (1992). Resistance to host antimicrobial peptides is necessary for Salmonella virulence. Proc Natl Acad Sci USA, 11, 939-943.
  • Sandra LM, Brumell JH, Pfeifer CG, Finlay BB, (2000). Salmonella pathogenicty islands: big virulence in small packages. Microb Infec. 2, 145-156.
  • Hensel M, (2004). Evolution of pathogenicity islands of Salmonella enterica. Int J Med Biol. 291, 95-102.
  • Hensel M, Shea JE, Waterman SR, Mundy R, Nikolaus T, Banks G, Vazquez-Torres A, Gleeson C, Fang FC, Holden DW, (1998). Genes encoding putative effector proteins of the type III secretion system of Salmonella pathogenicity island 2 are required for bacterial virulence and proliferation in macrophages. Mol. Microbiol. 30, 163-174.
  • Günaydın E, Şen S, (2011). Salmonella patojenite adaları (1-10). J Etlik Vet Microbiol Derg. 22, 79-82.
  • Chu C, Hong SF, Tsai C, Lin WS, Liu TP, Ou JT, (1999). Comparative physical and genetic maps of the virulence plasmids of Salmonella enterica serovars typhimurium, enteritidis, choleraesuis, and Dublin. Infect Immun. 67, 2611-2614.
  • Rychlik I, Gregorova D, Hradecka H, (2006). Distribution and function of plasmids in Salmonella enterica. Vet Microbiol. 112, 1-10.
  • Fierer J, Eckmann L, Fang F, Pfeifer C, Finlay BB, Guiney D, (1993). Expression of the Salmonella virulence plasmid gene spvB in cultured macrophages and nonphagocytic cells. Infect Immun. 61, 5231-5236.
  • Guilloteau LA, Wallis TS, Gautier AV, Macintyre S, Platt DJ, Lax AJ, (1996). The Salmonella virulence plasmid enhances Salmonella-induced lysis of macrophages and influences inflammatory responses. Infect Immun. 64, 3385-3393.
  • Rhen M, Riikonen P, Taira S, (1993). Transcriptional regulation of Salmonella enterica virulence plasmid genes in cultured macrophages. Mol Microbiol. 10, 45-56.
  • Riikonen P, Makela PH, Saarilahti H, Sukupolvi S, Taira S, Rhen M, (1992). The virulence plasmid does not contribute to growth of Salmonella in cultured murine macrophages. Microb Pathog. 13, 281-291.
  • Gulig PA, Doyle TJ, Hughes JA, Matsui H, (1998). Analysis of host cells associated with the Spv-mediated increased intracellular growth rate of Salmonella typhimurium in mice. Infect Immun. 66, 2471-2485.
  • Vassiloyanakopoulos AP, Okamoto S, Fierer J, (1998). The crucial role of polymorphonuclear leukocytes in resistance to Salmonella dublin infections in genetically susceptible and resistant mice. Proc Natl Acad Sci. 95, 7676-7681.
  • Visca P, Filetici E, Anastasia MP, Vetriani C, Fantasia M, Orsi N, (1991). Siderophore production by Salmonella species isolated from different sources. FEMS Microb Letters. 79, 225-231.
  • Hantke K, Nicholson G, Rabsch W, Winkelmann (2003). Salmochellins, siderophores of Salmonella enterica and uropathogenic Escherichia coli strains, are recognized by the outer membrane receptor IroN. PNAS. 100, 3677-3682.
  • Diker KS, (2005). İmmunoloji. İkinci baskı. Medisan Yayın Evi, Ankara, p. 125-137.
  • Chart H, Row B, Threlfall, Ward LR, (1989). Conversion of Salmonella enteritidis phage type 4 to phage 7 involves loss of lipopoisaccharide concomitant loss of virulence. FEMS Microbiol Lett. 60, 37-40.
  • Guard-Petter J, Keller LH, Rahman MM, Carlson RW, Silvers S, (1996). A novel relationship between O-antigen variation, matrix formation, and invasiveness of Salmonella enteritidis. Epidemiol Infect. 117, 219-231.
  • Chopra AK, Hoang JH, Xu XJ, Burden K, Niesel DW, Rosenbaum MW, Popov VL, Peterson JW, (1999). Role of Salmonella enterotoxin in overall virulence of the organism. Microb Pathogen. 27, 155-171.
  • Haghjoo E, Galan JE, (2004). Salmonella typhi encodes a functional cytolethal distending toxin that is delivered into host cells by a bacterial internaliztion pathway. Proc Natl Acad Sci USA. 101, 4614-4619.
  • Bravo D, Silva C, Carter JA, Hoare A, Alverez SA, Blondel CJ, Zaldivar M, Valvano MA, Contreras I, (2008). Growth pahse regulation of lipopolisaccharide O-antigen chain length influences serum resistance in serovars of Salmonella. J Med Microbiol. 57, 938-946.
