Araştırma Makalesi
BibTex RIS Kaynak Göster

Application of response surface methodology for green synthesis of silver nanoparticles using Prunus mahaleb L.

Yıl 2025, Cilt: 6 Sayı: 2, 105 - 113, 30.08.2025
https://doi.org/10.51753/flsrt.1665073

Öz

The green synthesis of silver nanoparticles (AgNPs) utilizing plant extracts offers an environmentally sustainable alternative for applications in industry and agriculture. In the present study, Prunus mahaleb L. was selected as a plant source for green synthesis of AgNPs. Prior to green synthesis, the bioactive characteristics of P. mahaleb L. were ascertained, and then response surface methodology was employed to establish the conditions for the green synthesis of AgNPs utilizing mahaleb extract. The central composite design generated 13 experimental points based on the factors: concentration of silver nitrate (X1) and volume of mahaleb extract (X2). The bioactive potential of mahaleb was quantified as follows: total phenolic content at 21.44±0.047 mg GAE/g, total antioxidant capacity at 20.94±0.262 mg TE/g for DPPH, 47.82±0.034 mg TE/g for CUPRAC, 34.70±0.070 mg TE/g for FRAP, and total flavonoid content at 33.20±0.117 mg CE/g. The hydrodynamic diameters (HD) and zeta potentials (ZP) of AgNPs derived from the experimental design ranged from 90.70±1.18 nm to 225.10±1.26 nm and from -23.40±1.28 mV to -17.80±0.61 mV, respectively. The optimal condition for the minimum hydrodynamic diameter (HD) was determined to be an estimated value of 89.17 nm and an actual HD value of 92.41±0.745 nm, achieved at an AgNO3 concentration of 2.40 mM and a mahaleb volume of 5.08 mL. The study's findings indicated that mahaleb seeds can facilitate the generation of AgNPs through green synthesis.

