Derleme
BibTex RIS Kaynak Göster

Yarasa kaynaklı zoonotik viruslar

Yıl 2023, Cilt: 34 Sayı: 2, 211 - 218, 28.12.2023
https://doi.org/10.35864/evmd.1321675

Öz

Yarasalar böcek popülasyonlarının dengelenmesi, bitkilerin tozlaşması ve tohumların yayılması gibi önemli ekolojik katkıları bulunan, çok farklı habitatlarda yaşayabilen ve rodentlerden sonra Memeliler sınıfının en fazla çeşitlilik gösteren takımıdır. Yarasalar vücut büyüklüklerine oranla oldukça uzun yaşamaları, uzak mesafelere uçabilme ve göç etme yetenekleri, tüneme, sosyal organizasyon, hibernasyon, termoregülasyon, ekolokasyon, torpor ve kuvvetli bağışıklık sistemi mekanizmaları sonucu zoonotik viral hastalıklar da dahil olmak üzere pek çok mikroorganizma için rezervuar konaktır. Virusların pek çoğunun doğal yaşam döngüsünde yer alan ve bünyelerinde zengin bir virus çeşitliliğine sahip olan yarasalardan insanlara virusların bulaşması, doğrudan veya yabani ve çiftlik hayvanları ara konaklığıyla olmaktadır. Yarasaların eskiden beri Rhabdoviridae ailesinden Kuduz lyssavirusu ve diğer kuduz-ilişkili lyssavirusları taşıdıkları bilgisine ek olarak, Coronaviridae ailesinden SARS-CoV ve MERS-CoV, Filoviridae ailesinden Ebola ve Marburg viruslar ile Paramyxoviridae ailesinden Nipah ve Hendra viruslar gibi önemli viral zoonoz etkenlerin de doğal taşıyıcıları oldukları tespit edilmiştir. Bu derlemede yarasaların diğer hayvan türleri ile karşılaştırıldığında tür başına daha yüksek oranda zoonotik virusları taşımalarına katkıda bulunan çeşitli faktörler ve önemli bazı yarasa kaynaklı zoonotik viral hastalıklar hakkında genel bilgi verilmesi amaçlanmıştır.

