Araştırma Makalesi
BibTex RIS Kaynak Göster

A Process of Abstraction; Thematic Analysis of the Literature on RBC+C

Yıl 2023, Cilt: 6 Sayı: 3, 244 - 264, 30.09.2023

Öz

The use of analysis of the abstraction process in the teaching of mathematical concepts and generalizations leads to an increasing interest in abstraction. One of the models that allows to examine Abstraction in Context in particular is the RBC+C Model. The aim of this study is to analyze the scientific studies published between 2000-2020, which includes the first emergence of the RBC+C Model, which allows to examine the abstraction processes of mathematical knowledge with epistemological action steps, investigates the steps, and uses them in classroom or individual practice during mathematics teaching. The aim is to determine to what extent the researched issues meet the need in terms of quality and quantity, and accordingly, to determine the gaps in the literature and to reveal what kind of research is needed. For this purpose, 39 articles were reached, and thematic analysis of these articles was made. The articles were examined under two main categories: (i) Studies examining the conceptual structure of the RBC+C Model, the way it was used in research, the roles of the class, the student, the teacher, and the teaching environment, (ii) showing how abstraction was applied on different concepts and generalizations with RBC+C. researchs. Although the majority of studies conducted abroad belong to the first category, there is no domestic study belonging to the first category. There are few studies in which the model is used in the abstraction of mathematical concepts and generalizations in the classroom environment, since mostly studies belonging to the second category are carried out in the country. In particular, it is seen as a necessity to design and implement teaching that facilitates abstraction in the classroom and to use the RBC+C Model as an explanatory tool. In addition, the determination of the missing subject areas with the articles classified according to the subject areas of mathematics can guide new studies.