Kaynakça

  • Ahmed, S., Ahmad, M., Swami, B. L., & Ikram, S. (2016). Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract. Journal of Radiation Research and Applied Sciences, 9(1), 1-7.
  • Ai, J., Biazar, E., Jafarpour, M., Montazeri, M., Majdi, A., . . . Rad, H. G. (2011). Nanotoxicology and nanoparticle safety in biomedical designs. International Journal of Nanomedicine, 1117-1127.
  • Ajitha, B., Reddy, Y. A. K., & Reddy, P. S. (2015). Green synthesis and characterization of silver nanoparticles using Lantana camara leaf extract. Materials Science and Engineering: C, 49, 373-381.
  • Ajitha, B., Reddy, Y. A. K., Reddy, P. S., Suneetha, Y., Jeon, H.-J., & Ahn, C. W. (2016). Instant biosynthesis of silver nanoparticles using Lawsonia inermis leaf extract: Innate catalytic, antimicrobial and antioxidant activities. Journal of Molecular Liquids, 219, 474-481.
  • Akwu, N., Naidoo, Y., Singh, M., Nundkumar, N., Daniels, A., & Lin, J. (2021). Two temperatures biogenic synthesis of silver nanoparticles from Grewia lasiocarpa E. Mey. ex Harv. Leaf and stem bark extracts: characterization and applications. BioNanoScience, 11, 142-158.
  • Apak, R., Güçlü, K., Özyürek, M., & Karademir, S. E. (2004). Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. Journal of Agricultural and Food chemistry, 52(26), 7970-7981.
  • Bagdat, E. S., Akman, P. K., Kutlu, G., & Tornuk, F. (2024). Optimization of spray-drying process parameters for microencapsulation of three probiotic lactic acid bacteria selected by their high viability rate in sucrose and fructose levels and high tempera-tures. Systems Microbiology and Biomanufacturing, 4(2), 687-698.
  • Benzie, I. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analytical Biochemistry, 239(1), 70-76.
  • Blando, F., Albano, C., Liu, Y., Nicoletti, I., Corradini, D., Tommasi, N., . . . Kitts, D. D. (2016). Polyphenolic composition and antioxidant activity of the under‐utilised Prunus mahaleb L. fruit. Journal of the Science of Food and Agriculture, 96(8), 2641-2649.
  • Celik, S., Kutlu, G., & Tornuk, F. (2024). Recovery and characterization of cellulose microfibers from fallen leaves and evaluation of their potential as reinforcement agents for production of new biodegradable packaging materials. Food Science & Nutrition, 12(10), 8364-8376.
  • Cakar, B., & Iseri, O. D. (2024). Effect of metallic nanoparticles on cancer cell lines: A review on plant-based biosynthesis. Frontiers in Life Sciences and Related Technologies, 5(3), 231-243.
  • Daphne, J., Francis, A., Mohanty, R., Ojha, N., & Das, N. (2018). Green synthesis of antibacterial silver nanoparticles using yeast isolates and its characterization. Research Journal of Pharmacy and Technology, 11(1), 83-92.
  • Dashtizadeh, Z., Kashi, F. J., & Ashrafi, M. (2021). Phytosynthesis of copper nanoparticles using Prunus mahaleb L. and its biological activity. Materials Today Communications, 27, 102456.
  • Elbaghdady, K., El-Shatoury, E., Abdallah, O., & Khalil, M. (2018). Biogenic production of silver nanoparticles by Enterobacter cloacae Ism26. Turkish Journal of Biology, 42(4), 319-328.
  • Fiddaroini, S., Prisilia, F., Karo, S. B., Madaniyah, L., Khairana, A. D., Rahmaniah, G., . . . Fardiyah, Q. (2025). Green synthesis of nanoparticles using cottonwood and rambutan honeys: Optimization, characterization, and enhanced antioxidant activity with reduced toxicity via oligochitosan coating. Next Materials, 8, 100685.
  • Ghafoor, K., Ahmed, I. A. M., Doğu, S., Uslu, N., Fadimu, G. J., Al Juhaimi, F., . . . Özcan, M. M. (2019). The effect of heating temperature on total phenolic content, antioxidant activity, and phenolic compounds of plum and mahaleb fruits. International Journal of Food Engineering, 15(11-12), 20170302.
  • Güven, Z. B., Alshehri, O., Yüce, N., Bakan, E., Demirci, B., Yilmaz, M. A., . . . Basaran, A. A. (2023). Chemical composition, nutritional values, elemental analysis and biological properties of Prunus mahaleb L.: From waste to new potential sources for food, cosmetic and drug industry. Food Bioscience, 53, 102632.
