Derleme
BibTex RIS Kaynak Göster
Yıl 2020, Cilt: 1 Sayı: 1, 12 - 21, 30.09.2020

Öz

Kaynakça

  • Abarikwu, S. O., Olufemi, P. D., Lawrence, C. J., Wekere, F. C., Ochulor, A. C., & Barikuma, A. M. (2017). Rutin, an antioxidant flavonoid, induces glutathione and glutathione peroxidase activities to protect against ethanol effects in cadmium‐induced oxidative stress in the testis of adult rats. Andrologia, 49(7), e12696.
  • Acosta, I. B., Junior, A. S. V., e Silva, E. F., Cardoso, T. F., Caldas, J. S., Jardim, R. D., & Corcini, C. D. (2016). Effects of exposure to cad-mium in sperm cells of zebrafish, Danio rerio. Toxicology Re-ports, 3, 696-700.
  • Ahmad, J., Ali, A. A., Baig, M. A., Iqbal, M., Haq, I., & Qureshi, M. I. (2019). Role of phytochelatins in cadmium stress tolerance in plants. In: Hasanuzzaman, M., Prasad, M. N. V., Fujita, M. (eds) Cadmium Toxicity and Tolerance in Plants (pp. 185-212). Ac-ademic Press.
  • Aissa, L., & Kéloufi, B. (2012). Determining the heavy metal pollution in Mascara (Algeria) by using Casuarina equisetifolia. Ecologia Bal-kanica, 4(1), 1-7.
  • Akguc, N., Ozyigit, I. I., & Yarci, C. (2008). Pyracantha coccinea Roem.(Rosaceae) as a biomonitor for Cd, Pb and Zn in Mugla prov-ince (Turkey). Pakistan Journal of Botany, 40(4), 1767-1776.
  • Akguc, N., Ozyigit, I., Yasar, U., Leblebici, Z., & Yarci, C. (2010). Use of Pyracantha coccinea Roem. as a possible biomonitor for the se-lected heavy metals. International Journal of Environmental Science & Technology, 7(3), 427-434.
  • Ali, F., Kazi, T. G., Afridi, H. I., & Baig, J. A. (2018). Exposure of cadmium via smoking and drinking water on zinc levels of biological samples of malnutrition pregnant women: A prospective cohort study. Environmental toxicology and pharmacology, 63, 48-54.
  • Altay, V., Ozyigit, I. I., Keskin, M., Demir, G., & Yalcin, I. E. (2013). An ecological study of endemic plant Polygonum istanbulicum Keskin and its environs. Pakistan Journal of Botany, 45(S1), 455-459.
  • Asagba, S. O., & Obi, F. O. (2004). Effects of oral cadmium exposure on renal glomerular and tubular functions in the rat. Journal of Ap-plied Sciences and Environmental Management, 8, 29-32.
  • Asati, A., Pichhode, M., & Nikhil, K. (2016). Effect of heavy metals on plants: an overview. International Journal of Application or Innova-tion in Engineering & Management, 5, 2319-4847.
  • Ashraf, S., Ali, Q., Zahir, Z. A., Ashraf, S., & Asghar, H. N. (2019). Phytoremediation: Environmentally sustainable way for reclamation of heavy metal polluted soils. Ecotoxicology and Environmental Safety, 174, 714-727.
  • Aslam, R., Ansari, M. Y. K., Choudhary, S., Bhat, T. M., & Jahan, N. (2014). Genotoxic effects of heavy metal cadmium on growth, bio-chemical, cyto-physiological parameters and detection of DNA pol-ymorphism by RAPD in Capsicum annuum L.-An important spice crop of India. Saudi Journal of Biological Sciences, 21(5), 465-472.
  • Aslan, R. (2020). Zinde ve sağlıklı bir hayat için kadmiyum'a dik-kat. Ayrıntı Dergisi, 7(82), 51-56.
  • Awual, M. R., Khraisheh, M., Alharthi, N. H., Luqman, M., Islam, A., Karim, M. R., ... & Khaleque, M. A. (2018). Efficient detection and adsorption of cadmium (II) ions using innovative nano-composite materials. Chemical Engineering Journal, 343, 118-127.
  • Ayhan B., Ekmekci Y., Tanyolac D., (2006). Bitkilerde ağır metal zararları ve korunma mekanizmaları. Anadolu Üniversitesi Bilim ve Teknoloji Dergisi, 7(1), 1-16.
  • Azevedo, R. A., & Lea, P. J. (2005). Preface: toxic metals in plants. Brazilian Journal of Plant Physiology, 17(1), 1-1.
  • Balzano, S., Sardo, A., Blasio, M., Chahine, T. B., Dell'Anno, F., San-sone, C., & Brunet, C. (2020). Microalgae metallothioneins and phy-tochelatins and their potential use in bioremediation. Frontiers in Mi-crobiology, 11, 517.
  • Baryla, A., Carrier, P., Franck, F., Coulomb, C., Sahut, C., Havaux, M. (2001). Leaf chlorosis in oilseed rape plants (Brassica napus) grown on cadmium-polluted soil: causes and consequences for photosyn-thesis and growtth. Planta, 212, 696-709.
  • Benavides, M. P., Gallego, S. M., Tomaro, M. L. (2005). Cadmium toxicity in plants. Brazilian Journal of Plant Physiology, 17(1), 21- 34.
  • Bergeron, P. M., & Jumarge, C. (2006). Characterization of cadmium uptake in human intestinal crypt cells HIEC in relation to inorganic metal speciation. Toxicology, 219(1-3), 156-166.
  • Bobillier, S. C., Maupoil, V., & Berthelot, A. (2006). Metallothionein induction in the liver, kidney, heart and aorta of cadmium and ıso-proterenol treated rats. Journal of Applied Toxicology, 26, 47-55.
  • Browar, A. W., Koufos, E. B., Wei, Y., Leavitt, L. L., Prozialeck, W. C., & Edwards, J. R. (2018). Cadmium exposure disrupts periodontal bone in experimental animals: implications for periodontal disease in humans. Toxics, 6(2), 32-42.
  • Cao, Z., Fang, Y., Lu, Y., Tan, D., Du, C., Li, Y., ... & Pei, L. (2017). Melatonin alleviates cadmium‐induced liver injury by inhibiting the TXNIP‐NLRP3 inflammasome. Journal of Pineal Research, 62(3), e12389.
  • Carfagna, S., Lanza, N., Salbitani, G., Basile, A., Sorbo, S., & Vona, V. (2013). Physiological and morphological responses of lead or cad-mium exposed Chlorella sorokiniana 211-8K (Chlorophyceae). Springer Plus, 2(147), 1-7.
  • Cenkci, S., & Dogan, N. (2015). Random amplified polymorphic DNA as a method to screen metal-tolerant barley (Hordeum vulgare L.) genotypes. Turkish Journal of Botany, 39(5), 747-756.
  • Chen, X., Cui, W., Duan, N., Zhu, G., Jin, T., & Wang, Z. (2020). The association between alcohol consumption and renal tubular dysfunc-tion induced by cadmium exposure. Biological Trace Element Re-search, 194(1), 58-65.
  • Chiocchetti, G., Jadan-Piedra, C., Velez, D., & Devesa, V. (2017). Metal (loid) contamination in seafood products. Critical Reviews in Food Science and Nutrition, 57(17), 3715-3728.
  • Clemens, S., Palmgren, M. G., & Krämer, U. (2002). A long way ahead: understanding and engineering plant metal accumulation. Trends in Plant Science, 7(7), 309-315.
  • Corsolini, S. (2009). Industrial contaminants in Antarctic biota. Journal of Chromatography A, 1216(3), 598-612.
  • Deleebeeck, N. M., De Schamphelaere, K. A., & Janssen, C. R. (2008). A novel method for predicting chronic nickel bioavailability and tox-icity to Daphnia magna in artificial and natural wa-ters. Environmental Toxicology and Chemistry: An International Journal, 27(10), 2097-2107.
  • Deleebeeck, N. M., De Schamphelaere, K. A., & Janssen, C. R. (2009). Effects of Mg2+ and H+ on the toxicity of Ni2+ to the unicellular green alga Pseudokirchneriella subcapitata: Model development and vali-dation with surface waters. Science of the Total Environ-ment, 407(6), 1901-1914.
  • Dongre, N. N., Suryakar, A. N., Patil, A. J., Hundekari, I. A., & Devarnavadagi, B. B. (2013). Biochemical effects of lead exposure on bat-tery manufacture workers with reference to blood pressure, calcium metabolism and bone mineral density. Indian Journal of Clinical Bi-ochemistry, 28(1), 65-70.
  • Dučić, T., & Polle, A. (2005). Manganese and copper toxicity and detox-ification in plants. Brazilian Journal of Plant Physiology, 172, 115-122.
  • Duffus, J. H. (2002). "Heavy metals" a meaningless term? (IUPAC Technical Report). Pure and Applied Chemistry, 74(5), 793-807.
  • Duruibe, J. O., Ogwuegbu, M. O. C., & Egwurugwu, J. N. (2007). Heavy metal pollution and human biotoxic effects. International Journal of Physical Sciences, 2(5), 112-118.
  • Dvorak, M., Schnegg, R., Niederwanger, M., Pedrini-Martha, V., La-durner, P., Lindner, H., ... & Dallinger, R. (2020). Cadmium path-ways in snails follow a complementary strategy between metallothi-onein detoxification and auxiliary inactivation by phytochela-tins. International Journal of Molecular Sciences, 21(1), 7-21.
  • Elemike, E. E., Uzoh, I. M., Onwudiwe, D. C., & Babalola, O. O. (2019). The role of nanotechnology in the fortification of plant nutrients and improvement of crop production. Applied Sciences, 9(3), 499-531.
  • Erboga, M., & Kanter, M. (2016). Effect of cadmium on trophoblast cell proliferation and apoptosis in different gestation periods of rat pla-centa. Biological Trace Element Research, 169(2), 285-293.
  • Fay, M. J., Alt, L. A., Ryba, D., Salamah, R., Peach, R., Papaeliou, A., ... & Stubbs-Russell, Z. (2018). Cadmium nephrotoxicity is associated with altered microRNA expression in the rat renal cor-tex. Toxics, 6(1), 16-30.
  • Filippini, T., Cilloni, S., Malavolti, M., Violi, F., Malagoli, C., Tesauro, M., ... & Vinceti, M. (2018). Dietary intake of cadmium, chromium, copper, manganese, selenium and zinc in a Northern Italy communi-ty. Journal of Trace Elements in Medicine and Biology, 50, 508-517.
  • Filiz, E., Saracoglu, I. A., Ozyigit, I. I., & Yalcin, B. (2019a). Compara-tive analyses of phytochelatin synthase (PCS) genes in higher plants. Biotechnology & Biotechnological Equipment, 33(1), 178-194.