  • Rotger R, Casadesús I, (1999). The virulence plasmids of Salmonella. J Internatl Microbiol. 2,177–184.
  • Cirillo DM, Heffernan EJ, Wu L, Harwood J, Fierer J, Guiney DG, (1996). Identification of a domain in Rck, a product of the Salmonella typhimurium virulence plasmid, required for both serum resistance and cell invasion. Infect Immun. 64, 2019-2023.
  • Heffernan EJ, Harwood J, Fierer J, Guiney D, (1992). The Salmonella typhimurium virulence plasmid complement resistance gene rck is homologous to a family of virulence-related outer membrane protein genes, including pagC and ail. J Bacteriol. 174, 84- 91.
  • Heffernan EJ, Wu L, Louie J, Okamoto S, Fierer J, Guiney DG, (1994). Specificity of the complement resistance and cell association phenotypes encoded by the outer membrane protein genes rck from Salmonella typhimurium and ail from Yersinia enterocolitica. Infect Immun. 62, 5183-5186.
  • Chiu CH, Tang P, Chu C, Hu S, Bao Q, Yu J, Chou YY, Wang HS, Lee YS, (2005). The genome sequence of Salmonella enterica serovar Choleraesuis, a highly invasive and resistant zoonotic pathogen. Nucleic Acids Res. 21, 1690-1698.
  • Gunn JS, Alpuche-Aranda CM, Loomis WP, Belden WJ, Miller SI, (1995). Characterization of the Salmonella typhimurium pagC/ pagD chromosomal region. J Bacteriol. 177, 5040-5047.
  • Navarre WW, Halsey TA, Walthers D, Frye J, McClelland M, Potter JL, Kenney LJ, Gunn JS, Fang FC, Libby SJ, (2005). Co-regulation of Salmonella enterica genes required for virulence and resistance to antimicrobial peptides by SlyA and PhoP/PhoQ. Mol Microbiol. 56, 492-508.
  • Miller SI, Kukral AM, Mekalanos JJ, (1989). A two-component regulatory system (phoP phoQ) controls Salmonella typhimurium virulence. Proc Natl Acad Sci U S A. 86, 5054-5058.
  • Nishio M, Okada N, Miki T, Haneda T, Danbara H, (2005) Identification of the outer-membrane protein PagC required for the serum resistance phenotype in Salmonella enterica serovar Choleraesuis. Microbiology. 151, 863-873.
  • Hansen-Wester I, Hensel M, (2002). Genome-based identification of chromosomal regions specific for Salmonella spp. Infect Immun. 70, 2351-2560.
  • Miao EA, Brittnacher M, Haraga A, Jeng RL, Welch MD, Miller SI, (2003). Salmonella effectors translocated across the vacuolar membrane interact with the actin cytoskeleton. Mol Microbiol. 48, 401-415.
  • Miao EA, Scherer CA, Tsolis RM, Kingsley RA, Adams LG, Bäumler AJ, Miller SI, (1999). Salmonella typhimurium leucinerich repeat proteins are targeted to the SPI1 and SPI2 type III secretion systems. Mol Microbiol. 34, 850-864.
  • Shah DH, Lee MJ, Park JH, Lee JH, Eo SK, Kwon JT, Chae JS, (2005). Identification of Salmonella gallinarum virulence genes in a chicken infection model using PCR-based signature-tagged mutagenesis. Microbiology. 151, 3957-3568.
  • Boyd D, Peters GA, Cloeckaert A, Boumedine KS, Chaslus- Dancla E, Imberechts H, Mulvey MR, (2001). Complete nucleotide sequence of a 43-kilobase genomic island associated with the multidrug resistance region of Salmonella enterica serovar Typhimurium DT104 and its identification in phage type DT120 and serovar Agona. J Bacteriol. 183, 5725-532.
  • Doublet B, Boyd D, Mulvey MR, Cloeckaert A, (2005). The Salmonella genomic island 1 is an integrative mobilizable element. Mol Microbiol. 55, 1911-1924.
  • Oelschlaeger TA, Zhang D, Schubert S, Carniel E, Rabsch W, Karch H, Hacker J, (2003). The high-pathogenicity island is absent in human pathogens of Salmonella enterica subspecies I but present in isolates of subspecies III and VI. J Bacteriol. 185, 1107- 1111.
Toplam 56 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Veteriner Cerrahi
Bölüm Derleme
Yazarlar

Elçin Günaydın Bu kişi benim

Selahattin Şen Bu kişi benim

Yayımlanma Tarihi 1 Haziran 2012
Gönderilme Tarihi 1 Aralık 2012
Yayımlandığı Sayı Yıl 2012 Cilt: 23 Sayı: 1

Kaynak Göster

APA Günaydın, E., & Şen, S. (2012). Salmonella klasik virulans faktörleri ve patojenite adaları (11, 12, 13, 14, 15, 16, SGA-1, YPA). Etlik Veteriner Mikrobiyoloji Dergisi, 23(1), 32-38.


15430