  • Jalab, J., Abdelwahed, W., Kitaz, A., & Al-Kayali, R. (2021). Green synthesis of silver nanoparticles using aqueous extract of Acacia cyanophylla and its antibacterial activity. Heliyon, 7(9).
  • Karahan, H., Tetik, N., & Colgecen, H. (2023). Phytofabrication of silver nanoparticles using callus extract of natural tetraploid Trifolium pratense L. and its bioactivities. Frontiers in Life Sciences and Related Technologies, 4(SI), 18-28.
  • Kim, Y. S., Song, M. Y., Park, J. D., Song, K. S., Ryu, H. R., Chung, Y. H., . . . Kelman, B. J. (2010). Subchronic oral toxicity of silver nanoparticles. Particle and Fibre Toxicology, 7, 1-11.
  • Kutlu, G., Akman, P. K., Erol, K. F., Bozkurt, F., & Tornuk, F. (2024). Nanoencapsulation of wheat germ oil with chitosan‐nettle seed gum‐ovalbumin: Preparation, optimization, and characterization. European Journal of Lipid Science and Technology, 126(10), 2300152.
  • Li, G., He, D., Qian, Y., Guan, B., Gao, S., Cui, Y., . . . Wang, L. (2011). Fungus-mediated green synthesis of silver nanoparticles using Aspergillus terreus. International Journal of Molecular Sciences, 13(1), 466-476.
  • Li, S., Shen, Y., Xie, A., Yu, X., Qiu, L., Zhang, L., & Zhang, Q. (2007). Green synthesis of silver nanoparticles using Capsicum annuum L. extract. Green Chemistry, 9(8), 852-858.
  • Mariod, A. A., Ibrahim, R. M., Ismail, M., & Ismail, N. (2010). Antioxidant activities of phenolic rich fractions (PRFs) obtained from black mahlab (Monechma ciliatum) and white mahlab (Prunus mahaleb) seedcakes. Food Chemistry, 118(1), 120-127.
  • Mittal, A. K., Chisti, Y., & Banerjee, U. C. (2013). Synthesis of metallic nanoparticles using plant extracts. Biotechnology Advances, 31(2), 346-356.
  • Morales-Lozoya, V., Espinoza-Gómez, H., Flores-López, L. Z., Sotelo-Barrera, E. L., Núñez-Rivera, A., Cadena-Nava, R. D., . . . Rivero, I. A. (2021). Study of the effect of the different parts of Morinda citrifolia L.(noni) on the green synthesis of silver nanoparticles and their antibacterial activity. Applied Surface Science, 537, 147855.
  • Nguyen, N. P. U., Dang, N. T., Doan, L., & Nguyen, T. T. H. (2023). Synthesis of silver nanoparticles: from conventional to ‘modern’methods-a review. Processes, 11(9), 2617.
  • Niraimathi, K., Sudha, V., Lavanya, R., & Brindha, P. (2013). Biosynthesis of silver nanoparticles using Alternanthera sessilis (Linn.) extract and their antimicrobial, antioxidant activities. Colloids and Surfaces B: biointerfaces, 102, 288-291.
  • Ojha, S., Sett, A., & Bora, U. (2017). Green synthesis of silver nanoparticles by Ricinus communis var. carmencita leaf extract and its antibacterial study. Advances in Natural Sciences: Nanoscience and Nanotechnology, 8(3), 035009.
  • Ozcelik, S. (2023). Investigation of antimicrobial effects of zinc-based nanoparticles on food-borne pathogens. Frontiers in Life Sciences and Related Technologies, 4(3), 132-137.
  • Panchal, P., Rauwel, P., Nehra, S. P., Singh, P., Karla, M., Hermosa, G., & Rauwel, E. (2025). A Review on Biomedical Applications of Plant Extract-Mediated Metallic Ag, Au, and ZnO Nanoparticles and Future Prospects for Their Combination with Graphitic Carbon Nitride. Pharmaceuticals.
  • Parial, D., Patra, H. K., Dasgupta, A. K., & Pal, R. (2012). Screening of different algae for green synthesis of gold nanoparticles. European Journal of Phycology, 47(1), 22-29.
  • Patel, V. R., & Agrawal, Y. (2011). Nanosuspension: An approach to enhance solubility of drugs. Journal of Advanced Pharmaceutical Technology & Research, 2(2), 81-87.
  • Pattanayak, S., Mollick, M. M. R., Maity, D., Chakraborty, S., Dash, S. K., Chattopadhyay, S., . . . Chakraborty, M. (2017). Butea monosperma bark extract mediated green synthesis of silver nanoparticles: characterization and biomedical applications. Journal of Saudi Chemical Society, 21(6), 673-684.