  • Filiz, E., Ozyigit, I. I., Saracoglu, I. A., Uras, M. E., Sen, U., & Yalcin, B. (2019b). Abiotic stress-induced regulation of antioxidant genes in different Arabidopsis ecotypes: microarray data evalua-tion. Biotechnology & Biotechnological Equipment, 33(1), 128-143.
  • Fujiki, K., Inamura, H., Sugaya, T., & Matsuoka, M. (2019). Blockade of ALK4/5 signaling suppresses cadmium-and erastin-induced cell death in renal proximal tubular epithelial cells via distinct signaling mechanisms. Cell Death & Differentiation, 26(11), 2371-2385.
  • Garbisu, C., & Alkorta, I. (2001). Phytoextraction: a cost-effective plant-based technology for the removal of metals from the environ-ment. Bioresource Technology, 77(3), 229-236.
  • Gautam, G. J., & Chaube, R. (2018). Differential effects of heavy metals (cadmium, cobalt, lead and mercury) on oocyte maturation and ovu-lation of the catfish Heteropneustes fossilis: an in vitro study. Turkish Journal of Fisheries and Aquatic Sciences, 18(10), 1205-1214.
  • Genchi, G., Sinicropi, M. S., Lauria, G., Carocci, A., & Catalano, A. (2020). The effects of cadmium toxicity. International Journal of Environmental Research and Public Health, 17(11), 3782-3806.
  • Geng, H. X., & Wang, L. (2019). Cadmium: toxic effects on placental and embryonic development. Environmental Toxicology and Phar-macology, 67, 102-107.
  • Gill, S. S., Khan, N. A., & Tuteja, N. (2012). Cadmium at high dose perturbs growth, photosynthesis and nitrogen metabolism while at low dose it up regulates sulfur assimilation and antioxidant machin-ery in garden cress (Lepidium sativum L.). Plant Science, 182, 112-120.
  • Goyal, D., Yadav, A., Prasad, M., Singh, T. B., Shrivastav, P., Ali, A., ... & Mishra, S. (2020). Effect of Heavy Metals on Plant Growth: An Overview. In: Naeem, M., Ansari, A., Gill, S. (eds) Contaminants in Agriculture (pp. 79-101). Springer, Cham.
  • Habib, R., Wahdan, S. A., Gad, A. M., & Azab, S. S. (2019). Infliximab abrogates cadmium-induced testicular damage and spermiotoxicity via enhancement of steroidogenesis and suppression of inflamma-tion and apoptosis mediators. Ecotoxicology and Environmental Safety, 182, 109398.
  • Hassan, M. J., Shao, G., & Zhang, G. (2005). Influence of cadmium toxicity on growth and antioxidant enzyme activity in rice cultivars with different grain cadmium accumulation. Journal of Plant Nutri-tion, 28(7), 1259-1270.
  • Hassanin, E. S., El-Bassel, H., & El-Razek, A. (2017). Effect of Cadmi-um Exposure among workers in Battery Industries. Bulletin of the National Nutrition Institute of the Arab Republic of Egypt, 49(1), 1-20.
  • Hawkesford, M. J., Kopriva, S., & De Kok, L. J. (2016). Nutrient use efficiency in plants. (pp. 1-279). Springer International Pu.
  • Hayakawa, N., Tomioka, R., & Takenaka, C. (2011). Effects of calcium on cadmium uptake and transport in the tree species Gamblea inno-vans. Soil Science and Plant Nutrition, 57(5), 691-695.
  • Hezbullah, M., Sultana, S., Chakraborty, S. R., & Patwary, M. I. (2016). Heavy metal contamination of food in a developing country like Bangladesh: An emerging threat to food safety. Journal of Toxicolo-gy and Environmental Health Sciences, 8(1), 1-5.
  • Huang, X., Duan, S., Wu, Q., Yu, M., & Shabala, S. (2020). Reducing cadmium accumulation in plants: structure-function relations and tissue-specific operation of transporters in the spot-light. Plants, 9(2), 223-240.
  • Huang, X., Liu, T., Zhao, M., Fu, H., Wang, J., & Xu, Q. (2019). Protec-tive effects of moderate Ca supplementation against Cd-induced bone damage under different population-relevant doses in young female rats. Nutrients, 11(4), 849-871.
  • Imafidon, C. E., Olatoye, T. R., Bamidele, F. S., Ojo, O. E., & Ademoye, K. A. (2016). Cadmium-induced testicular toxicity, oxidative stress and histopathology in Wistar rats: sustained effects of polyphenol-rich extract of Vernonia amygdalina (Del.) leaf. Journal of Interdis-ciplinary Histopathology, 4(3), 54-62.
  • Ishchenko, V. A. (2018). Environment contamination with heavy metals contained in waste. Environmental Problems, 3(1), 21-24.
  • Ismael, M. A., Elyamine, A. M., Moussa, M. G., Cai, M., Zhao, X., & Hu, C. (2019). Cadmium in plants: uptake, toxicity, and its interac-tions with selenium fertilizers. Metallomics, 11(2), 255-277.
  • Jabeen, R., Ahmad, A., & Iqbal, M. (2009). Phytoremediation of heavy metals: physiological and molecular mechanisms. The Botanical Re-view, 75(4), 339-364.
  • Jovanovic, V. S., Ilic, M. D., Markovic, M. S., Mitic, V. D., Mandic, S. N., & Stojanovic, G. S. (2011). Wild fire impact on copper, zinc, lead and cadmium distribution in soil and relation with abundance in selected plants of Lamiaceae family from Vidlic Mountain (Ser-bia). Chemosphere, 84(11), 1584-1591.
  • Karahan, F., Ozyigit, I. I., Saracoglu, I. A., Yalcin, I. E., Hocaoglu-Ozyigit, A., & Ilcim, A. (2020). Heavy metal levels and mineral nu-trient status in different parts of various medicinal plants collected from eastern Mediterranean region of Turkey. Biological Trace Ele-ment Research, 197, 316-329.
  • Kayhan, F. E. (2006). Su ürünlerinde Cd’un biyobirikimi ve toksisitesi. E.U. Su Ürünleri Dergisi, 23, 215-220.
  • Khan, M. Y., Prakash, V., Yadav, V., Chauhan, D. K., Prasad, S. M., Ramawat, N., ... & Sharma, S. (2019). Regulation of cadmium toxici-ty in roots of tomato by indole acetic acid with special emphasis on reactive oxygen species production and their scavenging. Plant Physiology and Biochemistry, 142, 193-201.
  • Kim, Y. Y., Yang, Y. Y., & Lee, Y. (2002). Pb and Cd uptake in rice roots. Physiologia Plantarum, 116(3), 368-372.
  • Kinraide, T. B., Yermiyahu, U., & Rytwo, G. (1998). Computation of surface electrical potentials of plant cell membranes: correspondence to published zeta potentials from diverse plant sources. Plant Physi-ology, 118(2), 505-512.
  • Kmecick, M., da Costa, M. C. V., de Oliveira Ribeiro, C. A., & Ortolani-Machado, C. F. (2019). Morphological evidence of neurotoxic ef-fects in chicken embryos after exposure to perfluorooctanoic acid (PFOA) and inorganic cadmium. Toxicology, 427, 152286.
  • Koleli, N., & Kantar, C. (2006). Fosforlu gübrede ağır metal tehlikesi. Ekoloji Magazin Dergisi, 9.
  • Koleli, N., Eker, S., & Cakmak, I. (2004). Effect of zinc fertilization on cadmium toxicity in durum and bread wheat grown in zinc-deficient soil. Environmental Pollution, 131(3), 453-459.
  • Kumar, S., Prasad, S., Yadav, K. K., Shrivastava, M., Gupta, N., Nagar, S., ... & Malav, L. C. (2019). Hazardous heavy metals contamination of vegetables and food chain: Role of sustainable remediation ap-proaches-A review. Environmental Research, 179, 108792.
  • Lavryshyn, Y. Y., & Gutyj, B. V. (2019). Protein synthesize function of bulls liver at experimental chronic cadmium toxicity. Scientific Mes-senger of LNU of Veterinary Medicine and Biotechnologies. Series: Veterinary Sciences, 21(94), 92-96.
  • Lee, J. Y., Tokumoto, M., Fujiwara, Y., Hasegawa, T., Seko, Y., Shi-mada, A., & Satoh, M. (2016). Accumulation of p53 via down-regulation of UBE2D family genes is a critical pathway for cadmi-um-induced renal toxicity. Scientific Reports, 6(1), 1-15.
  • Li, J. T., Liang, Z. W., Jia, P., Liu, J., Xu, Y. J., Chen, Y. J., ... & Shu, W. S. (2017). Effects of a bacterial consortium from acid mine drainage on cadmium phytoextraction and indigenous soil microbial commu-nity. Plant and Soil, 415(1-2), 347-358.
  • Li, X., Guo, J., Jiang, X., Sun, J., Tian, L., Jiao, R., ... & Bai, W. (2019). Cyanidin-3-O-glucoside protects against cadmium-induced dysfunc-tion of sex hormone secretion via the regulation of hypothalamus-pituitary-gonadal axis in male pubertal mice. Food and Chemical Toxicology, 129, 13-21.
  • Liang, Y., Wang, X., Guo, Z., Xiao, X., Peng, C., Yang, J., ... & Zeng, P. (2019). Chelator-assisted phytoextraction of arsenic, cadmium and lead by Pteris vittata L. and soil microbial community structure re-sponse. International Journal of Phytoremediation, 21(10), 1032-1040.
  • Lombardi, L., & Sebastiani, L. (2005). Copper toxicity in Prunus cerasifera: growth and antioxidant enzymes responses of in vitro grown plants. Plant Science, 168(3), 797-802.
  • Massanyi, P., Uhrin, V., Toman, R., Pivko, J., Lukáč, N., Forgacs, Z. S., ... & Danko, J. (2005). Ultrastructural changes of ovaries in rabbits following cadmium administration. Acta Veterinaria Brno, 74(1), 29-35.
  • McCarty, M. F. (2012). Zinc and multi-mineral supplementation should mitigate the pathogenic impact of cadmium exposure. Medical Hy-potheses, 79(5), 642-648.
  • Meena, V., Dotaniya, M. L., Saha, J. K., Meena, B. P., Das, H., & Patra, A. K. (2020). Sustainable C and N management under metal-contaminated soils. In: Datta, R., Meena, R. S., Pathan, S. I., Cecche-rini, M. T. (eds) Carbon and Nitrogen Cycling in Soil (pp. 293-336). Springer, Singapore.