Kaynakça

  • Altun, M. (2019). Eğitim fakülteleri ve ilköğretim öğretmenleri için matematik öğretimi. Alfa Yayıncılık.
  • Altun, M., & Durmaz, B. (2013). Doğrusal İlişki Bilgisini Oluşturma Süreci Üzerinde Bir Durum Çalışması. Uludağ Üniversitesi Eğitim Fakültesi Dergisi, 26(2), 423-438.
  • Altun, M., & Yılmaz, A. (2008). Lise öğrencilerinin tam değer fonksiyonu bilgisini oluşturma süreci. Ankara Üniversitesi Eğitim Bilimleri Fakültesi Dergisi, 41(2), 237-271.
  • Altun, M., & Yılmaz, A. (2010). Lise öğrencilerinin parçalı fonksiyon bilgisini oluşturma ve pekiştirme süreci. Uludağ Üniversitesi Eğitim Fakültesi Dergisi, 23(1), 311-337
  • Altun, M., & Yılmaz, A. (2011). Lise Öğrencilerinin Parçalı Fonksiyon Üzerine İşaret Fonksiyonu Bilgisini Oluşturma Süreci. Eğitim ve Bilim, 36(162).
  • Bednarz, N., Kieran, C., & Lee, L. (1996). Approaches to algebra: Perspectives for research and teaching. In Approaches to algebra (pp. 3-12). Springer, Dordrecht.
  • Bikner-Ahsbahs, A. (2004). Towards the emergence of constructing mathematical meaning. In Proceeding of the 28th Conference of the International Group for the Psychology of Mathematics Education (2), 119-126.
  • Bikner-Ahsbahs, A., & Kidron, I. (2015). A cross-methodology for the networking of theories: The general epistemic need (GEN) as a new concept at the boundary of two theories. In Approaches to Qualitative Research in Mathematics Education (pp. 233-250). Springer, Dordrecht.
  • Bodker, S. (1997). Computers in mediated human activity. Mind, Culture, and Activity, 4(3), 149-158.
  • Bills, L., Dreyfus, T., Mason, J., Tsamir, P., Watson, A., & Zaslavsky, O. (2006). Exemplification in mathematics education. In Proceedings of the 30th Conference of the International Group for the Psychology of Mathematics Education (Vol. 1, pp. 126-154).
  • Celebioglu, B., & Altun, M. (2011). Process of construction of the knowledge on division to decimal places at fourth grade level. Proceedings of the 35th Conference of the International Group for the Psychology of Mathematics Education, Vol. 1. PME 35. Ankara, TÜRKİYE.
  • Cifarelli, V. V. (1990). The role of abstraction as a learning process in mathematical problem-solving. University Microfilms.
  • Cifarelli, V. V. (1998). The development of mental representations as a problem solving activity. The Journal of Mathematical Behavior, 17(2), 239-264.
  • Creswell, J. W., & Clark, V. L. P. (2014). Karma yöntem araştırmaları: Tasarımı ve yürütülmesi. Anı Yayıncılık.
  • Creswell, J. W. (2012). Educational research: planning, conducting, and evaluating quantitative and qualitative research. 4th edition, Boston:Pearson.
  • Dreyfus, T. (1991). On the status of visual reasoning in mathematics and mathematics education. In Proc. 15th Conf. of the Int. Group for the Psychology of Mathematics Education (Vol. 1, pp. 33-48).
  • Dreyfus, T. (2007). Processes of abstraction in context the nested epistemic actions model. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.379.4416&rep=rep1&type=pdf.
  • Dreyfus, T. (2015). Constructing abstract mathematical knowledge in context. In Selected Regular Lectures from the 12th International Congress on Mathematical Education (pp. 115-133). Springer, Cham.
  • Dreyfus, T., Hershkowitz, R., & Schwarz, B. (2001). Abstraction in context II: The case of peer interaction. Cognitive Science Quarterly, 1(3/4), 307-368.
  • Dreyfus T., Hadas N., Hershkowitz, R. & Schwarz, B. (2006). Mechanisms for consolidating knowledge constructs. International Group for the Psychology of Mathematics Education, 465.
  • Dreyfus, T., Hershkowitz, R., & Schwarz, B. (2015). The nested epistemic actions model for abstraction in context: Theory as methodological tool and methodological tool as theory. In Approaches to Qualitative Research in Mathematics Education (pp. 185-217). Springer, Dordrecht.
  • Dreyfus, T., & Tsamir, P. (2004). Ben's consolidation of knowledge structures about infinite sets. The Journal of Mathematical Behavior, 23(3), 271-300.
  • Guler, H. K., & Gurbuz, M. C. (2018). Construction Process of the Length of 3√ 2 by Paper Folding. International Journal of Research in Education and Science, 4(1), 121-135.
  • Hassan, I., & Mitchelmore, M. (2006). The role of abstraction in learning about rates of change. https://www.researchgate.net/profile/MichaelMitchelmore/publication/251813376_The_Role_of_Abstraction_in_Learning_about_Rates_of_Change/links/0deec53687166f24d5000000/The-Role-of-Abstraction-in-Learning-about-Rates-of-Change.pdf
  • Hershkowitz, R. (2009). Contour lines between a model as a theoretical framework and the same model as methodological tool. Transformation of knowledge through classroom interaction, 273-280.
