Araştırma Makalesi
BibTex RIS Kaynak Göster

ALMAN OTOMOBİL ENDÜSTRİSİ: BRENT PETROL VE ÇELİK'İN FİNANSAL ETKİLERİ

Yıl 2025, Cilt: 10 Sayı: 2, 226 - 235, 30.06.2025
https://doi.org/10.29106/fesa.1589578

Öz

Otomobil sektörü iki önemli kaynaktan beslenmektedir; çelik ve petrol. Bu nedenle çelik ve petrol endüstrilerinin mali yapısı hem otomotiv endüstrisi hem de sanayileşen dünya açısından büyük önem taşımaktadır. Dünya çelik pazarını anlamak için, dünya çelik liderliği olarak Çin çelik pazarına odaklanılmıştır. Bu makale, DCC GARCH (Dinamik Koşullu Korelasyon Çok Değişkenli GARCH) modellerini kullanarak bu üç sektörün finansal analizini yapmayı amaçlamaktadır. Ana bulgulara göre, Alman otomobil sektörünün mali yapısı büyük ölçüde Brent petrol getirilerinden etkilenmektedir. Çin çelik vadeli işlemlerinin getirilerinin, Alman otomobil markalarının getirileri üzerindeki etkisine dair istatistiksel bir kanıt bulunmamaktadır. Bu bulgular, Alman otomobil endüstrisinin çelik dalgalanmalarına ancak petrol dalgalanmalarına karşı mali bağışıklığa sahip olduğu anlamına gelebilir. Bu bağlamda Almanya'nın uluslararası ekonomi politikasının önemlidir. Diğer taraftan Alman otomobil devleri ve onların Çinli iştirakleriyle olan ilişkileri de sonucun bir başka parçası olabilir.