  • Meravi, N., & Prajapati, S. K. (2013). Effects of heavy metals/metalloids contamination of soils on micronucleus induction in Tradescantia pallida. Environmental Skeptics and Critics, 2(2), 58-62.
  • Mishra, S., Bharagava, R. N., More, N., Yadav, A., Zainith, S., Mani, S., & Chowdhary, P. (2019). Heavy metal contamination: an alarming threat to environment and human health. In: Sobti, R. C., Kumar Arora, N., Kothari, R. (eds) Environmental Biotechnology: For Sus-tainable Future (pp. 103-125). Springer, Singapore.
  • Mohammad, A. M., Chowdhury, T., Biswas, B., & Absar, N. (2018). Food poisoning and intoxication: a global leading concern for human health. In: Grumezescu, A. M., Holban, A. M. (eds) Food Safety and Preservation (pp. 307-352). Academic Press.
  • Moynihan, M., Peterson, K. E., Cantoral, A., Song, P. X., Jones, A., Solano-González, M., ... & Téllez-Rojo, M. M. (2017). Dietary pre-dictors of urinary cadmium among pregnant women and chil-dren. Science of The Total Environment, 575, 1255-1262.
  • Navarrete, A., González, A., Gómez, M., Contreras, R. A., Díaz, P., Lobos, G., ... & Moenne, A. (2019). Copper excess detoxification is mediated by a coordinated and complementary induction of glutathi-one, phytochelatins and metallothioneins in the green seaweed Ulva compressa. Plant Physiology and Biochemistry, 135, 423-431.
  • Nishijo, M., Nakagawa, H., Suwazono, Y., Nogawa, K., & Kido, T. (2017a). Causes of death in patients with Itai-itai disease suffering from severe chronic cadmium poisoning: a nested case–control analysis of a follow-up study in Japan. BMJ Open, 7(7), e015694.
  • Nishijo, M., Nambunmee, K., Suvagandha, D., Swaddiwudhipong, W., Ruangyuttikarn, W., & Nishino, Y. (2017b). Gender-specific impact of cadmium exposure on bone metabolism in older people living in a cadmium-polluted area in Thailand. International Journal of Envi-ronmental Research and Public Health, 14(4), 401.
  • Nna, V. U., Ujah, G. A., Mohamed, M., Etim, K. B., Igba, B. O., Augus-tine, E. R., & Osim, E. E. (2017). Cadmium chloride-induced testic-ular toxicity in male wistar rats; prophylactic effect of quercetin, and assessment of testicular recovery following cadmium chloride with-drawal. Biomedicine & Pharmacotherapy, 94, 109-123.
  • Ohta, H., Yamauchi, Y., Nakakita, M., Tanaka, H., Asami, S., Seki, Y., & Yoshikawa, H. (2000). Relationship between renal dysfunction and bone metabolism disorder in male rats after long-term oral quantitative cadmium administration. Industrial Health, 38(4), 339-355.
  • Okcu, M., Tozlu, E., Kumlay, A. M., & Pehluvan, M. (2009). Ağır metallerin bitkiler üzerine etkileri. Alınteri Zirai Bilimler Dergisi, 17(2), 14-26.
  • Okoye, C. N., MacDonald-Jay, N., & Kamunde, C. (2019). Effects of bioenergetics, temperature and cadmium on liver mitochondria reac-tive oxygen species production and consumption. Aquatic Toxicolo-gy, 214, 105264.
  • Osma, E., Ozyigit, I. I., Leblebici, Z., Demir, G., & Serin, M. (2012). Determination of heavy metal concentrations in tomato (Lycopersi-con esculentum Miller) grown in different station types. Romanian Biotechnological Letters, 17(1), 6963.
  • Othman, M. S., Khonsue, W., Kitana, J., Thirakhupt, K., Robson, M., Borjan, M., & Kitana, N. (2012). Hepatic metallothionein and Gluta-thione-S-Transferase responses in two populations of rice frogs, Fejervarya limnocharis, naturally exposed to different environmental cadmium levels. Bulletin of Environmental Contamination and Toxi-cology, 89(2), 225-228.
  • Ozcan, T., & Baycu, G. (2005). Some elemental concentrations in the acorns of Turkish Quercus L. (Fagaceae) taxa. Pakistan Journal of Botany, 37(2), 361-371.
  • Oztoprak, F. S., Yigitalp Rencber, S., Ceylan, A., Arica, E., Sayin Ipek, D. N., Kurt, M. E., & Yetiz, P. (2020). Assessment of lead, mercury, cadmium, chromium and total antioxidant capacity levels of employees exposed to exhaust gases in closed parking lots. International Jour-nal of Environmental Analytical Chemistry, 1-13.
  • Ozturk, A., Yarci, C., & Ozyigit, I. I. (2017). Assessment of heavy metal pollution in Istanbul using plant (Celtis australis L.) and soil assays. Biotechnology & Biotechnological Equipment, 31(5), 948-954.
  • Ozyigit, I. I., & Dogan, I. (2014). Plant-microbe interactions in phytore-mediation. In: Rehman Hakeem K., Sabir M., Ozturk M., Mermut A. (eds) Soil Remediation and Plants-Prospects & Challenges (pp. 255-285). Elsevier B.V. Amsterdam.
  • Ozyigit, I. I., Yalcin, B., Turan, S., Saracoglu, I. A., Karadeniz, S., Yalcin, I. E., & Demir, G. (2018). Investigation of heavy metal level and mineral nutrient status in widely used medicinal plants’ leaves in Turkey: Insights into health implications. Biological Trace Ele-ment Research, 182(2), 387-406.
  • Ozyigit, I. I., Yilmaz, S., Dogan, I., Sakcali, M. S., Tombuloglu, G., & Demir, G. (2016). Detection of physiological and genotoxic damages reflecting toxicity in kalanchoe clones, Global Nest Journal, 18, 223-232.
  • Padmavathiamma, P. K., & Li, L. Y. (2007). Phytoremediation technolo-gy: hyper-accumulation metals in plants. Water, Air, and Soil Pollu-tion, 184(1-4), 105-126.
  • Paustenbach, D., Finley, B., Mowat, F., & Kerger, B. (2003). Human health risk and exposure assessment of chromium (VI) in tap wa-ter. Journal of Toxicology and Environmental Health, Part A, 66(14), 1295-1339.
  • Per, T. S., Masood, A., & Khan, N. A. (2017). Nitric oxide improves S-assimilation and GSH production to prevent inhibitory effects of cadmium stress on photosynthesis in mustard (Brassica juncea L.). Nitric oxide, 68, 111-124.
  • Perfus-Barbeoch, L., Leonhardt, N., Vavasseur, A., & Forestier, C. (2002). Heavy metal toxicity: cadmium permeates through calcium channels and disturbs the plant water status. The Plant Journal, 32(4), 539-548.
  • Person, R. J., Tokar, E. J., Xu, Y., Orihuela, R., Ngalame, N. N. O., & Waalkes, M. P. (2013). Chronic cadmium exposure in vitro induces cancer cell characteristics in human lung cells. Toxicology and Ap-plied Pharmacology, 273(2), 281-288.
  • Pohl, C., Croot, P. L., Hennings, U., Daberkow, T., Budéus, G., & vd Loeff, M. R. (2011). Synoptic transects on the distribution of trace elements (Hg, Pb, Cd, Cu, Ni, Zn, Co, Mn, Fe, and Al) in surface wa-ters of the Northern-and Southern East Atlantic. Journal of Marine Systems, 84(1-2), 28-41.
  • Prasad, M. N. V. (2013). Heavy metal stress in plants: from biomolecules to ecosystems. (pp. 1-462). Springer Science & Business Media.
  • Pratinidhi, S. A., Sagare, A. A., & Patil, A. J. (2018). Heavy metal levels in commonly used cosmetic products in Asia. MIMER Medical Journal, 2(2), 31-36.
  • Prokopowicz, A., Sobczak, A., Szuła-Chraplewska, M., Ochota, P., & Kośmider, L. (2019). Exposure to cadmium and lead in cigarette smokers who switched to electronic cigarettes. Nicotine and Tobacco Research, 21(9), 1198-1205.
  • Prozialeck, W. C., Edwards, J. R., & Woods, J. M. (2006). The vascular endothelium as a target of cadmium toxicity. Life Sciences, 79(16), 1493-1506.
  • Qin, S., Liu, H., Nie, Z., Rengel, Z., Gao, W., Li, C., & Zhao, P. (2020). Toxicity of cadmium and its competition with mineral nutrients for uptake by plants: a review. Pedosphere, 30(2), 168-180.
  • Rai, R., Agrawal, M., & Agrawal, S. B. (2016). Impact of heavy metals on physiological processes of plants: with special reference to pho-tosynthetic system. In: Singh, A., Prasad, S., Singh, R. (eds) Plant Responses to Xenobiotics (pp. 127-140). Springer, Singapore.
  • Rathod, S. P., Shah, N., & Balaraman, R. (1997). Antihypertensive effect of dietary calcium and diltiazem, a calcium channel blocker on ex-perimentally induced hypertensive rats. Indian Journal of Pharma-cology, 29(2), 99-104.
  • Resitoglu, M. T., Guden, D. S., & Firat, S. S. (2016). Hipertansiyon araştırmalarında kullanılan deneysel modeller. Clinical and Experi-mental Health Sciences, 6(1), 35-43.
  • Reyes-Hinojosa, D., Lozada-Pérez, C. A., Cuevas, Y. Z., López-Reyes, A., Martínez-Nava, G., Fernández-Torres, J., ... & Martínez-Flores, K. (2019). Toxicity of cadmium in musculoskeletal diseas-es. Environmental Toxicology and Pharmacology, 72, 103219.
  • Sabiha-Javied, T., Mehmood, M., Chaudhry, M., & Tufail, I. (2009). Heavy metal pollution from phosphate rock used for the production of fertilizer in Pakistan. Microchemical Journal, 91, 94-99.
  • Sadeghipour, O. (2018). Enhancing cadmium tolerance in common bean plants by potassium application. Philippine Agricultural Scientist, 101(2), 167-175.
  • Salzer, A. (1999). Nomenclature of organometallic compounds of the transition elements (IUPAC Recommendations 1999). Pure and Ap-plied Chemistry, 71(8), 1557-1585.
  • Santoyo-Sánchez, M., Thévenod, F., & Barbier, O. (2018). Cadmium handling, toxicity and molecular targets involved during pregnancy: les-sons from experimental models. Metal Metabolism in Ani-mals, 18, 272.