  • Pehlivan, F. E. (2021). Antioxidant and phenolic profile of mahaleb plant as a functional food. Journal of Agricultural Science and Technology B, 11(1), 6.
  • Raut, S., Bhatavadekar, A., Chougule, R., & Lekhak, U. (2024). Silver nanoparticles synthesis from Crinum moorei: Optimization, characterization, kinetics and catalytic application. South African Journal of Botany, 165, 494-504.
  • Raveendran, P., Fu, J., & Wallen, S. L. (2003). Completely “green” synthesis and stabilization of metal nanoparticles. Journal of the American Chemical Society, 125(46), 13940-13941.
  • Roy, P., Das, B., Mohanty, A., & Mohapatra, S. (2017). Green synthesis of silver nanoparticles using Azadirachta indica leaf extract and its antimicrobial study. Applied Nanoscience, 7(8), 843-850.
  • Saha, J., Begum, A., Mukherjee, A., & Kumar, S. (2017). A novel green synthesis of silver nanoparticles and their catalytic action in reduction of Methylene Blue dye. Sustainable Environment Research, 27(5), 245-250.
  • Saleh, G. M. (2020). Green synthesis concept of nanoparticles from environmental bacteria and their effects on pathogenic bacteria. Iraqi Journal of Science, 1289-1297.
  • Sana, S. S., Badineni, V. R., Arla, S. K., & Boya, V. K. N. (2015). Eco-friendly synthesis of silver nanoparticles using leaf extract of Grewia flaviscences and study of their antimicrobial activity. Materials Letters, 145, 347-350.
  • Shah, M., Fawcett, D., Sharma, S., Tripathy, S. K., & Poinern, G. E. J. (2015). Green synthesis of metallic nanoparticles via biological entities. Materials, 8(11), 7278-7308.
  • Silva, L. P., Bonatto, C. C., & Polez, V. L. P. (2016). Green synthesis of metal nanoparticles by fungi: current trends and challenges. Advances and applications through fungal nanobiotechnology, 71-89.
  • Singh, R., Chidambara Murthy, K., & Jayaprakasha, G. (2002). Studies on the antioxidant activity of pomegranate (Punica granatum) peel and seed extracts using in vitro models. Journal of Agricultural and Food Chemistry, 50(1), 81-86.
  • Singleton, V. L., Orthofer, R., & Lamuela-Raventós, R. M. (1999). [14] Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent Methods in Enzymology (Vol. 299, pp. 152-178): Elsevier.
  • Tuzun, B. S., Fafal, T., Ozguney, I., & Kivcak, B. (2024). Green synthesis of silver nanoparticles by using Anthemis Tricolor Boiss., factorial design for parameter optimization, characterization and in-vitro biological activities. Journal of Pharmaceutical Innovation, 19(3), 32.
  • Turkkan, M. (2025). Utilizing Plackett-Burman and Box-Behnken Designs for Plant Extract–Based AgNP Synthesis Optimization: Unveiling Antifungal Potential Against Phytophthora Species. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 28(2), 516-534.
  • Velgosova, O., Dolinská, S., Podolská, H., Mačák, L., & Čižmárová, E. (2024). Impact of plant extract phytochemicals on the synthesis of silver nanoparticles. Materials, 17(10), 2252.
  • Yasar, B., Kutlu, G., & Tornuk, F. (2022). Edible flowers as sources of bioactive compounds: Determination of phenolic extraction conditions. International Journal of Gastronomy and Food Science, 30, 100618.
  • Younis, M., Ahmed, I. A. M., Uslu, N., Albakry, Z., & Özcan, M. M. (2024). The effect of different roasting techniques on bioactive compounds, fatty acids and element profiles of mahaleb seeds used as vanilla substitute in bakery products. International Journal of Food Science & Technology, 59(8), 5699-5709.
  • Zhang, H., Chen, S., Jia, X., Huang, Y., Ji, R., & Zhao, L. (2021). Comparation of the phytotoxicity between chemically and green synthesized silver nanoparticles. Science of The Total Environment, 752, 142264.
  • Zuo, H., Wu, D., & Fu, R. (2012). Preparation of antibacterial poly (methyl methacrylate) by solution blending with water‐insoluble antibacterial agent poly [(tert‐buty1amino) ethyl methacrylate]. Journal of Applied Polymer Science, 125(5), 3537-3544.