  • Hershkowitz, R., Hadas, N., Dreyfus, T., & Schwarz, B. (2007). Abstracting processes, from individuals’constructing of knowledge to a group’s “shared knowledge”. Mathematics Education Research Journal, 19(2), 41-68.
  • Hershkowitz, R., Parzysz, B., & Van Dormolen, J. (1996). Space and shape. In International handbook of mathematics education (pp. 161-204). Springer, Dordrecht.
  • Hershkowitz, R., Schwarz, B. B., & Dreyfus, T. (2001). Abstraction in context: Epistemic actions. Journal for Research in Mathematics Education, 195-222.
  • Hershkowitz, R., Tabach, M., Rasmussen, C., & Dreyfus, T. (2014). Knowledge shifts in a probability classroom: a case study coordinating two methodologies. ZDM, 46(3), 363-387.
  • Katrancı, Y., & Altun, M. (2013a). İlköğretim ikinci kademe öğrencilerinin olasılık bilgisini oluşturma ve pekiştirme süreci. Kalem Eğitim ve İnsan Bilimleri Dergisi, 3(2), 11-58.
  • Katrancı, Y., & Altun, M. (2013b). The process of constructing absolute value function knowledge for high school students. International Journal on New Trends in Education and Their Implications.
  • Kidron, I., Lenfant, A., Bikner-Ahsbahs, A., Artigue, M., & Dreyfus, T. (2008). Toward networking three theoretical approaches: the case of social interactions. ZDM, 40(2), 247-264.
  • Kidron, I., & Dreyfus, T. (2010). Justification enlightenment and combining constructions of knowledge. Educational Studies in Mathematics, 74(1), 75-93.
  • Kidron, I., & Dreyfus, T. (2014). Proof image. Educational Studies in Mathematics, 87(3), 297-321.
  • Liz, B., Dreyfus, T., Mason, J., Tsamir, P., Watson, A., & Zaslavsky, O. (2006). Exemplification in mathematics education. In Proceedings of the 30th Conference of the International Group for the Psychology of Mathematics Education (July, Vol. 1, pp. 126-154).
  • Memnun, D. S., & Altun, M. (2012a). Rbc+ c modeline göre doğrunun denklemi kavramının soyutlanması üzerine bir çalışma: özel bir durum çalışması. Cumhuriyet Uluslararası Eğitim Dergisi, 1(1), 17-37.
  • Memnun, D, Altun, M. (2012b). Matematiksel başarı düzeyleri farklı iki altıncı sınıf öğrencisinin koordinat sistemini soyutlamaları üzerine bir örnek olay çalışması. Elektronik Sosyal Bilimler Dergisi (elektronik), 11(41), 34-52.
  • Memnun, D. S., Aydın, B., Özbilen, Ö., & Erdoğan, G. (2017). The abstraction process of limit knowledge. Educational Sciences: Theory & Practice, 17(2).
  • Monaghan, J., & Ozmantar, M. F. (2006). Abstraction and consolidation. Educational Studies in Mathematics, 62(3), 233-258.
  • Ozmantar, M. F. (2004). Scaffolding, abstraction and emergent goals. Proceedings of the British Society for Research into Learning Mathematics, 24(2), 83-89.
  • Ozmantar, M. F., & Monaghan, J. (2007). A dialectical approach to the formation of mathematical abstractions. Mathematics Education Research Journal, 19(2), 89-112.
  • Ozmantar, M.F. (2005). An investigation of the formation of mathematical abstractions through scaffolding. The University of Leeds, School of Education (Unpublished Doctoral Thesis), Leeds, United Kingdom.
  • Piaget, J. (1970). Genetic epistemology. American Behavioral Scientist, New York.
  • Ron, G., Dreyfus, T., & Hershkowitz, R. (2010). Partially correct constructs illuminate students’inconsistent answers. Educational Studies in Mathematics, 75(1), 65-87.
  • Ron, G., Dreyfus, T., & Hershkowitz, R. (2017). Looking back to the roots of partially correct constructs: The case of the area model in probability. The Journal of Mathematical Behavior, 45, 15-34.
  • Schwarz, B., & Dreyfus, T. (2009). The nested epistemic actions model for abstraction in context. In Transformation of knowledge through classroom interaction (pp. 19-49). Routledge.
  • Schwarz, B., Dreyfus, T., Hadas, N., & Hershkowitz, R. (2004). Teacher Guidance of Knowledge Construction. International Group for the Psychology of Mathematics Education.
  • Schwarz, B., Dreyfus, T., & Hershkowitz, R. (Eds.). (2009). Transformation of knowledge through classroom interaction. Routledge.
  • Tabach, M., Hershkowitz, R., & Schwarz, B. (2006). Constructing and consolidating of algebraic knowledge within dyadic processes: A case study. Educational studies in mathematics, 63(3), 235-258.
  • Yeşildere, S. (2006). Farklı matematiksel güce sahip ilköğretim 6, 7 ve 8 sınıf öğrencilerinin matematiksel düşünme ve bilgiyi oluşturma süreçlerinin incelenmesi. (Yayımlanmamış Doktora Tezi). DEÜ Eğitim Bilimleri Enstitüsü, İzmir.
  • Yeşildere, S., & Türnüklü, E. B. (2008). İlköğretim sekizinci sınıf öğrencilerinin bilgi oluşturma süreçlerinin matematiksel güçlerine göre incelenmesi. Uludağ Üniversitesi Eğitim Fakültesi Dergisi, 21(2), 485-510