  • Schlekat, C. E., Van Genderen, E., De Schamphelaere, K. A., Antunes, P. M., Rogevich, E. C., & Stubblefield, W. A. (2010). Cross-species extrapolation of chronic nickel Biotic Ligand Models. Science of the Total Environment, 408(24), 6148-6157.
  • Sevik, H., Ozel, H. B., Cetin, M., Özel, H. U., & Erdem, T. (2019). Determination of changes in heavy metal accumulation depending on plant species, plant organism, and traffic density in some landscape plants. Air Quality, Atmosphere & Health, 12(2), 189-195.
  • Shakoor, A., Abdullah, M., Sarfraz, R., Altaf, M. A., & Batool, S. A. (2017). A comprehensive review on phytoremediation of cadmium (Cd) by mustard (Brassica juncea L.) and sunflower (Helianthus annuus L.). Journal of Biological and Environmental Scienc-es, 10(3), 88-98.
  • Shou, H., Li, L., Ye, L., & Kong, Q. (2019). A vacuolar membrane ferric-chelate reductase, OsFRO1 alleviates Fe toxicity in rice (Oryza sativa L.). Frontiers in Plant Science, 10, 700.
  • Siatka, T., Kašparová, M., & Spilková, J. (2012). Effects of zinc and cadmium ions on cell growth and production of coumarins in cell suspension cultures of Angelica archangelica L. Ceska a Slovenska Farmacie: Casopis Ceske Farmaceuticke Spolecnosti a Slovenske Farmaceuticke Spolecnosti, 61(6), 261-266.
  • Singh, P., Singh, I., & Shah, K. (2019). Reduced activity of nitrate reduc-tase under heavy metal cadmium stress in rice: an in silico answer. Frontiers in Plant Science, 9, 1948.
  • Song, Y., Jin, L., & Wang, X. (2017). Cadmium absorption and trans-portation pathways in plants. International Journal of Phytoremedia-tion, 19(2), 133-141.
  • Sui, F., Zuo, J., Chen, D., Li, L., Pan, G., & Crowley, D. E. (2018). Biochar effects on uptake of cadmium and lead by wheat in relation to annual precipitation: a 3-year field study. Environmental Science and Pollution Research, 25(4), 3368-3377.
  • Sundblad, B. M., Ji, J., Levänen, B., Midander, K., Julander, A., Lars-son, K., ... & Lindén, A. (2016). Extracellular cadmium in the bron-choalveolar space of long-term tobacco smokers with and without COPD and its association with inflammation. International Journal of Chronic Obstructive Pulmonary Disease, 11, 1005.
  • Tabelin, C. B., Igarashi, T., Villacorte-Tabelin, M., Park, I., Opiso, E. M., Ito, M., & Hiroyoshi, N. (2018). Arsenic, selenium, boron, lead, cadmium, copper, and zinc in naturally contaminated rocks: A re-view of their sources, modes of enrichment, mechanisms of release, and mitigation strategies. Science of the Total Environment, 645, 1522-1553.
  • Tamás, M. J., Fauvet, B., Christen, P., & Goloubinoff, P. (2018). Mis-folding and aggregation of nascent proteins: a novel mode of toxic cadmium action in vivo. Current genetics, 64(1), 177-181.
  • Tao, C., Pei, Y., Zhang, L., & Zhang, Y. (2020). Microbial communities respond to microenvironments in lungs of mice under simulated ex-posure to cadmium aerosols. Science of The Total Environment, 710, 136300.
  • Terrón-Camero, L. C., Peláez-Vico, M. Á., Del-Val, C., Sandalio, L. M., & Romero-Puertas, M. C. (2019). Role of nitric oxide in plant re-sponses to heavy metal stress: exogenous application versus endog-enous production. Journal of Experimental Botany, 70(17), 4477-4488.
  • Tripathi, S., Srivastava, P., Devi, R. S., & Bhadouria, R. (2020). Influ-ence of synthetic fertilizers and pesticides on soil health and soil mi-crobiology. In: Prasad, M. N. V. (ed) Agrochemicals Detection, Treatment and Remediation (pp. 25-54). Butterworth-Heinemann.
  • Vahter, M., Berglund, M., Åkesson, A., & Liden, C. (2002). Metals and women's health. Environmental Research, 88(3), 145-155.
  • Vizuete, J., Pérez-López, M., Míguez-Santiyán, M. P., & Hernández-Moreno, D. (2018). Mercury (Hg), lead (Pb), cadmium (Cd), seleni-um (Se), and arsenic (As) in liver, kidney, and feathers of gulls: A review. In: de Voogt, P. (ed) Reviews of Environmental Contamina-tion and Toxicology Volume 247 (pp. 85-146). Springer, Cham.
  • Wang, H., He, L., Song, J., Cui, W., Zhang, Y., Jia, C., ... & Hui, X. (2016). Cadmium-induced genomic instability in Arabidopsis: mo-lecular toxicological biomarkers for early diagnosis of cadmium stress. Chemosphere, 150, 258-265.
  • Wang, L. Y., Fan, R. F., Yang, D. B., Zhang, D., & Wang, L. (2019). Puerarin reverses cadmium-induced lysosomal dysfunction in pri-mary rat proximal tubular cells via inhibiting Nrf2 path-way. Biochemical Pharmacology, 162, 132-141.
  • Wang, X. Y., Yang, H., Wang, M. G., Yang, D. B., Wang, Z. Y., & Wang, L. (2017). Trehalose protects against cadmium-induced cytotoxicity in primary rat proximal tubular cells via inhibiting apoptosis and re-storing autophagic flux. Cell Death & Disease, 8(10), e3099-e3099.
  • WHO, (2000). World Health Organization. “Fifty-Third Report of The Joint Fao/Who Expert Committee on Food Additives”, Who Tech-nical Report Series 896, Genova, Switzerland.
  • WHO, (2003). World Health Organization. Cadmium review. www.who.int/ifcs/documents/forums/forum5/nmr_cadmium. pdf, Last accessed on July 26, 2020.
  • WHO, (2019). World Health Organization. Preventing Disease through Healthy Environments: Exposure to Cadmium: A Major Public Health Concern. https://apps.who.int/iris/bitstream/handle/10665/329480/WHO-CED-PHE-EPE-19.4.3-eng.pdf, Last accessed on July 26, 2020.
  • Xu, X., Zhang, X., Carrillo, G., Zhong, Y., Kan, H., & Zhang, B. (2019). A systematic assessment of carcinogenicity of chemicals in hydrau-lic-fracturing fluids and flowback water. Environmental Pollu-tion, 251, 128-136.
  • Yalcin, I. E., Ozyigit, I. I., Dogan, I., Demir, G., & Yarci, C. (2020). Using the Turkish red pine tree to monitor heavy metal pollu-tion. Polish Journal of Environmental Studies, 29(5), 3881-3889.
  • Yamaguchi, C., Khamsalath, S., Takimoto, Y., Suyama, A., Mori, Y., Ohkama-Ohtsu, N., & Maruyama-Nakashita, A. (2020). SLIM1 transcription factor promotes sulfate uptake and distribution to shoot, along with phytochelatin accumulation, under cadmium stress in Arabidopsis thaliana. Plants, 9(2), 163.
  • Yang, C. M., & Juang, K. W. (2015). Alleviation effects of calcium and potassium on cadmium rhizotoxicity and absorption by soybean and wheat roots. Journal of Plant Nutrition and Soil Science, 178(5), 748-754.
  • Yang, Q., Li, Z., Lu, X., Duan, Q., Huang, L., & Bi, J. (2018). A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment. Science of the total envi-ronment, 642, 690-700.
  • Yang, Q., Zhu, J., Luo, X., Li, F., Cong, L., Wang, Y., & Sun, Y. (2019). Melatonin attenuates cadmium-induced ovulatory dysfunction by suppressing endoplasmic reticulum stress and cell apopto-sis. Reproductive Biology and Endocrinology, 17(1), 61.
  • Yaseen, M. A. (2019). Effect of different cadmium levels on growth and biochemical parameters of Cyprinus carpio fingerlings reared in a close system. Zanco Journal of Pure and Applied Sciences, 31(4), 139-152.
  • Yongming, S., Rongzhu, L., Jie, L., Yan, X., Zhu, Y., & Schweigert, M. (2011). The occupational disease prevention and control act of the people's republic of China: an awareness assessment among workers at foreign-invested enterprises. NEW SOLUTIONS: A Journal of En-vironmental and Occupational Health Policy, 21(1), 103-116.
  • Zahra, S., Mahmood, S., Noreen, S., & Akrem, A. (2018). Independent and combined nickel and cadmium ınduced lipid peroxidation of bi-ological membranes and its mitigation through antioxidant enzymes in Grewia asiatica L. Pakistan Journal of Life & Social Sciences, 16(1), 48-54.
  • Zalups, R. K., & Ahmad, S. (2003). Molecular handling of cadmium in transporting epithelia. Toxicology and Applied Pharmacolo-gy, 186(3), 163-188.
  • Zandonadi, D. B., Santos, M. P., Caixeta, L. S., Marinho, E. B., Peres, L. E. P., & Façanha, A. R. (2016). Plant proton pumps as markers of biostimulant action. Scientia Agricola, 73(1), 24-28.
  • Zengin, F. K., & Munzuroglu, O. (2006). Effects of heavy metals (Pb++, Cu++, Cd++, Hg++) on total protein and abscisic acid content of bean (Phaseolus vulgaris L. cv. Strike) seedlings. Fresenius Environmen-tal Bulletin, 15(4), 277-282.
  • Zhang, T., Gao, X., Luo, X., Li, L., Ma, M., Zhu, Y., ... & Li, R. (2019a). The effects of long-term exposure to low doses of cadmi-um on the health of the next generation of mice. Chemico-Biological Interactions, 312, 108792.
  • Zhang, Y., Li, S., & Li, S. (2019b). Relationship between cadmium content in semen and male infertility: a meta-analysis. Environmen-tal Science and Pollution Research, 26(2), 1947-1953.
  • Zhang, X., Xu, Z., Lin, F., Wang, F., Ye, D., & Huang, Y. (2016). In-creased oxidative DNA damage in placenta contributes to cadmium-induced preeclamptic conditions in rat. Biological Trace Element Re-search, 170(1), 119-127.
  • Ziller, A., Yadav, R. K., Capdevila, M., Reddy, M. S., Vallon, L., Marmeisse, R., ... & Fraissinet-Tachet, L. (2017). Metagenomics analysis reveals a new metallothionein family: sequence and metal-binding features of new environmental cysteine-rich pro-teins. Journal of Inorganic Biochemistry, 167, 1-11.