Kaynakça

  • Adjemian J, Farnon EC, Tschioko F, Wamala JF, Byaruhanga E, Bwire GS, Kansiime E, Kagirita A, Ahimbisibwe S, Katunguka F, Jeffs B, Lutwama JJ, Downing R, Tappero JW, Formenty P, Amman B, Manning C, Towner J, Nichol ST, Rollin PE. (2011) Outbreak of Marburg hemorrhagic fever among miners in Kamwenge and Ibanda districts, Uganda, 2007. J. Infect. Dis. 204, 796-799.
  • Amman BR, Jones ME, Sealy TK, Uebelhoer LS, Schuh AJ, Bird BH, Coleman-McCray JD, Martin BE, Nichol ST, Towner JS. (2015) Oral shedding of Marburg virus in experimentally infected Egyptian fruit bats (Rousettus aegyptiacus). J. Wildl. Dis. 51(1), 113-124.
  • Anonim. (2023a) Subfamily: Alpharhabdovirinae Genus: Lyssavirus. Erişim adresi: https://ictv.global/report/chapter/rhabdoviridae/rhabdoviridae/lyssavirus, Erişim tarihi: 24.06.2023.
  • Anonim. (2023b) Current ICTV Taxonomy Release. Erişim adresi: https://ictv.global/taxonomy, Erişim tarihi: 24.06.2023.
  • Anonim. (2023c) Marburg virus disease. Erişim adresi: https://www.who.int/health-topics/marburg-virus-disease#tab=tab_1, Erişim tarihi: 24.06.2023.
  • Anonim. (2023d) Ebola virus disease. Erişim adresi: https://www.who.int/news-room/fact-sheets/detail/ebola-virus-disease?gclid=Cj0KCQjwnf-kBhCnARIsAFlg493Vnw1A6CScGPZe42c5w8Cwn-5p-ugK8V3CpNX7Kii1Ll9eljWdlmgaAvdmEALw_wcB, Erişim tarihi: 24.06.2023.
  • Beer B, Kurth R, Bukreyev A. (1999) Characteristics of Filoviridae: Marburg and Ebola viruses. Naturwissenschaften. 86(1), 8-17.
  • Benkő M, Harrach B, Kremer EJ. (2014) Do nonhuman primate or bat adenoviruses pose a risk for human health?. Future Microbiol. 9(3), 269-272.
  • Calisher CH, Childs JE, Field HE, Holmes KV, Schountz T. (2006) Bats: important reservoir hosts of emerging viruses. Clin Microbiol Rev. 19(3), 531-545.
  • Calisher C.H. (2015) Viruses In Bats: A Historic Review. Wang LF, Cowled C. eds. Bats and Viruses A New Frontier of Emerging Infectious Diseases. John Wiley & Sons, Canada.
  • Chafekar A, Fielding BC. (2018) MERS-CoV: Understanding the Latest Human Coronavirus Threat. Viruses. 10(2), 93.
  • Chege HN, Schepers C, Wolfaardt GJJ. (2015) Documenting the bat species assemblages of the Meletse Bat Research and Conservation Training Centre in Limpopo Province, Thabazimbi. South Africa African Bat Conserv News. 38, 5-8.
  • Clayton BA, Wang LF, Marsh GA. (2013) Henipaviruses: an updated review focusing on the pteropid reservoir and features of transmission. Zoonoses Public Health. 60(1), 69-83.
  • Clyde WC, Koch SN, Gunnell PL, Bartels GFWS. (2001) Linking the Wasatchian/Bridgerian boundary to the Cenzoic Global Climate Optimum: new magnetostratiographic and isotopic results from South Pass, Wyoming. Palaeogeogr Palaeoclimatol Palaeoecol. 167(1-2), 175-199.
  • Decaro N, Buonavoglia C. (2008) An update on canine coronaviruses: viral evolution and pathobiology. Vet Microbiol.132(3-4), 221-234.
  • Dobson AP. (2005) What links bats to emerging infectious diseases?. Science. 310(5748), 628- 629. Fogarty R, Halpin K, Hyatt AD, Daszak P, Mungall BA. (2008) Henipavirus susceptibility to environmental variables. Virus Res. 132(1-2), 140-144. Ge XY, Li JL, Yang XL, Chmura AA, Zhu G, Epstein JH, Mazet JK, Hu B, Zhang W, Peng C,
  • Zhang YJ, Luo CM, Tan B, Wang N, Zhu Y, Crameri G, Zhang SY, Wang LF, Daszak P, Shi ZL. (2013) Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature. 503(7477), 535-538.
  • Gerow CM, Rapin N, Voordouw MJ, Elliot M, Misra V, Subudhi S. (2019) Arousal from hibernation and reactivation of Eptesicus fuscus gammaherpesvirus (EfHV) in big brown bats. Transbound Emerg Dis. 66, 1054-1062.
  • Gonzalez V, Banerjee A. (2022) Molecular, ecological, and behavioral drivers of the bat-virus relationship. iScience. 25(8), 104779.
  • Greenhall AM. (1993) Ecology and bionomics of vampire bats in Latin America. Greenhall AM, Artois M, Fekadu M. eds. Bats and Rabies. Fondation Marcel Mérieux, Lyon.
  • Hayes MA, Piaggio AJ. (2018) Assessing the potential impacts of a changing climate on the distribution of a rabies virus vector. PLoS One. 13, e0192887. Hayman DT, Bowen RA, Cryan PM, McCracken GF, O'Shea TJ, Peel AJ, Gilbert A, Webb
  • CT, Wood JLN. (2013) Ecology of zoonotic infectious diseases in bats: current knowledge and future directions. Zoonoses Public Hlth. 60(1), 2-21.