Application of response surface methodology for green synthesis of silver nanoparticles using Prunus mahaleb L.

Yıl 2025, Cilt: 6 Sayı: 2, 105 - 113, 30.08.2025
https://doi.org/10.51753/flsrt.1665073

Öz

The green synthesis of silver nanoparticles (AgNPs) utilizing plant extracts offers an environmentally sustainable alternative for applications in industry and agriculture. In the present study, Prunus mahaleb L. was selected as a plant source for green synthesis of AgNPs. Prior to green synthesis, the bioactive characteristics of P. mahaleb L. were ascertained, and then response surface methodology was employed to establish the conditions for the green synthesis of AgNPs utilizing mahaleb extract. The central composite design generated 13 experimental points based on the factors: concentration of silver nitrate (X1) and volume of mahaleb extract (X2). The bioactive potential of mahaleb was quantified as follows: total phenolic content at 21.44±0.047 mg GAE/g, total antioxidant capacity at 20.94±0.262 mg TE/g for DPPH, 47.82±0.034 mg TE/g for CUPRAC, 34.70±0.070 mg TE/g for FRAP, and total flavonoid content at 33.20±0.117 mg CE/g. The hydrodynamic diameters (HD) and zeta potentials (ZP) of AgNPs derived from the experimental design ranged from 90.70±1.18 nm to 225.10±1.26 nm and from -23.40±1.28 mV to -17.80±0.61 mV, respectively. The optimal condition for the minimum hydrodynamic diameter (HD) was determined to be an estimated value of 89.17 nm and an actual HD value of 92.41±0.745 nm, achieved at an AgNO3 concentration of 2.40 mM and a mahaleb volume of 5.08 mL. The study's findings indicated that mahaleb seeds can facilitate the generation of AgNPs through green synthesis.