Cadmium in Plants, Humans and the Environment

Yıl 2020, Cilt: 1 Sayı: 1, 12 - 21, 30.09.2020

Öz

Heavy metals are the most persistent and complex pollutants in nature. They not only reduce the quality of the atmosphere, water bodies and food crops, but also threaten the health and well-being of animals and people. Metals are accumulated in the tissues of living organisms since unlike most organic compounds; they are not subject to metabolic degradation. Cadmium (Cd) is one of the heavy metals as well as one of the most important pollutants that easily transported in plants, then distributed to all plant organs, and thus easily transferred to the food chain. So far, studies have not shown any positive effects of Cd on living organisms. Cd has harmful effects on human health even in low concentrations, which can cause many serious illnesses and even deaths.
In this article, a literature review has been made under the headings of the general properties of Cd, its distribution in nature, its sources and usage areas, the entryways of Cd into plants, its transportation as well as importance in plant metabolism; effects on plants as a heavy metal, the antagonistic-synergistic relationship of Cd with other elements, remediation methods can be applied in soils exposed to Cd contamination, the passage ways of Cd to nutrients, its entry into the body and its transportation, and finally the effects of Cd on humans and animals.

Kaynakça

  • Abarikwu, S. O., Olufemi, P. D., Lawrence, C. J., Wekere, F. C., Ochulor, A. C., & Barikuma, A. M. (2017). Rutin, an antioxidant flavonoid, induces glutathione and glutathione peroxidase activities to protect against ethanol effects in cadmium‐induced oxidative stress in the testis of adult rats. Andrologia, 49(7), e12696.
  • Acosta, I. B., Junior, A. S. V., e Silva, E. F., Cardoso, T. F., Caldas, J. S., Jardim, R. D., & Corcini, C. D. (2016). Effects of exposure to cad-mium in sperm cells of zebrafish, Danio rerio. Toxicology Re-ports, 3, 696-700.
  • Ahmad, J., Ali, A. A., Baig, M. A., Iqbal, M., Haq, I., & Qureshi, M. I. (2019). Role of phytochelatins in cadmium stress tolerance in plants. In: Hasanuzzaman, M., Prasad, M. N. V., Fujita, M. (eds) Cadmium Toxicity and Tolerance in Plants (pp. 185-212). Ac-ademic Press.
  • Aissa, L., & Kéloufi, B. (2012). Determining the heavy metal pollution in Mascara (Algeria) by using Casuarina equisetifolia. Ecologia Bal-kanica, 4(1), 1-7.
  • Akguc, N., Ozyigit, I. I., & Yarci, C. (2008). Pyracantha coccinea Roem.(Rosaceae) as a biomonitor for Cd, Pb and Zn in Mugla prov-ince (Turkey). Pakistan Journal of Botany, 40(4), 1767-1776.
  • Akguc, N., Ozyigit, I., Yasar, U., Leblebici, Z., & Yarci, C. (2010). Use of Pyracantha coccinea Roem. as a possible biomonitor for the se-lected heavy metals. International Journal of Environmental Science & Technology, 7(3), 427-434.
  • Ali, F., Kazi, T. G., Afridi, H. I., & Baig, J. A. (2018). Exposure of cadmium via smoking and drinking water on zinc levels of biological samples of malnutrition pregnant women: A prospective cohort study. Environmental toxicology and pharmacology, 63, 48-54.
  • Altay, V., Ozyigit, I. I., Keskin, M., Demir, G., & Yalcin, I. E. (2013). An ecological study of endemic plant Polygonum istanbulicum Keskin and its environs. Pakistan Journal of Botany, 45(S1), 455-459.
  • Asagba, S. O., & Obi, F. O. (2004). Effects of oral cadmium exposure on renal glomerular and tubular functions in the rat. Journal of Ap-plied Sciences and Environmental Management, 8, 29-32.
  • Asati, A., Pichhode, M., & Nikhil, K. (2016). Effect of heavy metals on plants: an overview. International Journal of Application or Innova-tion in Engineering & Management, 5, 2319-4847.
  • Ashraf, S., Ali, Q., Zahir, Z. A., Ashraf, S., & Asghar, H. N. (2019). Phytoremediation: Environmentally sustainable way for reclamation of heavy metal polluted soils. Ecotoxicology and Environmental Safety, 174, 714-727.
  • Aslam, R., Ansari, M. Y. K., Choudhary, S., Bhat, T. M., & Jahan, N. (2014). Genotoxic effects of heavy metal cadmium on growth, bio-chemical, cyto-physiological parameters and detection of DNA pol-ymorphism by RAPD in Capsicum annuum L.-An important spice crop of India. Saudi Journal of Biological Sciences, 21(5), 465-472.
  • Aslan, R. (2020). Zinde ve sağlıklı bir hayat için kadmiyum'a dik-kat. Ayrıntı Dergisi, 7(82), 51-56.
  • Awual, M. R., Khraisheh, M., Alharthi, N. H., Luqman, M., Islam, A., Karim, M. R., ... & Khaleque, M. A. (2018). Efficient detection and adsorption of cadmium (II) ions using innovative nano-composite materials. Chemical Engineering Journal, 343, 118-127.
  • Ayhan B., Ekmekci Y., Tanyolac D., (2006). Bitkilerde ağır metal zararları ve korunma mekanizmaları. Anadolu Üniversitesi Bilim ve Teknoloji Dergisi, 7(1), 1-16.
  • Azevedo, R. A., & Lea, P. J. (2005). Preface: toxic metals in plants. Brazilian Journal of Plant Physiology, 17(1), 1-1.
  • Balzano, S., Sardo, A., Blasio, M., Chahine, T. B., Dell'Anno, F., San-sone, C., & Brunet, C. (2020). Microalgae metallothioneins and phy-tochelatins and their potential use in bioremediation. Frontiers in Mi-crobiology, 11, 517.
  • Baryla, A., Carrier, P., Franck, F., Coulomb, C., Sahut, C., Havaux, M. (2001). Leaf chlorosis in oilseed rape plants (Brassica napus) grown on cadmium-polluted soil: causes and consequences for photosyn-thesis and growtth. Planta, 212, 696-709.
  • Benavides, M. P., Gallego, S. M., Tomaro, M. L. (2005). Cadmium toxicity in plants. Brazilian Journal of Plant Physiology, 17(1), 21- 34.
  • Bergeron, P. M., & Jumarge, C. (2006). Characterization of cadmium uptake in human intestinal crypt cells HIEC in relation to inorganic metal speciation. Toxicology, 219(1-3), 156-166.
  • Bobillier, S. C., Maupoil, V., & Berthelot, A. (2006). Metallothionein induction in the liver, kidney, heart and aorta of cadmium and ıso-proterenol treated rats. Journal of Applied Toxicology, 26, 47-55.
  • Browar, A. W., Koufos, E. B., Wei, Y., Leavitt, L. L., Prozialeck, W. C., & Edwards, J. R. (2018). Cadmium exposure disrupts periodontal bone in experimental animals: implications for periodontal disease in humans. Toxics, 6(2), 32-42.
  • Cao, Z., Fang, Y., Lu, Y., Tan, D., Du, C., Li, Y., ... & Pei, L. (2017). Melatonin alleviates cadmium‐induced liver injury by inhibiting the TXNIP‐NLRP3 inflammasome. Journal of Pineal Research, 62(3), e12389.
  • Carfagna, S., Lanza, N., Salbitani, G., Basile, A., Sorbo, S., & Vona, V. (2013). Physiological and morphological responses of lead or cad-mium exposed Chlorella sorokiniana 211-8K (Chlorophyceae). Springer Plus, 2(147), 1-7.
  • Cenkci, S., & Dogan, N. (2015). Random amplified polymorphic DNA as a method to screen metal-tolerant barley (Hordeum vulgare L.) genotypes. Turkish Journal of Botany, 39(5), 747-756.
  • Chen, X., Cui, W., Duan, N., Zhu, G., Jin, T., & Wang, Z. (2020). The association between alcohol consumption and renal tubular dysfunc-tion induced by cadmium exposure. Biological Trace Element Re-search, 194(1), 58-65.
  • Chiocchetti, G., Jadan-Piedra, C., Velez, D., & Devesa, V. (2017). Metal (loid) contamination in seafood products. Critical Reviews in Food Science and Nutrition, 57(17), 3715-3728.
  • Clemens, S., Palmgren, M. G., & Krämer, U. (2002). A long way ahead: understanding and engineering plant metal accumulation. Trends in Plant Science, 7(7), 309-315.
  • Corsolini, S. (2009). Industrial contaminants in Antarctic biota. Journal of Chromatography A, 1216(3), 598-612.
  • Deleebeeck, N. M., De Schamphelaere, K. A., & Janssen, C. R. (2008). A novel method for predicting chronic nickel bioavailability and tox-icity to Daphnia magna in artificial and natural wa-ters. Environmental Toxicology and Chemistry: An International Journal, 27(10), 2097-2107.
  • Deleebeeck, N. M., De Schamphelaere, K. A., & Janssen, C. R. (2009). Effects of Mg2+ and H+ on the toxicity of Ni2+ to the unicellular green alga Pseudokirchneriella subcapitata: Model development and vali-dation with surface waters. Science of the Total Environ-ment, 407(6), 1901-1914.
  • Dongre, N. N., Suryakar, A. N., Patil, A. J., Hundekari, I. A., & Devarnavadagi, B. B. (2013). Biochemical effects of lead exposure on bat-tery manufacture workers with reference to blood pressure, calcium metabolism and bone mineral density. Indian Journal of Clinical Bi-ochemistry, 28(1), 65-70.
  • Dučić, T., & Polle, A. (2005). Manganese and copper toxicity and detox-ification in plants. Brazilian Journal of Plant Physiology, 172, 115-122.
  • Duffus, J. H. (2002). "Heavy metals" a meaningless term? (IUPAC Technical Report). Pure and Applied Chemistry, 74(5), 793-807.
  • Duruibe, J. O., Ogwuegbu, M. O. C., & Egwurugwu, J. N. (2007). Heavy metal pollution and human biotoxic effects. International Journal of Physical Sciences, 2(5), 112-118.
  • Dvorak, M., Schnegg, R., Niederwanger, M., Pedrini-Martha, V., La-durner, P., Lindner, H., ... & Dallinger, R. (2020). Cadmium path-ways in snails follow a complementary strategy between metallothi-onein detoxification and auxiliary inactivation by phytochela-tins. International Journal of Molecular Sciences, 21(1), 7-21.
  • Elemike, E. E., Uzoh, I. M., Onwudiwe, D. C., & Babalola, O. O. (2019). The role of nanotechnology in the fortification of plant nutrients and improvement of crop production. Applied Sciences, 9(3), 499-531.