  • Hayman DT. (2016) Bats as viral reservoirs. Annu Rev Virol. 3(1), 77-99. Hu B, Ge X, Wang LF, Shi Z. (2015) Bat origin of human coronaviruses. Virol J.12(1), 221. Hu B, Zeng L, Yang X, Ge X, Zhang W, Li B, Xie JZ, Shen XR, Zhang YZ, Wang N, Luo, DS,
  • Zheng X, Wang M, Daszak P, Wang L, Cui J, Shi Z. (2017) Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus. PLoS Pathog. 13(11), e1006698. Joffrin L, Dietrich M, Mavingui P, Lebarbenchon C. (2018) Bat pathogens hit the road: But which one?. PLoS Pathog. 14(8), e1007134.
  • Jones ME, Schuh AJ, Amman BR, Sealy TK, Zaki SR, Nichol S, Towner JS. (2015) Experimental inoculation of Egyptian Rousette bats (Rousettus aegyptiacus) with viruses of the Ebolavirus and Marburgvirus Genera. Viruses. 7, 3420-3442.
  • Kunz T, Fenton, MB, eds. (2003) Bat Ecology. Bibliovault OAI Repository: the University of Chicago Press.
  • Leendertz SA, Gogarten JF, Dux A, Calvignac-Spencer S, Leendertz FH. (2016) Assessing the evidence supporting fruit bats as the primary reservoirs for Ebola viruses. Ecohealth, 13(1), 18-25. Leroy EM, Rouquet P, Formenty P, Souquière S, Kilbourne A, Froment JM, Bermejo M, Smit
  • S, Karesh W, Swanepoel R, Zaki SR, Rollin PE. (2004) Multiple Ebola virus transmission events and rapid decline of central African wildlife. Science. 303(5656), 387-390.
  • Letko M, Seifert SN, Olival KJ, Plowright RK, Munster VJ. (2020) Bat-borne virus diversity, spillover and emergence. Nat Rev Microbiol. 18(8), 461-471. Luby S, Rahman M, Hossain M, Blum L, Husain M, Gurley E, Khan R, Ahmed BN, Rahman,
  • S, Nahar N, Kenah E, Comer JA, Ksiazek TG. (2006) Foodborne transmission of Nipah virus, Bangladesh. Emerging Infect Dis. 12(12), 1888-1894.
  • Luis AD, Hayman DT, O’Shea TJ, Cryan PM, Gilbert AT, Pulliam JR, Mills JN, Timonin ME, Willis CK, Cunningham AA, Fooks AR, Rupprecht CE, Wood JLN, Webb CT. (2013) A comparison of bats and rodents as reservoirs of zoonotic viruses: are bats special? Proc R Soc B: Biol Sci. 280(1756), 20122753.
  • Luis AD, O’Shea TJ, Hayman DTS, Wood JLN, Cunningham AA, Gilbert AT, Mills JN, Webb CT. (2015) Network analysis of host-virus communities in bats and rodents reveals determinants of cross-species transmission. Ecol Lett. 18, 1153-1162.
  • Miller MR, McMinn RJ, Misra V, Schountz T, Müller MA, Kurth A, Munster VJ. (2016) Broad and temperature independent replication potential of Filoviruses on cells derived from old and new world bat species. J Infect Dis. 214, S297-S302.
  • Moratelli R, Calisher CH. (2015) Bats and zoonotic viruses: Can we confidently link bats with emerging deadly viruses?. Mem Inst Oswaldo Cruz. 110(1), 1-22.
  • Müller MA, Corman VM, Jores J, Meyer B, Younan M, Liljander A, Bosch BJ, Lattwein E, Hilali M, Musa BE, Bornstein S, Drosten C. (2014) MERS Coronavirus neutralizing antibodies in camels, Eastern Africa, 1983-1997. Emerging Infect Dis. 20(12), 2093-2095.
  • Nowak RM, Walker EP, Kunz TH, Pierson ED, eds. (1994)Walker’ Bats of the World. Baltimore: JHU Press.
  • Olival KJ, Hayman DT. (2014) Filoviruses in bats: current knowledge and future directions. Viruses. 6(4), 1759-1788.
  • Olival KJ, Hosseini PR, Zambrana-Torrelio C, Ross N, Bogich TL, Daszak P. (2017) Host and viral traits predict zoonotic spillover from mammals. Nature. 546(7660), 646-650.
  • O’Shea TJ, Cryan PM, Cunningham AA, Fooks AR, Hayman DTSS, Luis AD, Peel AJ,
  • Plowright RK, Wood, JLNN. (2014) Bat flight and zoonotic viruses. Emerg Infect Dis. 20, 741-745.
  • Pawan JL. (1936) The transmission of paralytic rabies in Trinidad by the vampire bat (Desmodus rotundus murinus Wagner, 1840). Ann trop med parasitol. 30(1), 101-130.
  • Pawan JL. (1948) Fruit‐eating bats and paralytic rabies in Trinidad. Ann. trop. med. parasitol. 42(2), 173-177.
  • Pavlovich SS, Lovett SP, Koroleva G, Guito JC, Arnold, CE, Nagle ER, Kulcsar K, Lee A,
  • Thibaud-Nissen F, Hume AJ, Mühlberger E, Uebelhoer LS, Towner JS, Rabadan R, Sanchez-Lockhart M, Kepler
  • TB, Palacios G. (2018) The Egyptian rousette genome reveals unexpected features of bat antiviral immunity. Cell. 173, 1-13.
  • Piercy TJ, Smither SJ, Steward JA, Eastaugh L, Lever MS. (2010) The survival of filoviruses in liquids, on solid substrates and in a dynamic aerosol. J Appl Microbiol. 109(5), 1531-1539.