Bir Soyutlama süreci; RBC+C ile ilgili Alanyazının Tematik Analizi

Yıl 2023, Cilt: 6 Sayı: 3, 244 - 264, 30.09.2023

Öz

Matematiksel kavram ve genellemelerin öğretiminde, soyutlama sürecinin analizinden yararlanılması, soyutlamaya olan ilginin artarak devam etmesine yol açmaktadır. Özellikle Bağlamdan Soyutlamayı incelemeye imkân veren modellerinden biri RBC+C Model’idir. Bu çalışmanın amacı, matematiksel bilgiyi soyutlama süreçlerini epistemolojik eylem basamaklarıyla incelemeye imkan veren RBC+C Model’inin ilk ortaya çıkışını içeren, basamaklarını araştıran, matematik öğretimi esnasında sınıf içi ya da bireysel uygulamada kullanan 2000-2020 yılları arasında yayınlanan bilimsel çalışmaların tematik analizini yapmak suretiyle araştırılan hususların nitelik ve nicelik bakımdan ne ölçüde ihtiyacı karşıladığı ve buna bağlı olarak literatürde yer alan boşlukları tespit edip ne tür araştırmalara ihtiyaç olduğunu ortaya koymaktır. Bu amaçla 39 makaleye ulaşılmış ve bu makalelerin tematik analizi yapılmıştır. Makaleler iki temel kategori altında incelenmiştir: (i) RBC+C Model’inin kavramsal yapısını, bir araştırmada yararlanma şekline sınıfın öğrencinin, öğretmenin rollerini, öğretme ortamını inceleyen araştırmalar, (ii) RBC+C ile soyutlamanın değişik kavram ve genellemeler üzerinde nasıl uygulandığını gösteren araştırmalar. Yurt dışında yapılan çalışmaların çoğunluğu ilk kategoriye ait olmakla birlikte ilk kategoriye ait yurt içinde çalışma bulunmamaktadır. Yurt içinde daha çok ikinci kategoriye ait çalışmalar yapıldığından modelin sınıf ortamında matematiksel kavram ve genellemelerinin soyutlanmasında kullanıldığı az sayıda çalışmaya rastlanmıştır. Özellikle sınıf içinde soyutlamayı kolaylaştıran öğretimlerin tasarlanması, uygulanması ve açıklayıcı araç olarak RBC+C Model’inden yararlanılması ihtiyaç olarak görülmektedir. Ayrıca matematik konu alanlarına göre sınıflandırılan makaleler ile eksik konu alanlarının belirlenmesi de yeni çalışmalara yön verebilir.