Kaynakça

  • Ahmed, S., Ahmad, M., Swami, B. L., & Ikram, S. (2016). Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract. Journal of Radiation Research and Applied Sciences, 9(1), 1-7.
  • Ai, J., Biazar, E., Jafarpour, M., Montazeri, M., Majdi, A., . . . Rad, H. G. (2011). Nanotoxicology and nanoparticle safety in biomedical designs. International Journal of Nanomedicine, 1117-1127.
  • Ajitha, B., Reddy, Y. A. K., & Reddy, P. S. (2015). Green synthesis and characterization of silver nanoparticles using Lantana camara leaf extract. Materials Science and Engineering: C, 49, 373-381.
  • Ajitha, B., Reddy, Y. A. K., Reddy, P. S., Suneetha, Y., Jeon, H.-J., & Ahn, C. W. (2016). Instant biosynthesis of silver nanoparticles using Lawsonia inermis leaf extract: Innate catalytic, antimicrobial and antioxidant activities. Journal of Molecular Liquids, 219, 474-481.
  • Akwu, N., Naidoo, Y., Singh, M., Nundkumar, N., Daniels, A., & Lin, J. (2021). Two temperatures biogenic synthesis of silver nanoparticles from Grewia lasiocarpa E. Mey. ex Harv. Leaf and stem bark extracts: characterization and applications. BioNanoScience, 11, 142-158.
  • Apak, R., Güçlü, K., Özyürek, M., & Karademir, S. E. (2004). Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. Journal of Agricultural and Food chemistry, 52(26), 7970-7981.
  • Bagdat, E. S., Akman, P. K., Kutlu, G., & Tornuk, F. (2024). Optimization of spray-drying process parameters for microencapsulation of three probiotic lactic acid bacteria selected by their high viability rate in sucrose and fructose levels and high tempera-tures. Systems Microbiology and Biomanufacturing, 4(2), 687-698.
  • Benzie, I. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analytical Biochemistry, 239(1), 70-76.
  • Blando, F., Albano, C., Liu, Y., Nicoletti, I., Corradini, D., Tommasi, N., . . . Kitts, D. D. (2016). Polyphenolic composition and antioxidant activity of the under‐utilised Prunus mahaleb L. fruit. Journal of the Science of Food and Agriculture, 96(8), 2641-2649.
  • Celik, S., Kutlu, G., & Tornuk, F. (2024). Recovery and characterization of cellulose microfibers from fallen leaves and evaluation of their potential as reinforcement agents for production of new biodegradable packaging materials. Food Science & Nutrition, 12(10), 8364-8376.
  • Cakar, B., & Iseri, O. D. (2024). Effect of metallic nanoparticles on cancer cell lines: A review on plant-based biosynthesis. Frontiers in Life Sciences and Related Technologies, 5(3), 231-243.
  • Daphne, J., Francis, A., Mohanty, R., Ojha, N., & Das, N. (2018). Green synthesis of antibacterial silver nanoparticles using yeast isolates and its characterization. Research Journal of Pharmacy and Technology, 11(1), 83-92.
  • Dashtizadeh, Z., Kashi, F. J., & Ashrafi, M. (2021). Phytosynthesis of copper nanoparticles using Prunus mahaleb L. and its biological activity. Materials Today Communications, 27, 102456.
  • Elbaghdady, K., El-Shatoury, E., Abdallah, O., & Khalil, M. (2018). Biogenic production of silver nanoparticles by Enterobacter cloacae Ism26. Turkish Journal of Biology, 42(4), 319-328.
  • Fiddaroini, S., Prisilia, F., Karo, S. B., Madaniyah, L., Khairana, A. D., Rahmaniah, G., . . . Fardiyah, Q. (2025). Green synthesis of nanoparticles using cottonwood and rambutan honeys: Optimization, characterization, and enhanced antioxidant activity with reduced toxicity via oligochitosan coating. Next Materials, 8, 100685.
  • Ghafoor, K., Ahmed, I. A. M., Doğu, S., Uslu, N., Fadimu, G. J., Al Juhaimi, F., . . . Özcan, M. M. (2019). The effect of heating temperature on total phenolic content, antioxidant activity, and phenolic compounds of plum and mahaleb fruits. International Journal of Food Engineering, 15(11-12), 20170302.
  • Güven, Z. B., Alshehri, O., Yüce, N., Bakan, E., Demirci, B., Yilmaz, M. A., . . . Basaran, A. A. (2023). Chemical composition, nutritional values, elemental analysis and biological properties of Prunus mahaleb L.: From waste to new potential sources for food, cosmetic and drug industry. Food Bioscience, 53, 102632.
  • Jalab, J., Abdelwahed, W., Kitaz, A., & Al-Kayali, R. (2021). Green synthesis of silver nanoparticles using aqueous extract of Acacia cyanophylla and its antibacterial activity. Heliyon, 7(9).