  • Plowright RK, Foley P, Field HE, Dobson AP, Foley JE, Eby P, Daszak P. (2011) Urban habituation, ecological connectivity and epidemic dampening: the emergence of Hendra virus from flying foxes (Pteropus spp.). Proc R Soc B: Biol Sci. 278(1725), 3703-3712.
  • Plowright RK, Eby P, Hudson PJ, Smith IL, Westcott D, Bryden WL, Middleton D, Reid PA,
  • McFarlane RA, Martin G, Tabor GM, Skerratt LF, Anderson DL, Crameri G, Quammen D, Jordan D, Freeman P, Wang LF, Epstein JH, Marsh GA, Kung NY, McCallum H. (2015) Ecological dynamics of emerging bat virus spillover. Proc R Soc B: Biol Sci. 282(1798), 20142124.
  • Pulliam JRC, Epstein JH, Dushoff J, Rahman SA, Bunning M, Jamaluddin AA, Hyatt AD, Field HE, Dobson AP, Daszak P. (2012) Agricultural intensification, priming for persistence and the emergence of Nipah virus: a lethal bat-borne zoonosis. J R Soc Interface. 9(66), 89-101.
  • Richter HV, Cumming GS. (2006) Food availability and annual migration of the straw-colored fruit bat (Eidolon helvum). J Zool. 268, 35-44.
  • Rodhain F. (2015) Bats and Viruses: complex relationships. Bull Soc Pathol Exot. 108(4), 272- 289.
  • Salmon AB, Leonard S, Masamsetti V, Pierce A, Podlutsky AJ, Podlutskaya N, Richardson A, Austad SN, Chaudhuri AR. (2009) The long lifespan of two bat species is correlated with resistance to protein oxidation and enhanced protein homeostasis. FASEB J. 23, 2317-2326.
  • Schountz T, Baker ML, Butler J, Munster V. (2017) Immunological control of viral infections in bats and the emergence of viruses highly pathogenic to humans. Front Immunol. 8, 1098.
  • Schuh AJ, Amman BR, Sealy TK, Spengler JR, Nichol ST, Towner JS. (2017) Egyptian rousette bats maintain long-term protective immunity against Marburg virus infection despite diminished antibody levels. Sci Rep.7(1), 8763.
  • Shabman RS, Shrivastava S, Tsibane T, Attie O, Jayaprakash A, Mire CE, Dilley KE, Puri V,
  • Stockwell TB, Geisbert TW, Sachidanandam R, Basler CF (2016) Isolation and characterization of a novel Gammaherpesvirus from a microbat cell line. mSphere. 1(1), e00070-15.
  • Sherwin HA, Montgomery WI, Lundy MG. (2013) The impact and implications of climate change for bats. Mamm. Rev. 43, 171-182.
  • Towner JS, Amman BR, Sealy TK, Reeder Carroll SA, Comer JA, Kemp A, Swanepoel R, Paddock CD, Balinandi S, Khristova ML, Formenty PBH, Albarino CG, Miller DM, Reed ZD, Kayiwa JT, Mills JN,
  • Cannon DL, Greer PW, Byaruhanga E, Farnon EC, Atimnedi P, Okware S, Katongole-Mbidde E, Downing R, Tappero JW, Zaki SR, Ksiazek TG, Nichol ST, Rollin PE. (2009) Isolation of genetically diverse Marburg viruses from Egyptian fruit bats. PLoS Pathog. 5, 1-9.
  • Vijaykrishna D, Smith GJ, Zhang JX, Peiris JS, Chen H, Guan Y. (2007) Evolutionary insights into the ecology of coronaviruses. J Virol. 81(8), 4012-4020.
  • Wang LF, Walker PJ, Poon LLM. (2011) Mass extinctions, biodiversity and mitochondrial function: Are bats “special” as reservoirs for emerging viruses?. Curr Opin Virol. 1, 649-657.
  • Wang LF, Anderson DE. (2019) Viruses in bats and potential spillover to animals and humans. Curr Opin Virol. 34, 79-89.
  • Weinstein RA. (2004) Planning for epidemics-the lessons of SARS. N Engl J Med. 350(3), 2332-2334. Wilson DE, Reeder DAM, eds. (2005) Mammal Species of the World: A Taxonomic and Geographic Reference. Baltimore: JHU Press, Volume 2.
  • Woo PC, Lau SK, Huang Y, Yuen KY. (2009) Coronavirus diversity, phylogeny and interspecies jumping. Exp Biol Med. 234(10), 1117-1127.
  • Woo PCY, Lau SKP. (2019) Viruses and Bats. Viruses. 11(10), 884. https://doi.org/10.3390/v11100884.
  • Yang L, Wu Z, Ren X, Yang F, Zhang J, He G, Dong J, Sun L, Zhu Y, Zhang S, Jin Q. (2014) MERS-related betacoronavirus in Vespertilio superans bats, China. Emerging Infect Dis. 20(7), 1260-1262.
  • Zhang G, Cowled C, Shi Z, Huang Z, Bishop-Lilly KA, Fang X, Wynne JW, Xiong Z, Baker ML, Zhao W, Tachedjian M, Zhu Y, Zhou P, Jiang X, Ng J, Yang L, Wu L, Xiao J, Feng Y, Chen Y, Sun X, Zhang Y,
  • Marsh GA, Crameri G, Broder CC, Frey KG, Wang LF, Wang J. (2013) Comparative analysis of bat genomes. Science. 339, 456-460.
  • Zhou P, Tachedjian M, Wynne JW, Boyd V, Cui J, Smith I, Cowled C, Ng JHJ, Mok L, Michalski WP, Mendenhall IH, Tachedjian G, Wang LF, Baker ML. (2016) Contraction of the type i IFN locus and unusual constitutive expression of IFN-a in bats. Proc Natl Acad Sci USA. 113, 2696-2701.