Kaynakça

  • Aggarwal, V., Doifode, A., & Tiwary, M. K. (2021). Volatility spillover impact of FII and MF net equity flows on the Indian sectoral stock indices: Recent evidence using BEKK-GARCH. International Journal of Indian Culture and Business Management, 22(3), 350–363. https://doi. org/10.1504/IJICBM.2021.114084
  • Alsharif, M. (2020). The Relationship between the Returns and Volatility of Stock and Oil Markets in the Last Two Decades: Evidence from Saudi Arabia. International Journal of Economics and Financial Issues, 10(4),
  • Arık, E., & Mutlu, E. (2014). Chinese steel market in the post-futures period. Resources Policy, 42, 10-17.
  • Basiewicz, P. G., & Auret, C. J. (2010). Feasibility of the Fama and French three factor model in explaining returns on the JSE. Investment Analysts Journal, 39(71), 13-25.
  • Bauwens, L., Laurent, S., & Rombouts, J. V. (2006). Multivariate GARCH models: a survey. Journal of Applied Econometrics, 21(1), 79–109. https://doi.org/ 10.1002/jae.842
  • Beckers, B., & Beidas-Strom, S. (2015). Forecasting the nominal Brent oil price with VARs—one model fits all? International Monetary Fund.
  • Belis-Bergouignan, M. C., Bordenave, G., & Lung, Y. (2000). Global strategies in the automobile industry. Regional studies, 34(1), 41-53.
  • Benedetto, F., Mastroeni, L., Quaresima, G., & Vellucci, P. (2020). Does OVX affect WTI and Brent oil spot variance? Evidence from an entropy analysis. Energy Economics, 89, 104815.
  • Blanchard, O. J. (1983). The production and inventory behaviour of the American automobile industry. Journal of Political Economy, 91(3), 365-400.
  • Bresnahan, T. F. (1987). Competition and collusion in the American automobile industry: The 1955 price war. The Journal of Industrial Economics, 457-482.
  • Chan, F. T., Chan, H. K., & Jain, V. (2012). A framework of reverse logistics for the automobile industry. International journal of production research, 50(5), 1318-1331.
  • Chen, W., Huang, Z., & Yi, Y. (2015). Is there a structural change in the persistence of WTI–Brent oil price spreads in the post-2010 period? Economic Modelling, 50, 64-71.
  • Dohse, K., Jürgens, U., & Nialsch, T. (1985). From" Fordism" to" Toyotism"? The social organization of the labour process in the Japanese automobile industry. Politics & Society, 14(2), 115-146.
  • Engle, R. (2002). Dynamic conditional correlation: A simple class of multivariate generalized autoregressive conditional heteroskedasticity models. Journal of business & economic statistics, 20(3), 339-350.
  • Engle, R. F., & Kroner, K. F. (1995). Multivariate Simultaneous Generalized ARCH. Econometric Theory, 11(1), 122–150. https://doi.org/10.1017/ S0266466600009063
  • Falát, L., & Holubčík, M. (2017). The influence of marketing communication on the financial situation of the company–a case from the automobile industry. Procedia Engineering, 192, 148-153.
  • Fama, E. F., & French, K. R. (1993). Common risk factors in the returns on stocks and bonds. Journal of financial economics, 33(1), 3-56.
  • Fama, E. F., & French, K. R. (2010). Luck versus skill in the cross‐section of mutual fund returns. The journal of finance, 65(5), 1915-1947.
  • Farberman, H. A. (1975). A criminogenic market structure: The automobile industry. Sociological Quarterly, 16(4), 438-457.
  • Filbeck, G., Kumar, S., Liu, J., & Zhao, X. (2016). Supply chain finance and financial contagion from disruptions-evidence from the automobile industry. International Journal of Physical Distribution & Logistics Management, 46(4).
  • Foye, J., Mramor, D., & Pahor, M. (2013). A respecified Fama French three‐factor model for the new European union member states. Journal of International Financial Management & Accounting, 24(1), 3-25.
  • Govindan, K., Kannan, D., & Noorul Haq, A. (2010). Analyzing supplier development criteria for the automobile industry. Industrial Management & Data Systems, 110(1), 43-62.
  • Hou, Y., & Li, S. (2016). Information transmission between US and China index futures markets: An asymmetric DCC GARCH approach. Economic Modelling, 52, 884-897.
  • İmre, S. (2021). Bitcoin ve Euro Arasındaki Volatilite Etkileşiminin Analizi. Uluslararası Ekonomik Araştırmalar Dergisi, 7(4), 1-13.
  • https://companiesmarketcap.com/automakers/largest-automakers-by-market-cap/. , 9.10.2023.