  • Karahan, H., Tetik, N., & Colgecen, H. (2023). Phytofabrication of silver nanoparticles using callus extract of natural tetraploid Trifolium pratense L. and its bioactivities. Frontiers in Life Sciences and Related Technologies, 4(SI), 18-28.
  • Kim, Y. S., Song, M. Y., Park, J. D., Song, K. S., Ryu, H. R., Chung, Y. H., . . . Kelman, B. J. (2010). Subchronic oral toxicity of silver nanoparticles. Particle and Fibre Toxicology, 7, 1-11.
  • Kutlu, G., Akman, P. K., Erol, K. F., Bozkurt, F., & Tornuk, F. (2024). Nanoencapsulation of wheat germ oil with chitosan‐nettle seed gum‐ovalbumin: Preparation, optimization, and characterization. European Journal of Lipid Science and Technology, 126(10), 2300152.
  • Li, G., He, D., Qian, Y., Guan, B., Gao, S., Cui, Y., . . . Wang, L. (2011). Fungus-mediated green synthesis of silver nanoparticles using Aspergillus terreus. International Journal of Molecular Sciences, 13(1), 466-476.
  • Li, S., Shen, Y., Xie, A., Yu, X., Qiu, L., Zhang, L., & Zhang, Q. (2007). Green synthesis of silver nanoparticles using Capsicum annuum L. extract. Green Chemistry, 9(8), 852-858.
  • Mariod, A. A., Ibrahim, R. M., Ismail, M., & Ismail, N. (2010). Antioxidant activities of phenolic rich fractions (PRFs) obtained from black mahlab (Monechma ciliatum) and white mahlab (Prunus mahaleb) seedcakes. Food Chemistry, 118(1), 120-127.
  • Mittal, A. K., Chisti, Y., & Banerjee, U. C. (2013). Synthesis of metallic nanoparticles using plant extracts. Biotechnology Advances, 31(2), 346-356.
  • Morales-Lozoya, V., Espinoza-Gómez, H., Flores-López, L. Z., Sotelo-Barrera, E. L., Núñez-Rivera, A., Cadena-Nava, R. D., . . . Rivero, I. A. (2021). Study of the effect of the different parts of Morinda citrifolia L.(noni) on the green synthesis of silver nanoparticles and their antibacterial activity. Applied Surface Science, 537, 147855.
  • Nguyen, N. P. U., Dang, N. T., Doan, L., & Nguyen, T. T. H. (2023). Synthesis of silver nanoparticles: from conventional to ‘modern’methods-a review. Processes, 11(9), 2617.
  • Niraimathi, K., Sudha, V., Lavanya, R., & Brindha, P. (2013). Biosynthesis of silver nanoparticles using Alternanthera sessilis (Linn.) extract and their antimicrobial, antioxidant activities. Colloids and Surfaces B: biointerfaces, 102, 288-291.
  • Ojha, S., Sett, A., & Bora, U. (2017). Green synthesis of silver nanoparticles by Ricinus communis var. carmencita leaf extract and its antibacterial study. Advances in Natural Sciences: Nanoscience and Nanotechnology, 8(3), 035009.
  • Ozcelik, S. (2023). Investigation of antimicrobial effects of zinc-based nanoparticles on food-borne pathogens. Frontiers in Life Sciences and Related Technologies, 4(3), 132-137.
  • Panchal, P., Rauwel, P., Nehra, S. P., Singh, P., Karla, M., Hermosa, G., & Rauwel, E. (2025). A Review on Biomedical Applications of Plant Extract-Mediated Metallic Ag, Au, and ZnO Nanoparticles and Future Prospects for Their Combination with Graphitic Carbon Nitride. Pharmaceuticals.
  • Parial, D., Patra, H. K., Dasgupta, A. K., & Pal, R. (2012). Screening of different algae for green synthesis of gold nanoparticles. European Journal of Phycology, 47(1), 22-29.
  • Patel, V. R., & Agrawal, Y. (2011). Nanosuspension: An approach to enhance solubility of drugs. Journal of Advanced Pharmaceutical Technology & Research, 2(2), 81-87.
  • Pattanayak, S., Mollick, M. M. R., Maity, D., Chakraborty, S., Dash, S. K., Chattopadhyay, S., . . . Chakraborty, M. (2017). Butea monosperma bark extract mediated green synthesis of silver nanoparticles: characterization and biomedical applications. Journal of Saudi Chemical Society, 21(6), 673-684.
  • Pehlivan, F. E. (2021). Antioxidant and phenolic profile of mahaleb plant as a functional food. Journal of Agricultural Science and Technology B, 11(1), 6.
  • Raut, S., Bhatavadekar, A., Chougule, R., & Lekhak, U. (2024). Silver nanoparticles synthesis from Crinum moorei: Optimization, characterization, kinetics and catalytic application. South African Journal of Botany, 165, 494-504.