Bat-borne zoonotic viruses

Yıl 2023, Cilt: 34 Sayı: 2, 211 - 218, 28.12.2023
https://doi.org/10.35864/evmd.1321675

Öz

Bats are the most diverse order of Mammalia class after rodents, having important ecological contributions such as stabilization of insect populations, pollination of plants and dispersal of seeds, and can live in very different habitats. Bats are reservoir hosts for many microorganisms, including zoonotic viral diseases, as a result of their relatively long lifespan, ability to fly long distances and migrate, roost, social organization, hibernation, thermoregulation, echolocation, torpor, and strong immune system mechanisms. The transmission of viruses from bats which have a rich virus diversity in their body and most of them take place in their natural life cycle, to human occurs directly or through the intermediate host of wild and farm animals. In addition to the information that bats have been carrying Lyssavirus rabies and other rabies-related lyssaviruses from the Rhabdoviridae family, which has been known for a long time, it has been determined that they are also natural carriers of important viral zoonotic agents such as SARS-CoV and MERS-CoV from the Coronaviridae family, Ebola and Marburg viruses from the Filoviridae family and Nipah and Hendra viruses from the Paramyxoviridae family. In this review, it is aimed to give general information about various factors that contribute to the fact that bats carry a higher rate of zoonotic viruses per species compared to other animal species and some important bat-borne zoonotic viral diseases.