  • https://companiesmarketcap.com/largest-companies-by-revenue/, 9.10.2023,
  • Jones, P. M., & Olson, E. (2013). The time-varying correlation between uncertainty, output, and inflation: Evidence from a DCC-GARCH model. Economics Letters, 118(1), 33-37.
  • Kocoglu, S. (2024). Avrupa yenilenebilir enerji stoklarının volatilite karakteri: ERIX endeksi üzerine bir araştırma. Fiscaoeconomia, 8(1), 75-92.
  • Labson, S., Gooday, P., & Manson, A. (1995). China Steel. China's Emerging Steel Industry and its Impact on the World Iron Ore and Steel Market. Labson, BS, Gooday, P. and Manson, A.
  • Lee, K. H. (2012). Carbon accounting for supply chain management in the automobile industry. Journal of Cleaner Production, 36, 83-93.
  • Lin, R. J., Chen, R. H., & Huang, F. H. (2014). Green innovation in the automobile industry. Industrial Management & Data Systems, 114(6), 886-903.
  • Liu, W., & Yeung, H. W. C. (2008). China's dynamic industrial sector: the automobile industry. Eurasian Geography and Economics, 49(5), 523-548.
  • Liu, Y., Liu, Y., & Chen, J. (2015). The impact of the Chinese automotive industry: scenarios based on the national environmental goals. Journal of Cleaner Production, 96, 102-109.
  • Llopis-Albert, C., Rubio, F., & Valero, F. (2021). Impact of digital transformation on the automotive industry. Technological forecasting and social change, 162, 120343.
  • McPeak, C., & Guo, Y. (2014). How the “Go Green” trend influences the automotive industry's financial performance. Journal of Sustainability and Green Business, 2(1).
  • Mensi, W., Yousaf, I., Vo, X. V., & Kang, S. H. (2022). Asymmetric spillover and network connectedness between gold, BRENT oil and EU subsector markets. Journal of International Financial Markets, Institutions and Money, 76, 101487.
  • Al-Mwalla, M., & Karasneh, M. (2011). Fama and French three factor model: Evidence from emerging market. European Journal of Economics, Finance and Administrative Sciences, 41(14), 132-140.
  • Özdemir, L. (2025). Kripto Paraların Volatilite Düzeylerinin Asimetrik Garch Modeli İle Karşılaştırılması. Ömer Halisdemir Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 18(1), 493-509.
  • Pariser, H. H., Backeberg, N. R., Masson, O. C. M., & Bedder, J. C. M. (2018). Changing nickel and chromium stainless steel markets review. Journal of the Southern African Institute of Mining and Metallurgy, 118(6), 563-568.
  • Pauwels, K., Silva-Risso, J., Srinivasan, S., & Hanssens, D. M. (2004). New products, sales promotions, and firm value: The case of the automobile industry. Journal of Marketing, 68(4), 142-156.
  • Pirttilä, M., Virolainen, V. M., Lind, L., & Kärri, T. (2020). Working capital management in the Russian automotive industry supply chain. International Journal of Production Economics, 221, 107474.
  • Rafique, M. (2011). Effect of profitability & financial leverage on capital structure: A case of Pakistan’s automobile industry. Available at SSRN 1911395.
  • Ray, S. (2011). Assessing corporate financial distress in automobile industry of India: An application of Altman’s model. Research Journal of Finance and Accounting, 2(3), 155-168.
  • Rosen, M. J. (1958). The Brussels Entente: Export combination in the world steel market. University of Pennsylvania Law Review, 106(8), 1079-1116.
  • Sturgeon, T. J., Memedovic, O., Van Biesebroeck, J., & Gereffi, G. (2009). Globalisation of the automotive industry: main features and trends. International Journal of Technological learning, innovation and development, 2(1-2), 7-24.
  • Serikkaliyeva, A., Makarova, I., & Gabsalikhova, L. (2024). Prospects for the Development of Vehicle Assembly Plants of Chinese Automobile Brands in Kazakhstan: An Example of Multi-Sectoral Diversification of the Economy to Increase Its Sustainability. Sustainability, 16(7), 2662.
  • Sheng, Y., Xu, X., & Rozelle, S. (2024). Market structure, resource allocation, and industry productivity growth: Firm-level evidence from China's steel industry. China Economic Review, 83, 102102.
  • Vochozka, M., Horak, J., Krulický, T., & Pardal, P. (2020). Predicting future Brent oil price on global markets. Acta Montanistica Slovaca, 25(3).
  • Yin, X., & Chen, W. (2013). Trends and development of steel demand in China: A bottom–up analysis. Resources Policy, 38(4), 407-415.