  • Raveendran, P., Fu, J., & Wallen, S. L. (2003). Completely “green” synthesis and stabilization of metal nanoparticles. Journal of the American Chemical Society, 125(46), 13940-13941.
  • Roy, P., Das, B., Mohanty, A., & Mohapatra, S. (2017). Green synthesis of silver nanoparticles using Azadirachta indica leaf extract and its antimicrobial study. Applied Nanoscience, 7(8), 843-850.
  • Saha, J., Begum, A., Mukherjee, A., & Kumar, S. (2017). A novel green synthesis of silver nanoparticles and their catalytic action in reduction of Methylene Blue dye. Sustainable Environment Research, 27(5), 245-250.
  • Saleh, G. M. (2020). Green synthesis concept of nanoparticles from environmental bacteria and their effects on pathogenic bacteria. Iraqi Journal of Science, 1289-1297.
  • Sana, S. S., Badineni, V. R., Arla, S. K., & Boya, V. K. N. (2015). Eco-friendly synthesis of silver nanoparticles using leaf extract of Grewia flaviscences and study of their antimicrobial activity. Materials Letters, 145, 347-350.
  • Shah, M., Fawcett, D., Sharma, S., Tripathy, S. K., & Poinern, G. E. J. (2015). Green synthesis of metallic nanoparticles via biological entities. Materials, 8(11), 7278-7308.
  • Silva, L. P., Bonatto, C. C., & Polez, V. L. P. (2016). Green synthesis of metal nanoparticles by fungi: current trends and challenges. Advances and applications through fungal nanobiotechnology, 71-89.
  • Singh, R., Chidambara Murthy, K., & Jayaprakasha, G. (2002). Studies on the antioxidant activity of pomegranate (Punica granatum) peel and seed extracts using in vitro models. Journal of Agricultural and Food Chemistry, 50(1), 81-86.
  • Singleton, V. L., Orthofer, R., & Lamuela-Raventós, R. M. (1999). [14] Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent Methods in Enzymology (Vol. 299, pp. 152-178): Elsevier.
  • Tuzun, B. S., Fafal, T., Ozguney, I., & Kivcak, B. (2024). Green synthesis of silver nanoparticles by using Anthemis Tricolor Boiss., factorial design for parameter optimization, characterization and in-vitro biological activities. Journal of Pharmaceutical Innovation, 19(3), 32.
  • Turkkan, M. (2025). Utilizing Plackett-Burman and Box-Behnken Designs for Plant Extract–Based AgNP Synthesis Optimization: Unveiling Antifungal Potential Against Phytophthora Species. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 28(2), 516-534.
  • Velgosova, O., Dolinská, S., Podolská, H., Mačák, L., & Čižmárová, E. (2024). Impact of plant extract phytochemicals on the synthesis of silver nanoparticles. Materials, 17(10), 2252.
  • Yasar, B., Kutlu, G., & Tornuk, F. (2022). Edible flowers as sources of bioactive compounds: Determination of phenolic extraction conditions. International Journal of Gastronomy and Food Science, 30, 100618.
  • Younis, M., Ahmed, I. A. M., Uslu, N., Albakry, Z., & Özcan, M. M. (2024). The effect of different roasting techniques on bioactive compounds, fatty acids and element profiles of mahaleb seeds used as vanilla substitute in bakery products. International Journal of Food Science & Technology, 59(8), 5699-5709.
  • Zhang, H., Chen, S., Jia, X., Huang, Y., Ji, R., & Zhao, L. (2021). Comparation of the phytotoxicity between chemically and green synthesized silver nanoparticles. Science of The Total Environment, 752, 142264.
  • Zuo, H., Wu, D., & Fu, R. (2012). Preparation of antibacterial poly (methyl methacrylate) by solution blending with water‐insoluble antibacterial agent poly [(tert‐buty1amino) ethyl methacrylate]. Journal of Applied Polymer Science, 125(5), 3537-3544.
Toplam 52 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Nanoteknoloji (Diğer)
Bölüm Araştırma Makaleleri
Yazarlar

Gülsüm Uçak Özkaya 0000-0002-4207-6797

Yayımlanma Tarihi 30 Ağustos 2025
Gönderilme Tarihi 25 Mart 2025
Kabul Tarihi 9 Temmuz 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 6 Sayı: 2

Kaynak Göster

APA Uçak Özkaya, G. (2025). Application of response surface methodology for green synthesis of silver nanoparticles using Prunus mahaleb L. Frontiers in Life Sciences and Related Technologies, 6(2), 105-113. https://doi.org/10.51753/flsrt.1665073


Creative Commons License

Frontiers in Life Sciences and Related Technologies is licensed under a Creative Commons Attribution 4.0 International License.