  • Erboga, M., & Kanter, M. (2016). Effect of cadmium on trophoblast cell proliferation and apoptosis in different gestation periods of rat pla-centa. Biological Trace Element Research, 169(2), 285-293.
  • Fay, M. J., Alt, L. A., Ryba, D., Salamah, R., Peach, R., Papaeliou, A., ... & Stubbs-Russell, Z. (2018). Cadmium nephrotoxicity is associated with altered microRNA expression in the rat renal cor-tex. Toxics, 6(1), 16-30.
  • Filippini, T., Cilloni, S., Malavolti, M., Violi, F., Malagoli, C., Tesauro, M., ... & Vinceti, M. (2018). Dietary intake of cadmium, chromium, copper, manganese, selenium and zinc in a Northern Italy communi-ty. Journal of Trace Elements in Medicine and Biology, 50, 508-517.
  • Filiz, E., Saracoglu, I. A., Ozyigit, I. I., & Yalcin, B. (2019a). Compara-tive analyses of phytochelatin synthase (PCS) genes in higher plants. Biotechnology & Biotechnological Equipment, 33(1), 178-194.
  • Filiz, E., Ozyigit, I. I., Saracoglu, I. A., Uras, M. E., Sen, U., & Yalcin, B. (2019b). Abiotic stress-induced regulation of antioxidant genes in different Arabidopsis ecotypes: microarray data evalua-tion. Biotechnology & Biotechnological Equipment, 33(1), 128-143.
  • Fujiki, K., Inamura, H., Sugaya, T., & Matsuoka, M. (2019). Blockade of ALK4/5 signaling suppresses cadmium-and erastin-induced cell death in renal proximal tubular epithelial cells via distinct signaling mechanisms. Cell Death & Differentiation, 26(11), 2371-2385.
  • Garbisu, C., & Alkorta, I. (2001). Phytoextraction: a cost-effective plant-based technology for the removal of metals from the environ-ment. Bioresource Technology, 77(3), 229-236.
  • Gautam, G. J., & Chaube, R. (2018). Differential effects of heavy metals (cadmium, cobalt, lead and mercury) on oocyte maturation and ovu-lation of the catfish Heteropneustes fossilis: an in vitro study. Turkish Journal of Fisheries and Aquatic Sciences, 18(10), 1205-1214.
  • Genchi, G., Sinicropi, M. S., Lauria, G., Carocci, A., & Catalano, A. (2020). The effects of cadmium toxicity. International Journal of Environmental Research and Public Health, 17(11), 3782-3806.
  • Geng, H. X., & Wang, L. (2019). Cadmium: toxic effects on placental and embryonic development. Environmental Toxicology and Phar-macology, 67, 102-107.
  • Gill, S. S., Khan, N. A., & Tuteja, N. (2012). Cadmium at high dose perturbs growth, photosynthesis and nitrogen metabolism while at low dose it up regulates sulfur assimilation and antioxidant machin-ery in garden cress (Lepidium sativum L.). Plant Science, 182, 112-120.
  • Goyal, D., Yadav, A., Prasad, M., Singh, T. B., Shrivastav, P., Ali, A., ... & Mishra, S. (2020). Effect of Heavy Metals on Plant Growth: An Overview. In: Naeem, M., Ansari, A., Gill, S. (eds) Contaminants in Agriculture (pp. 79-101). Springer, Cham.
  • Habib, R., Wahdan, S. A., Gad, A. M., & Azab, S. S. (2019). Infliximab abrogates cadmium-induced testicular damage and spermiotoxicity via enhancement of steroidogenesis and suppression of inflamma-tion and apoptosis mediators. Ecotoxicology and Environmental Safety, 182, 109398.
  • Hassan, M. J., Shao, G., & Zhang, G. (2005). Influence of cadmium toxicity on growth and antioxidant enzyme activity in rice cultivars with different grain cadmium accumulation. Journal of Plant Nutri-tion, 28(7), 1259-1270.
  • Hassanin, E. S., El-Bassel, H., & El-Razek, A. (2017). Effect of Cadmi-um Exposure among workers in Battery Industries. Bulletin of the National Nutrition Institute of the Arab Republic of Egypt, 49(1), 1-20.
  • Hawkesford, M. J., Kopriva, S., & De Kok, L. J. (2016). Nutrient use efficiency in plants. (pp. 1-279). Springer International Pu.
  • Hayakawa, N., Tomioka, R., & Takenaka, C. (2011). Effects of calcium on cadmium uptake and transport in the tree species Gamblea inno-vans. Soil Science and Plant Nutrition, 57(5), 691-695.
  • Hezbullah, M., Sultana, S., Chakraborty, S. R., & Patwary, M. I. (2016). Heavy metal contamination of food in a developing country like Bangladesh: An emerging threat to food safety. Journal of Toxicolo-gy and Environmental Health Sciences, 8(1), 1-5.
  • Huang, X., Duan, S., Wu, Q., Yu, M., & Shabala, S. (2020). Reducing cadmium accumulation in plants: structure-function relations and tissue-specific operation of transporters in the spot-light. Plants, 9(2), 223-240.
  • Huang, X., Liu, T., Zhao, M., Fu, H., Wang, J., & Xu, Q. (2019). Protec-tive effects of moderate Ca supplementation against Cd-induced bone damage under different population-relevant doses in young female rats. Nutrients, 11(4), 849-871.
  • Imafidon, C. E., Olatoye, T. R., Bamidele, F. S., Ojo, O. E., & Ademoye, K. A. (2016). Cadmium-induced testicular toxicity, oxidative stress and histopathology in Wistar rats: sustained effects of polyphenol-rich extract of Vernonia amygdalina (Del.) leaf. Journal of Interdis-ciplinary Histopathology, 4(3), 54-62.
  • Ishchenko, V. A. (2018). Environment contamination with heavy metals contained in waste. Environmental Problems, 3(1), 21-24.
  • Ismael, M. A., Elyamine, A. M., Moussa, M. G., Cai, M., Zhao, X., & Hu, C. (2019). Cadmium in plants: uptake, toxicity, and its interac-tions with selenium fertilizers. Metallomics, 11(2), 255-277.
  • Jabeen, R., Ahmad, A., & Iqbal, M. (2009). Phytoremediation of heavy metals: physiological and molecular mechanisms. The Botanical Re-view, 75(4), 339-364.
  • Jovanovic, V. S., Ilic, M. D., Markovic, M. S., Mitic, V. D., Mandic, S. N., & Stojanovic, G. S. (2011). Wild fire impact on copper, zinc, lead and cadmium distribution in soil and relation with abundance in selected plants of Lamiaceae family from Vidlic Mountain (Ser-bia). Chemosphere, 84(11), 1584-1591.
  • Karahan, F., Ozyigit, I. I., Saracoglu, I. A., Yalcin, I. E., Hocaoglu-Ozyigit, A., & Ilcim, A. (2020). Heavy metal levels and mineral nu-trient status in different parts of various medicinal plants collected from eastern Mediterranean region of Turkey. Biological Trace Ele-ment Research, 197, 316-329.
  • Kayhan, F. E. (2006). Su ürünlerinde Cd’un biyobirikimi ve toksisitesi. E.U. Su Ürünleri Dergisi, 23, 215-220.
  • Khan, M. Y., Prakash, V., Yadav, V., Chauhan, D. K., Prasad, S. M., Ramawat, N., ... & Sharma, S. (2019). Regulation of cadmium toxici-ty in roots of tomato by indole acetic acid with special emphasis on reactive oxygen species production and their scavenging. Plant Physiology and Biochemistry, 142, 193-201.
  • Kim, Y. Y., Yang, Y. Y., & Lee, Y. (2002). Pb and Cd uptake in rice roots. Physiologia Plantarum, 116(3), 368-372.
  • Kinraide, T. B., Yermiyahu, U., & Rytwo, G. (1998). Computation of surface electrical potentials of plant cell membranes: correspondence to published zeta potentials from diverse plant sources. Plant Physi-ology, 118(2), 505-512.
  • Kmecick, M., da Costa, M. C. V., de Oliveira Ribeiro, C. A., & Ortolani-Machado, C. F. (2019). Morphological evidence of neurotoxic ef-fects in chicken embryos after exposure to perfluorooctanoic acid (PFOA) and inorganic cadmium. Toxicology, 427, 152286.
  • Koleli, N., & Kantar, C. (2006). Fosforlu gübrede ağır metal tehlikesi. Ekoloji Magazin Dergisi, 9.
  • Koleli, N., Eker, S., & Cakmak, I. (2004). Effect of zinc fertilization on cadmium toxicity in durum and bread wheat grown in zinc-deficient soil. Environmental Pollution, 131(3), 453-459.
  • Kumar, S., Prasad, S., Yadav, K. K., Shrivastava, M., Gupta, N., Nagar, S., ... & Malav, L. C. (2019). Hazardous heavy metals contamination of vegetables and food chain: Role of sustainable remediation ap-proaches-A review. Environmental Research, 179, 108792.
  • Lavryshyn, Y. Y., & Gutyj, B. V. (2019). Protein synthesize function of bulls liver at experimental chronic cadmium toxicity. Scientific Mes-senger of LNU of Veterinary Medicine and Biotechnologies. Series: Veterinary Sciences, 21(94), 92-96.
  • Lee, J. Y., Tokumoto, M., Fujiwara, Y., Hasegawa, T., Seko, Y., Shi-mada, A., & Satoh, M. (2016). Accumulation of p53 via down-regulation of UBE2D family genes is a critical pathway for cadmi-um-induced renal toxicity. Scientific Reports, 6(1), 1-15.
  • Li, J. T., Liang, Z. W., Jia, P., Liu, J., Xu, Y. J., Chen, Y. J., ... & Shu, W. S. (2017). Effects of a bacterial consortium from acid mine drainage on cadmium phytoextraction and indigenous soil microbial commu-nity. Plant and Soil, 415(1-2), 347-358.
  • Li, X., Guo, J., Jiang, X., Sun, J., Tian, L., Jiao, R., ... & Bai, W. (2019). Cyanidin-3-O-glucoside protects against cadmium-induced dysfunc-tion of sex hormone secretion via the regulation of hypothalamus-pituitary-gonadal axis in male pubertal mice. Food and Chemical Toxicology, 129, 13-21.
  • Liang, Y., Wang, X., Guo, Z., Xiao, X., Peng, C., Yang, J., ... & Zeng, P. (2019). Chelator-assisted phytoextraction of arsenic, cadmium and lead by Pteris vittata L. and soil microbial community structure re-sponse. International Journal of Phytoremediation, 21(10), 1032-1040.
  • Lombardi, L., & Sebastiani, L. (2005). Copper toxicity in Prunus cerasifera: growth and antioxidant enzymes responses of in vitro grown plants. Plant Science, 168(3), 797-802.
  • Massanyi, P., Uhrin, V., Toman, R., Pivko, J., Lukáč, N., Forgacs, Z. S., ... & Danko, J. (2005). Ultrastructural changes of ovaries in rabbits following cadmium administration. Acta Veterinaria Brno, 74(1), 29-35.
  • McCarty, M. F. (2012). Zinc and multi-mineral supplementation should mitigate the pathogenic impact of cadmium exposure. Medical Hy-potheses, 79(5), 642-648.