Kaynakça

  • Adjemian J, Farnon EC, Tschioko F, Wamala JF, Byaruhanga E, Bwire GS, Kansiime E, Kagirita A, Ahimbisibwe S, Katunguka F, Jeffs B, Lutwama JJ, Downing R, Tappero JW, Formenty P, Amman B, Manning C, Towner J, Nichol ST, Rollin PE. (2011) Outbreak of Marburg hemorrhagic fever among miners in Kamwenge and Ibanda districts, Uganda, 2007. J. Infect. Dis. 204, 796-799.
  • Amman BR, Jones ME, Sealy TK, Uebelhoer LS, Schuh AJ, Bird BH, Coleman-McCray JD, Martin BE, Nichol ST, Towner JS. (2015) Oral shedding of Marburg virus in experimentally infected Egyptian fruit bats (Rousettus aegyptiacus). J. Wildl. Dis. 51(1), 113-124.
  • Anonim. (2023a) Subfamily: Alpharhabdovirinae Genus: Lyssavirus. Erişim adresi: https://ictv.global/report/chapter/rhabdoviridae/rhabdoviridae/lyssavirus, Erişim tarihi: 24.06.2023.
  • Anonim. (2023b) Current ICTV Taxonomy Release. Erişim adresi: https://ictv.global/taxonomy, Erişim tarihi: 24.06.2023.
  • Anonim. (2023c) Marburg virus disease. Erişim adresi: https://www.who.int/health-topics/marburg-virus-disease#tab=tab_1, Erişim tarihi: 24.06.2023.
  • Anonim. (2023d) Ebola virus disease. Erişim adresi: https://www.who.int/news-room/fact-sheets/detail/ebola-virus-disease?gclid=Cj0KCQjwnf-kBhCnARIsAFlg493Vnw1A6CScGPZe42c5w8Cwn-5p-ugK8V3CpNX7Kii1Ll9eljWdlmgaAvdmEALw_wcB, Erişim tarihi: 24.06.2023.
  • Beer B, Kurth R, Bukreyev A. (1999) Characteristics of Filoviridae: Marburg and Ebola viruses. Naturwissenschaften. 86(1), 8-17.
  • Benkő M, Harrach B, Kremer EJ. (2014) Do nonhuman primate or bat adenoviruses pose a risk for human health?. Future Microbiol. 9(3), 269-272.
  • Calisher CH, Childs JE, Field HE, Holmes KV, Schountz T. (2006) Bats: important reservoir hosts of emerging viruses. Clin Microbiol Rev. 19(3), 531-545.
  • Calisher C.H. (2015) Viruses In Bats: A Historic Review. Wang LF, Cowled C. eds. Bats and Viruses A New Frontier of Emerging Infectious Diseases. John Wiley & Sons, Canada.
  • Chafekar A, Fielding BC. (2018) MERS-CoV: Understanding the Latest Human Coronavirus Threat. Viruses. 10(2), 93.
  • Chege HN, Schepers C, Wolfaardt GJJ. (2015) Documenting the bat species assemblages of the Meletse Bat Research and Conservation Training Centre in Limpopo Province, Thabazimbi. South Africa African Bat Conserv News. 38, 5-8.
  • Clayton BA, Wang LF, Marsh GA. (2013) Henipaviruses: an updated review focusing on the pteropid reservoir and features of transmission. Zoonoses Public Health. 60(1), 69-83.
  • Clyde WC, Koch SN, Gunnell PL, Bartels GFWS. (2001) Linking the Wasatchian/Bridgerian boundary to the Cenzoic Global Climate Optimum: new magnetostratiographic and isotopic results from South Pass, Wyoming. Palaeogeogr Palaeoclimatol Palaeoecol. 167(1-2), 175-199.
  • Decaro N, Buonavoglia C. (2008) An update on canine coronaviruses: viral evolution and pathobiology. Vet Microbiol.132(3-4), 221-234.
  • Dobson AP. (2005) What links bats to emerging infectious diseases?. Science. 310(5748), 628- 629. Fogarty R, Halpin K, Hyatt AD, Daszak P, Mungall BA. (2008) Henipavirus susceptibility to environmental variables. Virus Res. 132(1-2), 140-144. Ge XY, Li JL, Yang XL, Chmura AA, Zhu G, Epstein JH, Mazet JK, Hu B, Zhang W, Peng C,
  • Zhang YJ, Luo CM, Tan B, Wang N, Zhu Y, Crameri G, Zhang SY, Wang LF, Daszak P, Shi ZL. (2013) Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature. 503(7477), 535-538.
  • Gerow CM, Rapin N, Voordouw MJ, Elliot M, Misra V, Subudhi S. (2019) Arousal from hibernation and reactivation of Eptesicus fuscus gammaherpesvirus (EfHV) in big brown bats. Transbound Emerg Dis. 66, 1054-1062.
  • Gonzalez V, Banerjee A. (2022) Molecular, ecological, and behavioral drivers of the bat-virus relationship. iScience. 25(8), 104779.
  • Greenhall AM. (1993) Ecology and bionomics of vampire bats in Latin America. Greenhall AM, Artois M, Fekadu M. eds. Bats and Rabies. Fondation Marcel Mérieux, Lyon.
  • Hayes MA, Piaggio AJ. (2018) Assessing the potential impacts of a changing climate on the distribution of a rabies virus vector. PLoS One. 13, e0192887. Hayman DT, Bowen RA, Cryan PM, McCracken GF, O'Shea TJ, Peel AJ, Gilbert A, Webb
  • CT, Wood JLN. (2013) Ecology of zoonotic infectious diseases in bats: current knowledge and future directions. Zoonoses Public Hlth. 60(1), 2-21.
  • Hayman DT. (2016) Bats as viral reservoirs. Annu Rev Virol. 3(1), 77-99. Hu B, Ge X, Wang LF, Shi Z. (2015) Bat origin of human coronaviruses. Virol J.12(1), 221. Hu B, Zeng L, Yang X, Ge X, Zhang W, Li B, Xie JZ, Shen XR, Zhang YZ, Wang N, Luo, DS,