GERMAN AUTOMOBILE INDUSTRY: THE FINANCIAL IMPACTS OF BRENT OIL AND STEEL

Yıl 2025, Cilt: 10 Sayı: 2, 226 - 235, 30.06.2025
https://doi.org/10.29106/fesa.1589578

Öz

The automobile industry is nourished by two important resources: steel and oil. For this reason, the financial structure of the steel and oil industries is so important for the sake of the automobile industry and also the industrializing world. To understand the world steel market, we should concentrate on the Chinese steel market as its world steel leadership. This paper aims to make a financial analysis of these three industries by utilising DCC GARCH (Dynamic Conditional Correlation Multivariate GARCH) models. According to the main results, the German automobile industry’s financial structure is largely impacted by Brent oil returns. There is no statistical evidence of the impact of the Chinese steel futures’ returns on the returns of German automobile brands in a relationship. These findings can mean that the German automobile industry has financial immunisation against steel fluctuations but oil fluctuations. In this context, the international politics of Germany is so important, on the other side, German automobile giants and their relationships with Chinese affiliates can be another part of the conclusion.

Kaynakça

  • Aggarwal, V., Doifode, A., & Tiwary, M. K. (2021). Volatility spillover impact of FII and MF net equity flows on the Indian sectoral stock indices: Recent evidence using BEKK-GARCH. International Journal of Indian Culture and Business Management, 22(3), 350–363. https://doi. org/10.1504/IJICBM.2021.114084
  • Alsharif, M. (2020). The Relationship between the Returns and Volatility of Stock and Oil Markets in the Last Two Decades: Evidence from Saudi Arabia. International Journal of Economics and Financial Issues, 10(4),
  • Arık, E., & Mutlu, E. (2014). Chinese steel market in the post-futures period. Resources Policy, 42, 10-17.
  • Basiewicz, P. G., & Auret, C. J. (2010). Feasibility of the Fama and French three factor model in explaining returns on the JSE. Investment Analysts Journal, 39(71), 13-25.
  • Bauwens, L., Laurent, S., & Rombouts, J. V. (2006). Multivariate GARCH models: a survey. Journal of Applied Econometrics, 21(1), 79–109. https://doi.org/ 10.1002/jae.842
  • Beckers, B., & Beidas-Strom, S. (2015). Forecasting the nominal Brent oil price with VARs—one model fits all? International Monetary Fund.
  • Belis-Bergouignan, M. C., Bordenave, G., & Lung, Y. (2000). Global strategies in the automobile industry. Regional studies, 34(1), 41-53.
  • Benedetto, F., Mastroeni, L., Quaresima, G., & Vellucci, P. (2020). Does OVX affect WTI and Brent oil spot variance? Evidence from an entropy analysis. Energy Economics, 89, 104815.
  • Blanchard, O. J. (1983). The production and inventory behaviour of the American automobile industry. Journal of Political Economy, 91(3), 365-400.
  • Bresnahan, T. F. (1987). Competition and collusion in the American automobile industry: The 1955 price war. The Journal of Industrial Economics, 457-482.
  • Chan, F. T., Chan, H. K., & Jain, V. (2012). A framework of reverse logistics for the automobile industry. International journal of production research, 50(5), 1318-1331.
  • Chen, W., Huang, Z., & Yi, Y. (2015). Is there a structural change in the persistence of WTI–Brent oil price spreads in the post-2010 period? Economic Modelling, 50, 64-71.
  • Dohse, K., Jürgens, U., & Nialsch, T. (1985). From" Fordism" to" Toyotism"? The social organization of the labour process in the Japanese automobile industry. Politics & Society, 14(2), 115-146.
  • Engle, R. (2002). Dynamic conditional correlation: A simple class of multivariate generalized autoregressive conditional heteroskedasticity models. Journal of business & economic statistics, 20(3), 339-350.
  • Engle, R. F., & Kroner, K. F. (1995). Multivariate Simultaneous Generalized ARCH. Econometric Theory, 11(1), 122–150. https://doi.org/10.1017/ S0266466600009063
  • Falát, L., & Holubčík, M. (2017). The influence of marketing communication on the financial situation of the company–a case from the automobile industry. Procedia Engineering, 192, 148-153.
  • Fama, E. F., & French, K. R. (1993). Common risk factors in the returns on stocks and bonds. Journal of financial economics, 33(1), 3-56.
  • Fama, E. F., & French, K. R. (2010). Luck versus skill in the cross‐section of mutual fund returns. The journal of finance, 65(5), 1915-1947.
  • Farberman, H. A. (1975). A criminogenic market structure: The automobile industry. Sociological Quarterly, 16(4), 438-457.
  • Filbeck, G., Kumar, S., Liu, J., & Zhao, X. (2016). Supply chain finance and financial contagion from disruptions-evidence from the automobile industry. International Journal of Physical Distribution & Logistics Management, 46(4).
  • Foye, J., Mramor, D., & Pahor, M. (2013). A respecified Fama French three‐factor model for the new European union member states. Journal of International Financial Management & Accounting, 24(1), 3-25.
  • Govindan, K., Kannan, D., & Noorul Haq, A. (2010). Analyzing supplier development criteria for the automobile industry. Industrial Management & Data Systems, 110(1), 43-62.