  • Meena, V., Dotaniya, M. L., Saha, J. K., Meena, B. P., Das, H., & Patra, A. K. (2020). Sustainable C and N management under metal-contaminated soils. In: Datta, R., Meena, R. S., Pathan, S. I., Cecche-rini, M. T. (eds) Carbon and Nitrogen Cycling in Soil (pp. 293-336). Springer, Singapore.
  • Meravi, N., & Prajapati, S. K. (2013). Effects of heavy metals/metalloids contamination of soils on micronucleus induction in Tradescantia pallida. Environmental Skeptics and Critics, 2(2), 58-62.
  • Mishra, S., Bharagava, R. N., More, N., Yadav, A., Zainith, S., Mani, S., & Chowdhary, P. (2019). Heavy metal contamination: an alarming threat to environment and human health. In: Sobti, R. C., Kumar Arora, N., Kothari, R. (eds) Environmental Biotechnology: For Sus-tainable Future (pp. 103-125). Springer, Singapore.
  • Mohammad, A. M., Chowdhury, T., Biswas, B., & Absar, N. (2018). Food poisoning and intoxication: a global leading concern for human health. In: Grumezescu, A. M., Holban, A. M. (eds) Food Safety and Preservation (pp. 307-352). Academic Press.
  • Moynihan, M., Peterson, K. E., Cantoral, A., Song, P. X., Jones, A., Solano-González, M., ... & Téllez-Rojo, M. M. (2017). Dietary pre-dictors of urinary cadmium among pregnant women and chil-dren. Science of The Total Environment, 575, 1255-1262.
  • Navarrete, A., González, A., Gómez, M., Contreras, R. A., Díaz, P., Lobos, G., ... & Moenne, A. (2019). Copper excess detoxification is mediated by a coordinated and complementary induction of glutathi-one, phytochelatins and metallothioneins in the green seaweed Ulva compressa. Plant Physiology and Biochemistry, 135, 423-431.
  • Nishijo, M., Nakagawa, H., Suwazono, Y., Nogawa, K., & Kido, T. (2017a). Causes of death in patients with Itai-itai disease suffering from severe chronic cadmium poisoning: a nested case–control analysis of a follow-up study in Japan. BMJ Open, 7(7), e015694.
  • Nishijo, M., Nambunmee, K., Suvagandha, D., Swaddiwudhipong, W., Ruangyuttikarn, W., & Nishino, Y. (2017b). Gender-specific impact of cadmium exposure on bone metabolism in older people living in a cadmium-polluted area in Thailand. International Journal of Envi-ronmental Research and Public Health, 14(4), 401.
  • Nna, V. U., Ujah, G. A., Mohamed, M., Etim, K. B., Igba, B. O., Augus-tine, E. R., & Osim, E. E. (2017). Cadmium chloride-induced testic-ular toxicity in male wistar rats; prophylactic effect of quercetin, and assessment of testicular recovery following cadmium chloride with-drawal. Biomedicine & Pharmacotherapy, 94, 109-123.
  • Ohta, H., Yamauchi, Y., Nakakita, M., Tanaka, H., Asami, S., Seki, Y., & Yoshikawa, H. (2000). Relationship between renal dysfunction and bone metabolism disorder in male rats after long-term oral quantitative cadmium administration. Industrial Health, 38(4), 339-355.
  • Okcu, M., Tozlu, E., Kumlay, A. M., & Pehluvan, M. (2009). Ağır metallerin bitkiler üzerine etkileri. Alınteri Zirai Bilimler Dergisi, 17(2), 14-26.
  • Okoye, C. N., MacDonald-Jay, N., & Kamunde, C. (2019). Effects of bioenergetics, temperature and cadmium on liver mitochondria reac-tive oxygen species production and consumption. Aquatic Toxicolo-gy, 214, 105264.
  • Osma, E., Ozyigit, I. I., Leblebici, Z., Demir, G., & Serin, M. (2012). Determination of heavy metal concentrations in tomato (Lycopersi-con esculentum Miller) grown in different station types. Romanian Biotechnological Letters, 17(1), 6963.
  • Othman, M. S., Khonsue, W., Kitana, J., Thirakhupt, K., Robson, M., Borjan, M., & Kitana, N. (2012). Hepatic metallothionein and Gluta-thione-S-Transferase responses in two populations of rice frogs, Fejervarya limnocharis, naturally exposed to different environmental cadmium levels. Bulletin of Environmental Contamination and Toxi-cology, 89(2), 225-228.
  • Ozcan, T., & Baycu, G. (2005). Some elemental concentrations in the acorns of Turkish Quercus L. (Fagaceae) taxa. Pakistan Journal of Botany, 37(2), 361-371.
  • Oztoprak, F. S., Yigitalp Rencber, S., Ceylan, A., Arica, E., Sayin Ipek, D. N., Kurt, M. E., & Yetiz, P. (2020). Assessment of lead, mercury, cadmium, chromium and total antioxidant capacity levels of employees exposed to exhaust gases in closed parking lots. International Jour-nal of Environmental Analytical Chemistry, 1-13.
  • Ozturk, A., Yarci, C., & Ozyigit, I. I. (2017). Assessment of heavy metal pollution in Istanbul using plant (Celtis australis L.) and soil assays. Biotechnology & Biotechnological Equipment, 31(5), 948-954.
  • Ozyigit, I. I., & Dogan, I. (2014). Plant-microbe interactions in phytore-mediation. In: Rehman Hakeem K., Sabir M., Ozturk M., Mermut A. (eds) Soil Remediation and Plants-Prospects & Challenges (pp. 255-285). Elsevier B.V. Amsterdam.
  • Ozyigit, I. I., Yalcin, B., Turan, S., Saracoglu, I. A., Karadeniz, S., Yalcin, I. E., & Demir, G. (2018). Investigation of heavy metal level and mineral nutrient status in widely used medicinal plants’ leaves in Turkey: Insights into health implications. Biological Trace Ele-ment Research, 182(2), 387-406.
  • Ozyigit, I. I., Yilmaz, S., Dogan, I., Sakcali, M. S., Tombuloglu, G., & Demir, G. (2016). Detection of physiological and genotoxic damages reflecting toxicity in kalanchoe clones, Global Nest Journal, 18, 223-232.
  • Padmavathiamma, P. K., & Li, L. Y. (2007). Phytoremediation technolo-gy: hyper-accumulation metals in plants. Water, Air, and Soil Pollu-tion, 184(1-4), 105-126.
  • Paustenbach, D., Finley, B., Mowat, F., & Kerger, B. (2003). Human health risk and exposure assessment of chromium (VI) in tap wa-ter. Journal of Toxicology and Environmental Health, Part A, 66(14), 1295-1339.
  • Per, T. S., Masood, A., & Khan, N. A. (2017). Nitric oxide improves S-assimilation and GSH production to prevent inhibitory effects of cadmium stress on photosynthesis in mustard (Brassica juncea L.). Nitric oxide, 68, 111-124.
  • Perfus-Barbeoch, L., Leonhardt, N., Vavasseur, A., & Forestier, C. (2002). Heavy metal toxicity: cadmium permeates through calcium channels and disturbs the plant water status. The Plant Journal, 32(4), 539-548.
  • Person, R. J., Tokar, E. J., Xu, Y., Orihuela, R., Ngalame, N. N. O., & Waalkes, M. P. (2013). Chronic cadmium exposure in vitro induces cancer cell characteristics in human lung cells. Toxicology and Ap-plied Pharmacology, 273(2), 281-288.
  • Pohl, C., Croot, P. L., Hennings, U., Daberkow, T., Budéus, G., & vd Loeff, M. R. (2011). Synoptic transects on the distribution of trace elements (Hg, Pb, Cd, Cu, Ni, Zn, Co, Mn, Fe, and Al) in surface wa-ters of the Northern-and Southern East Atlantic. Journal of Marine Systems, 84(1-2), 28-41.
  • Prasad, M. N. V. (2013). Heavy metal stress in plants: from biomolecules to ecosystems. (pp. 1-462). Springer Science & Business Media.
  • Pratinidhi, S. A., Sagare, A. A., & Patil, A. J. (2018). Heavy metal levels in commonly used cosmetic products in Asia. MIMER Medical Journal, 2(2), 31-36.
  • Prokopowicz, A., Sobczak, A., Szuła-Chraplewska, M., Ochota, P., & Kośmider, L. (2019). Exposure to cadmium and lead in cigarette smokers who switched to electronic cigarettes. Nicotine and Tobacco Research, 21(9), 1198-1205.
  • Prozialeck, W. C., Edwards, J. R., & Woods, J. M. (2006). The vascular endothelium as a target of cadmium toxicity. Life Sciences, 79(16), 1493-1506.
  • Qin, S., Liu, H., Nie, Z., Rengel, Z., Gao, W., Li, C., & Zhao, P. (2020). Toxicity of cadmium and its competition with mineral nutrients for uptake by plants: a review. Pedosphere, 30(2), 168-180.
  • Rai, R., Agrawal, M., & Agrawal, S. B. (2016). Impact of heavy metals on physiological processes of plants: with special reference to pho-tosynthetic system. In: Singh, A., Prasad, S., Singh, R. (eds) Plant Responses to Xenobiotics (pp. 127-140). Springer, Singapore.
  • Rathod, S. P., Shah, N., & Balaraman, R. (1997). Antihypertensive effect of dietary calcium and diltiazem, a calcium channel blocker on ex-perimentally induced hypertensive rats. Indian Journal of Pharma-cology, 29(2), 99-104.
  • Resitoglu, M. T., Guden, D. S., & Firat, S. S. (2016). Hipertansiyon araştırmalarında kullanılan deneysel modeller. Clinical and Experi-mental Health Sciences, 6(1), 35-43.
  • Reyes-Hinojosa, D., Lozada-Pérez, C. A., Cuevas, Y. Z., López-Reyes, A., Martínez-Nava, G., Fernández-Torres, J., ... & Martínez-Flores, K. (2019). Toxicity of cadmium in musculoskeletal diseas-es. Environmental Toxicology and Pharmacology, 72, 103219.
  • Sabiha-Javied, T., Mehmood, M., Chaudhry, M., & Tufail, I. (2009). Heavy metal pollution from phosphate rock used for the production of fertilizer in Pakistan. Microchemical Journal, 91, 94-99.
  • Sadeghipour, O. (2018). Enhancing cadmium tolerance in common bean plants by potassium application. Philippine Agricultural Scientist, 101(2), 167-175.
  • Salzer, A. (1999). Nomenclature of organometallic compounds of the transition elements (IUPAC Recommendations 1999). Pure and Ap-plied Chemistry, 71(8), 1557-1585.
  • Santoyo-Sánchez, M., Thévenod, F., & Barbier, O. (2018). Cadmium handling, toxicity and molecular targets involved during pregnancy: les-sons from experimental models. Metal Metabolism in Ani-mals, 18, 272.
  • Schlekat, C. E., Van Genderen, E., De Schamphelaere, K. A., Antunes, P. M., Rogevich, E. C., & Stubblefield, W. A. (2010). Cross-species extrapolation of chronic nickel Biotic Ligand Models. Science of the Total Environment, 408(24), 6148-6157.