  • Zheng X, Wang M, Daszak P, Wang L, Cui J, Shi Z. (2017) Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus. PLoS Pathog. 13(11), e1006698. Joffrin L, Dietrich M, Mavingui P, Lebarbenchon C. (2018) Bat pathogens hit the road: But which one?. PLoS Pathog. 14(8), e1007134.
  • Jones ME, Schuh AJ, Amman BR, Sealy TK, Zaki SR, Nichol S, Towner JS. (2015) Experimental inoculation of Egyptian Rousette bats (Rousettus aegyptiacus) with viruses of the Ebolavirus and Marburgvirus Genera. Viruses. 7, 3420-3442.
  • Kunz T, Fenton, MB, eds. (2003) Bat Ecology. Bibliovault OAI Repository: the University of Chicago Press.
  • Leendertz SA, Gogarten JF, Dux A, Calvignac-Spencer S, Leendertz FH. (2016) Assessing the evidence supporting fruit bats as the primary reservoirs for Ebola viruses. Ecohealth, 13(1), 18-25. Leroy EM, Rouquet P, Formenty P, Souquière S, Kilbourne A, Froment JM, Bermejo M, Smit
  • S, Karesh W, Swanepoel R, Zaki SR, Rollin PE. (2004) Multiple Ebola virus transmission events and rapid decline of central African wildlife. Science. 303(5656), 387-390.
  • Letko M, Seifert SN, Olival KJ, Plowright RK, Munster VJ. (2020) Bat-borne virus diversity, spillover and emergence. Nat Rev Microbiol. 18(8), 461-471. Luby S, Rahman M, Hossain M, Blum L, Husain M, Gurley E, Khan R, Ahmed BN, Rahman,
  • S, Nahar N, Kenah E, Comer JA, Ksiazek TG. (2006) Foodborne transmission of Nipah virus, Bangladesh. Emerging Infect Dis. 12(12), 1888-1894.
  • Luis AD, Hayman DT, O’Shea TJ, Cryan PM, Gilbert AT, Pulliam JR, Mills JN, Timonin ME, Willis CK, Cunningham AA, Fooks AR, Rupprecht CE, Wood JLN, Webb CT. (2013) A comparison of bats and rodents as reservoirs of zoonotic viruses: are bats special? Proc R Soc B: Biol Sci. 280(1756), 20122753.
  • Luis AD, O’Shea TJ, Hayman DTS, Wood JLN, Cunningham AA, Gilbert AT, Mills JN, Webb CT. (2015) Network analysis of host-virus communities in bats and rodents reveals determinants of cross-species transmission. Ecol Lett. 18, 1153-1162.
  • Miller MR, McMinn RJ, Misra V, Schountz T, Müller MA, Kurth A, Munster VJ. (2016) Broad and temperature independent replication potential of Filoviruses on cells derived from old and new world bat species. J Infect Dis. 214, S297-S302.
  • Moratelli R, Calisher CH. (2015) Bats and zoonotic viruses: Can we confidently link bats with emerging deadly viruses?. Mem Inst Oswaldo Cruz. 110(1), 1-22.
  • Müller MA, Corman VM, Jores J, Meyer B, Younan M, Liljander A, Bosch BJ, Lattwein E, Hilali M, Musa BE, Bornstein S, Drosten C. (2014) MERS Coronavirus neutralizing antibodies in camels, Eastern Africa, 1983-1997. Emerging Infect Dis. 20(12), 2093-2095.
  • Nowak RM, Walker EP, Kunz TH, Pierson ED, eds. (1994)Walker’ Bats of the World. Baltimore: JHU Press.
  • Olival KJ, Hayman DT. (2014) Filoviruses in bats: current knowledge and future directions. Viruses. 6(4), 1759-1788.
  • Olival KJ, Hosseini PR, Zambrana-Torrelio C, Ross N, Bogich TL, Daszak P. (2017) Host and viral traits predict zoonotic spillover from mammals. Nature. 546(7660), 646-650.
  • O’Shea TJ, Cryan PM, Cunningham AA, Fooks AR, Hayman DTSS, Luis AD, Peel AJ,
  • Plowright RK, Wood, JLNN. (2014) Bat flight and zoonotic viruses. Emerg Infect Dis. 20, 741-745.
  • Pawan JL. (1936) The transmission of paralytic rabies in Trinidad by the vampire bat (Desmodus rotundus murinus Wagner, 1840). Ann trop med parasitol. 30(1), 101-130.
  • Pawan JL. (1948) Fruit‐eating bats and paralytic rabies in Trinidad. Ann. trop. med. parasitol. 42(2), 173-177.
  • Pavlovich SS, Lovett SP, Koroleva G, Guito JC, Arnold, CE, Nagle ER, Kulcsar K, Lee A,
  • Thibaud-Nissen F, Hume AJ, Mühlberger E, Uebelhoer LS, Towner JS, Rabadan R, Sanchez-Lockhart M, Kepler
  • TB, Palacios G. (2018) The Egyptian rousette genome reveals unexpected features of bat antiviral immunity. Cell. 173, 1-13.
  • Piercy TJ, Smither SJ, Steward JA, Eastaugh L, Lever MS. (2010) The survival of filoviruses in liquids, on solid substrates and in a dynamic aerosol. J Appl Microbiol. 109(5), 1531-1539.
  • Plowright RK, Foley P, Field HE, Dobson AP, Foley JE, Eby P, Daszak P. (2011) Urban habituation, ecological connectivity and epidemic dampening: the emergence of Hendra virus from flying foxes (Pteropus spp.). Proc R Soc B: Biol Sci. 278(1725), 3703-3712.
  • Plowright RK, Eby P, Hudson PJ, Smith IL, Westcott D, Bryden WL, Middleton D, Reid PA,