  • Hou, Y., & Li, S. (2016). Information transmission between US and China index futures markets: An asymmetric DCC GARCH approach. Economic Modelling, 52, 884-897.
  • İmre, S. (2021). Bitcoin ve Euro Arasındaki Volatilite Etkileşiminin Analizi. Uluslararası Ekonomik Araştırmalar Dergisi, 7(4), 1-13.
  • https://companiesmarketcap.com/automakers/largest-automakers-by-market-cap/. , 9.10.2023.
  • https://companiesmarketcap.com/largest-companies-by-revenue/, 9.10.2023,
  • Jones, P. M., & Olson, E. (2013). The time-varying correlation between uncertainty, output, and inflation: Evidence from a DCC-GARCH model. Economics Letters, 118(1), 33-37.
  • Kocoglu, S. (2024). Avrupa yenilenebilir enerji stoklarının volatilite karakteri: ERIX endeksi üzerine bir araştırma. Fiscaoeconomia, 8(1), 75-92.
  • Labson, S., Gooday, P., & Manson, A. (1995). China Steel. China's Emerging Steel Industry and its Impact on the World Iron Ore and Steel Market. Labson, BS, Gooday, P. and Manson, A.
  • Lee, K. H. (2012). Carbon accounting for supply chain management in the automobile industry. Journal of Cleaner Production, 36, 83-93.
  • Lin, R. J., Chen, R. H., & Huang, F. H. (2014). Green innovation in the automobile industry. Industrial Management & Data Systems, 114(6), 886-903.
  • Liu, W., & Yeung, H. W. C. (2008). China's dynamic industrial sector: the automobile industry. Eurasian Geography and Economics, 49(5), 523-548.
  • Liu, Y., Liu, Y., & Chen, J. (2015). The impact of the Chinese automotive industry: scenarios based on the national environmental goals. Journal of Cleaner Production, 96, 102-109.
  • Llopis-Albert, C., Rubio, F., & Valero, F. (2021). Impact of digital transformation on the automotive industry. Technological forecasting and social change, 162, 120343.
  • McPeak, C., & Guo, Y. (2014). How the “Go Green” trend influences the automotive industry's financial performance. Journal of Sustainability and Green Business, 2(1).
  • Mensi, W., Yousaf, I., Vo, X. V., & Kang, S. H. (2022). Asymmetric spillover and network connectedness between gold, BRENT oil and EU subsector markets. Journal of International Financial Markets, Institutions and Money, 76, 101487.
  • Al-Mwalla, M., & Karasneh, M. (2011). Fama and French three factor model: Evidence from emerging market. European Journal of Economics, Finance and Administrative Sciences, 41(14), 132-140.
  • Özdemir, L. (2025). Kripto Paraların Volatilite Düzeylerinin Asimetrik Garch Modeli İle Karşılaştırılması. Ömer Halisdemir Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 18(1), 493-509.
  • Pariser, H. H., Backeberg, N. R., Masson, O. C. M., & Bedder, J. C. M. (2018). Changing nickel and chromium stainless steel markets review. Journal of the Southern African Institute of Mining and Metallurgy, 118(6), 563-568.
  • Pauwels, K., Silva-Risso, J., Srinivasan, S., & Hanssens, D. M. (2004). New products, sales promotions, and firm value: The case of the automobile industry. Journal of Marketing, 68(4), 142-156.
  • Pirttilä, M., Virolainen, V. M., Lind, L., & Kärri, T. (2020). Working capital management in the Russian automotive industry supply chain. International Journal of Production Economics, 221, 107474.
  • Rafique, M. (2011). Effect of profitability & financial leverage on capital structure: A case of Pakistan’s automobile industry. Available at SSRN 1911395.
  • Ray, S. (2011). Assessing corporate financial distress in automobile industry of India: An application of Altman’s model. Research Journal of Finance and Accounting, 2(3), 155-168.
  • Rosen, M. J. (1958). The Brussels Entente: Export combination in the world steel market. University of Pennsylvania Law Review, 106(8), 1079-1116.
  • Sturgeon, T. J., Memedovic, O., Van Biesebroeck, J., & Gereffi, G. (2009). Globalisation of the automotive industry: main features and trends. International Journal of Technological learning, innovation and development, 2(1-2), 7-24.
  • Serikkaliyeva, A., Makarova, I., & Gabsalikhova, L. (2024). Prospects for the Development of Vehicle Assembly Plants of Chinese Automobile Brands in Kazakhstan: An Example of Multi-Sectoral Diversification of the Economy to Increase Its Sustainability. Sustainability, 16(7), 2662.
  • Sheng, Y., Xu, X., & Rozelle, S. (2024). Market structure, resource allocation, and industry productivity growth: Firm-level evidence from China's steel industry. China Economic Review, 83, 102102.
  • Vochozka, M., Horak, J., Krulický, T., & Pardal, P. (2020). Predicting future Brent oil price on global markets. Acta Montanistica Slovaca, 25(3).
  • Yin, X., & Chen, W. (2013). Trends and development of steel demand in China: A bottom–up analysis. Resources Policy, 38(4), 407-415.
Toplam 49 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Finans
Bölüm Araştırma Makaleleri
Yazarlar

Olcay Ölçen 0000-0002-4835-1171

Erken Görünüm Tarihi 30 Haziran 2025
Yayımlanma Tarihi 30 Haziran 2025
Gönderilme Tarihi 22 Kasım 2024
Kabul Tarihi 24 Haziran 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 10 Sayı: 2

Kaynak Göster

APA Ölçen, O. (2025). GERMAN AUTOMOBILE INDUSTRY: THE FINANCIAL IMPACTS OF BRENT OIL AND STEEL. Finans Ekonomi ve Sosyal Araştırmalar Dergisi, 10(2), 226-235. https://doi.org/10.29106/fesa.1589578