  • Sevik, H., Ozel, H. B., Cetin, M., Özel, H. U., & Erdem, T. (2019). Determination of changes in heavy metal accumulation depending on plant species, plant organism, and traffic density in some landscape plants. Air Quality, Atmosphere & Health, 12(2), 189-195.
  • Shakoor, A., Abdullah, M., Sarfraz, R., Altaf, M. A., & Batool, S. A. (2017). A comprehensive review on phytoremediation of cadmium (Cd) by mustard (Brassica juncea L.) and sunflower (Helianthus annuus L.). Journal of Biological and Environmental Scienc-es, 10(3), 88-98.
  • Shou, H., Li, L., Ye, L., & Kong, Q. (2019). A vacuolar membrane ferric-chelate reductase, OsFRO1 alleviates Fe toxicity in rice (Oryza sativa L.). Frontiers in Plant Science, 10, 700.
  • Siatka, T., Kašparová, M., & Spilková, J. (2012). Effects of zinc and cadmium ions on cell growth and production of coumarins in cell suspension cultures of Angelica archangelica L. Ceska a Slovenska Farmacie: Casopis Ceske Farmaceuticke Spolecnosti a Slovenske Farmaceuticke Spolecnosti, 61(6), 261-266.
  • Singh, P., Singh, I., & Shah, K. (2019). Reduced activity of nitrate reduc-tase under heavy metal cadmium stress in rice: an in silico answer. Frontiers in Plant Science, 9, 1948.
  • Song, Y., Jin, L., & Wang, X. (2017). Cadmium absorption and trans-portation pathways in plants. International Journal of Phytoremedia-tion, 19(2), 133-141.
  • Sui, F., Zuo, J., Chen, D., Li, L., Pan, G., & Crowley, D. E. (2018). Biochar effects on uptake of cadmium and lead by wheat in relation to annual precipitation: a 3-year field study. Environmental Science and Pollution Research, 25(4), 3368-3377.
  • Sundblad, B. M., Ji, J., Levänen, B., Midander, K., Julander, A., Lars-son, K., ... & Lindén, A. (2016). Extracellular cadmium in the bron-choalveolar space of long-term tobacco smokers with and without COPD and its association with inflammation. International Journal of Chronic Obstructive Pulmonary Disease, 11, 1005.
  • Tabelin, C. B., Igarashi, T., Villacorte-Tabelin, M., Park, I., Opiso, E. M., Ito, M., & Hiroyoshi, N. (2018). Arsenic, selenium, boron, lead, cadmium, copper, and zinc in naturally contaminated rocks: A re-view of their sources, modes of enrichment, mechanisms of release, and mitigation strategies. Science of the Total Environment, 645, 1522-1553.
  • Tamás, M. J., Fauvet, B., Christen, P., & Goloubinoff, P. (2018). Mis-folding and aggregation of nascent proteins: a novel mode of toxic cadmium action in vivo. Current genetics, 64(1), 177-181.
  • Tao, C., Pei, Y., Zhang, L., & Zhang, Y. (2020). Microbial communities respond to microenvironments in lungs of mice under simulated ex-posure to cadmium aerosols. Science of The Total Environment, 710, 136300.
  • Terrón-Camero, L. C., Peláez-Vico, M. Á., Del-Val, C., Sandalio, L. M., & Romero-Puertas, M. C. (2019). Role of nitric oxide in plant re-sponses to heavy metal stress: exogenous application versus endog-enous production. Journal of Experimental Botany, 70(17), 4477-4488.
  • Tripathi, S., Srivastava, P., Devi, R. S., & Bhadouria, R. (2020). Influ-ence of synthetic fertilizers and pesticides on soil health and soil mi-crobiology. In: Prasad, M. N. V. (ed) Agrochemicals Detection, Treatment and Remediation (pp. 25-54). Butterworth-Heinemann.
  • Vahter, M., Berglund, M., Åkesson, A., & Liden, C. (2002). Metals and women's health. Environmental Research, 88(3), 145-155.
  • Vizuete, J., Pérez-López, M., Míguez-Santiyán, M. P., & Hernández-Moreno, D. (2018). Mercury (Hg), lead (Pb), cadmium (Cd), seleni-um (Se), and arsenic (As) in liver, kidney, and feathers of gulls: A review. In: de Voogt, P. (ed) Reviews of Environmental Contamina-tion and Toxicology Volume 247 (pp. 85-146). Springer, Cham.
  • Wang, H., He, L., Song, J., Cui, W., Zhang, Y., Jia, C., ... & Hui, X. (2016). Cadmium-induced genomic instability in Arabidopsis: mo-lecular toxicological biomarkers for early diagnosis of cadmium stress. Chemosphere, 150, 258-265.
  • Wang, L. Y., Fan, R. F., Yang, D. B., Zhang, D., & Wang, L. (2019). Puerarin reverses cadmium-induced lysosomal dysfunction in pri-mary rat proximal tubular cells via inhibiting Nrf2 path-way. Biochemical Pharmacology, 162, 132-141.
  • Wang, X. Y., Yang, H., Wang, M. G., Yang, D. B., Wang, Z. Y., & Wang, L. (2017). Trehalose protects against cadmium-induced cytotoxicity in primary rat proximal tubular cells via inhibiting apoptosis and re-storing autophagic flux. Cell Death & Disease, 8(10), e3099-e3099.
  • WHO, (2000). World Health Organization. “Fifty-Third Report of The Joint Fao/Who Expert Committee on Food Additives”, Who Tech-nical Report Series 896, Genova, Switzerland.
  • WHO, (2003). World Health Organization. Cadmium review. www.who.int/ifcs/documents/forums/forum5/nmr_cadmium. pdf, Last accessed on July 26, 2020.
  • WHO, (2019). World Health Organization. Preventing Disease through Healthy Environments: Exposure to Cadmium: A Major Public Health Concern. https://apps.who.int/iris/bitstream/handle/10665/329480/WHO-CED-PHE-EPE-19.4.3-eng.pdf, Last accessed on July 26, 2020.
  • Xu, X., Zhang, X., Carrillo, G., Zhong, Y., Kan, H., & Zhang, B. (2019). A systematic assessment of carcinogenicity of chemicals in hydrau-lic-fracturing fluids and flowback water. Environmental Pollu-tion, 251, 128-136.
  • Yalcin, I. E., Ozyigit, I. I., Dogan, I., Demir, G., & Yarci, C. (2020). Using the Turkish red pine tree to monitor heavy metal pollu-tion. Polish Journal of Environmental Studies, 29(5), 3881-3889.
  • Yamaguchi, C., Khamsalath, S., Takimoto, Y., Suyama, A., Mori, Y., Ohkama-Ohtsu, N., & Maruyama-Nakashita, A. (2020). SLIM1 transcription factor promotes sulfate uptake and distribution to shoot, along with phytochelatin accumulation, under cadmium stress in Arabidopsis thaliana. Plants, 9(2), 163.
  • Yang, C. M., & Juang, K. W. (2015). Alleviation effects of calcium and potassium on cadmium rhizotoxicity and absorption by soybean and wheat roots. Journal of Plant Nutrition and Soil Science, 178(5), 748-754.
  • Yang, Q., Li, Z., Lu, X., Duan, Q., Huang, L., & Bi, J. (2018). A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment. Science of the total envi-ronment, 642, 690-700.
  • Yang, Q., Zhu, J., Luo, X., Li, F., Cong, L., Wang, Y., & Sun, Y. (2019). Melatonin attenuates cadmium-induced ovulatory dysfunction by suppressing endoplasmic reticulum stress and cell apopto-sis. Reproductive Biology and Endocrinology, 17(1), 61.
  • Yaseen, M. A. (2019). Effect of different cadmium levels on growth and biochemical parameters of Cyprinus carpio fingerlings reared in a close system. Zanco Journal of Pure and Applied Sciences, 31(4), 139-152.
  • Yongming, S., Rongzhu, L., Jie, L., Yan, X., Zhu, Y., & Schweigert, M. (2011). The occupational disease prevention and control act of the people's republic of China: an awareness assessment among workers at foreign-invested enterprises. NEW SOLUTIONS: A Journal of En-vironmental and Occupational Health Policy, 21(1), 103-116.
  • Zahra, S., Mahmood, S., Noreen, S., & Akrem, A. (2018). Independent and combined nickel and cadmium ınduced lipid peroxidation of bi-ological membranes and its mitigation through antioxidant enzymes in Grewia asiatica L. Pakistan Journal of Life & Social Sciences, 16(1), 48-54.
  • Zalups, R. K., & Ahmad, S. (2003). Molecular handling of cadmium in transporting epithelia. Toxicology and Applied Pharmacolo-gy, 186(3), 163-188.
  • Zandonadi, D. B., Santos, M. P., Caixeta, L. S., Marinho, E. B., Peres, L. E. P., & Façanha, A. R. (2016). Plant proton pumps as markers of biostimulant action. Scientia Agricola, 73(1), 24-28.
  • Zengin, F. K., & Munzuroglu, O. (2006). Effects of heavy metals (Pb++, Cu++, Cd++, Hg++) on total protein and abscisic acid content of bean (Phaseolus vulgaris L. cv. Strike) seedlings. Fresenius Environmen-tal Bulletin, 15(4), 277-282.
  • Zhang, T., Gao, X., Luo, X., Li, L., Ma, M., Zhu, Y., ... & Li, R. (2019a). The effects of long-term exposure to low doses of cadmi-um on the health of the next generation of mice. Chemico-Biological Interactions, 312, 108792.
  • Zhang, Y., Li, S., & Li, S. (2019b). Relationship between cadmium content in semen and male infertility: a meta-analysis. Environmen-tal Science and Pollution Research, 26(2), 1947-1953.
  • Zhang, X., Xu, Z., Lin, F., Wang, F., Ye, D., & Huang, Y. (2016). In-creased oxidative DNA damage in placenta contributes to cadmium-induced preeclamptic conditions in rat. Biological Trace Element Re-search, 170(1), 119-127.
  • Ziller, A., Yadav, R. K., Capdevila, M., Reddy, M. S., Vallon, L., Marmeisse, R., ... & Fraissinet-Tachet, L. (2017). Metagenomics analysis reveals a new metallothionein family: sequence and metal-binding features of new environmental cysteine-rich pro-teins. Journal of Inorganic Biochemistry, 167, 1-11.
Toplam 156 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Derlemeler
Yazarlar

Aslı Hocaoğlu-özyiğit 0000-0003-2510-6752

Bedriye Nazlı Genç Bu kişi benim 0000-0003-1194-3533

Yayımlanma Tarihi 30 Eylül 2020
Gönderilme Tarihi 17 Ağustos 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 1 Sayı: 1

Kaynak Göster

APA Hocaoğlu-özyiğit, A., & Genç, B. N. (2020). Cadmium in Plants, Humans and the Environment. Frontiers in Life Sciences and Related Technologies, 1(1), 12-21.

Creative Commons License

Frontiers in Life Sciences and Related Technologies is licensed under a Creative Commons Attribution 4.0 International License.