  • McFarlane RA, Martin G, Tabor GM, Skerratt LF, Anderson DL, Crameri G, Quammen D, Jordan D, Freeman P, Wang LF, Epstein JH, Marsh GA, Kung NY, McCallum H. (2015) Ecological dynamics of emerging bat virus spillover. Proc R Soc B: Biol Sci. 282(1798), 20142124.
  • Pulliam JRC, Epstein JH, Dushoff J, Rahman SA, Bunning M, Jamaluddin AA, Hyatt AD, Field HE, Dobson AP, Daszak P. (2012) Agricultural intensification, priming for persistence and the emergence of Nipah virus: a lethal bat-borne zoonosis. J R Soc Interface. 9(66), 89-101.
  • Richter HV, Cumming GS. (2006) Food availability and annual migration of the straw-colored fruit bat (Eidolon helvum). J Zool. 268, 35-44.
  • Rodhain F. (2015) Bats and Viruses: complex relationships. Bull Soc Pathol Exot. 108(4), 272- 289.
  • Salmon AB, Leonard S, Masamsetti V, Pierce A, Podlutsky AJ, Podlutskaya N, Richardson A, Austad SN, Chaudhuri AR. (2009) The long lifespan of two bat species is correlated with resistance to protein oxidation and enhanced protein homeostasis. FASEB J. 23, 2317-2326.
  • Schountz T, Baker ML, Butler J, Munster V. (2017) Immunological control of viral infections in bats and the emergence of viruses highly pathogenic to humans. Front Immunol. 8, 1098.
  • Schuh AJ, Amman BR, Sealy TK, Spengler JR, Nichol ST, Towner JS. (2017) Egyptian rousette bats maintain long-term protective immunity against Marburg virus infection despite diminished antibody levels. Sci Rep.7(1), 8763.
  • Shabman RS, Shrivastava S, Tsibane T, Attie O, Jayaprakash A, Mire CE, Dilley KE, Puri V,
  • Stockwell TB, Geisbert TW, Sachidanandam R, Basler CF (2016) Isolation and characterization of a novel Gammaherpesvirus from a microbat cell line. mSphere. 1(1), e00070-15.
  • Sherwin HA, Montgomery WI, Lundy MG. (2013) The impact and implications of climate change for bats. Mamm. Rev. 43, 171-182.
  • Towner JS, Amman BR, Sealy TK, Reeder Carroll SA, Comer JA, Kemp A, Swanepoel R, Paddock CD, Balinandi S, Khristova ML, Formenty PBH, Albarino CG, Miller DM, Reed ZD, Kayiwa JT, Mills JN,
  • Cannon DL, Greer PW, Byaruhanga E, Farnon EC, Atimnedi P, Okware S, Katongole-Mbidde E, Downing R, Tappero JW, Zaki SR, Ksiazek TG, Nichol ST, Rollin PE. (2009) Isolation of genetically diverse Marburg viruses from Egyptian fruit bats. PLoS Pathog. 5, 1-9.
  • Vijaykrishna D, Smith GJ, Zhang JX, Peiris JS, Chen H, Guan Y. (2007) Evolutionary insights into the ecology of coronaviruses. J Virol. 81(8), 4012-4020.
  • Wang LF, Walker PJ, Poon LLM. (2011) Mass extinctions, biodiversity and mitochondrial function: Are bats “special” as reservoirs for emerging viruses?. Curr Opin Virol. 1, 649-657.
  • Wang LF, Anderson DE. (2019) Viruses in bats and potential spillover to animals and humans. Curr Opin Virol. 34, 79-89.
  • Weinstein RA. (2004) Planning for epidemics-the lessons of SARS. N Engl J Med. 350(3), 2332-2334. Wilson DE, Reeder DAM, eds. (2005) Mammal Species of the World: A Taxonomic and Geographic Reference. Baltimore: JHU Press, Volume 2.
  • Woo PC, Lau SK, Huang Y, Yuen KY. (2009) Coronavirus diversity, phylogeny and interspecies jumping. Exp Biol Med. 234(10), 1117-1127.
  • Woo PCY, Lau SKP. (2019) Viruses and Bats. Viruses. 11(10), 884. https://doi.org/10.3390/v11100884.
  • Yang L, Wu Z, Ren X, Yang F, Zhang J, He G, Dong J, Sun L, Zhu Y, Zhang S, Jin Q. (2014) MERS-related betacoronavirus in Vespertilio superans bats, China. Emerging Infect Dis. 20(7), 1260-1262.
  • Zhang G, Cowled C, Shi Z, Huang Z, Bishop-Lilly KA, Fang X, Wynne JW, Xiong Z, Baker ML, Zhao W, Tachedjian M, Zhu Y, Zhou P, Jiang X, Ng J, Yang L, Wu L, Xiao J, Feng Y, Chen Y, Sun X, Zhang Y,
  • Marsh GA, Crameri G, Broder CC, Frey KG, Wang LF, Wang J. (2013) Comparative analysis of bat genomes. Science. 339, 456-460.
  • Zhou P, Tachedjian M, Wynne JW, Boyd V, Cui J, Smith I, Cowled C, Ng JHJ, Mok L, Michalski WP, Mendenhall IH, Tachedjian G, Wang LF, Baker ML. (2016) Contraction of the type i IFN locus and unusual constitutive expression of IFN-a in bats. Proc Natl Acad Sci USA. 113, 2696-2701.
Toplam 70 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Veteriner Viroloji
Bölüm Derleme
Yazarlar

Müge Fırat 0000-0002-3899-8078

Yayımlanma Tarihi 28 Aralık 2023
Gönderilme Tarihi 2 Temmuz 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 34 Sayı: 2

Kaynak Göster

APA Fırat, M. (2023). Yarasa kaynaklı zoonotik viruslar. Etlik Veteriner Mikrobiyoloji Dergisi, 34(2), 211-218. https://doi.org/10.35864/evmd.1321675


15430