Kaynakça

  • Altun, M. (2019). Eğitim fakülteleri ve ilköğretim öğretmenleri için matematik öğretimi. Alfa Yayıncılık.
  • Altun, M., & Durmaz, B. (2013). Doğrusal İlişki Bilgisini Oluşturma Süreci Üzerinde Bir Durum Çalışması. Uludağ Üniversitesi Eğitim Fakültesi Dergisi, 26(2), 423-438.
  • Altun, M., & Yılmaz, A. (2008). Lise öğrencilerinin tam değer fonksiyonu bilgisini oluşturma süreci. Ankara Üniversitesi Eğitim Bilimleri Fakültesi Dergisi, 41(2), 237-271.
  • Altun, M., & Yılmaz, A. (2010). Lise öğrencilerinin parçalı fonksiyon bilgisini oluşturma ve pekiştirme süreci. Uludağ Üniversitesi Eğitim Fakültesi Dergisi, 23(1), 311-337
  • Altun, M., & Yılmaz, A. (2011). Lise Öğrencilerinin Parçalı Fonksiyon Üzerine İşaret Fonksiyonu Bilgisini Oluşturma Süreci. Eğitim ve Bilim, 36(162).
  • Bednarz, N., Kieran, C., & Lee, L. (1996). Approaches to algebra: Perspectives for research and teaching. In Approaches to algebra (pp. 3-12). Springer, Dordrecht.
  • Bikner-Ahsbahs, A. (2004). Towards the emergence of constructing mathematical meaning. In Proceeding of the 28th Conference of the International Group for the Psychology of Mathematics Education (2), 119-126.
  • Bikner-Ahsbahs, A., & Kidron, I. (2015). A cross-methodology for the networking of theories: The general epistemic need (GEN) as a new concept at the boundary of two theories. In Approaches to Qualitative Research in Mathematics Education (pp. 233-250). Springer, Dordrecht.
  • Bodker, S. (1997). Computers in mediated human activity. Mind, Culture, and Activity, 4(3), 149-158.
  • Bills, L., Dreyfus, T., Mason, J., Tsamir, P., Watson, A., & Zaslavsky, O. (2006). Exemplification in mathematics education. In Proceedings of the 30th Conference of the International Group for the Psychology of Mathematics Education (Vol. 1, pp. 126-154).
  • Celebioglu, B., & Altun, M. (2011). Process of construction of the knowledge on division to decimal places at fourth grade level. Proceedings of the 35th Conference of the International Group for the Psychology of Mathematics Education, Vol. 1. PME 35. Ankara, TÜRKİYE.
  • Cifarelli, V. V. (1990). The role of abstraction as a learning process in mathematical problem-solving. University Microfilms.
  • Cifarelli, V. V. (1998). The development of mental representations as a problem solving activity. The Journal of Mathematical Behavior, 17(2), 239-264.
  • Creswell, J. W., & Clark, V. L. P. (2014). Karma yöntem araştırmaları: Tasarımı ve yürütülmesi. Anı Yayıncılık.
  • Creswell, J. W. (2012). Educational research: planning, conducting, and evaluating quantitative and qualitative research. 4th edition, Boston:Pearson.
  • Dreyfus, T. (1991). On the status of visual reasoning in mathematics and mathematics education. In Proc. 15th Conf. of the Int. Group for the Psychology of Mathematics Education (Vol. 1, pp. 33-48).
  • Dreyfus, T. (2007). Processes of abstraction in context the nested epistemic actions model. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.379.4416&rep=rep1&type=pdf.
  • Dreyfus, T. (2015). Constructing abstract mathematical knowledge in context. In Selected Regular Lectures from the 12th International Congress on Mathematical Education (pp. 115-133). Springer, Cham.
  • Dreyfus, T., Hershkowitz, R., & Schwarz, B. (2001). Abstraction in context II: The case of peer interaction. Cognitive Science Quarterly, 1(3/4), 307-368.
  • Dreyfus T., Hadas N., Hershkowitz, R. & Schwarz, B. (2006). Mechanisms for consolidating knowledge constructs. International Group for the Psychology of Mathematics Education, 465.
  • Dreyfus, T., Hershkowitz, R., & Schwarz, B. (2015). The nested epistemic actions model for abstraction in context: Theory as methodological tool and methodological tool as theory. In Approaches to Qualitative Research in Mathematics Education (pp. 185-217). Springer, Dordrecht.
  • Dreyfus, T., & Tsamir, P. (2004). Ben's consolidation of knowledge structures about infinite sets. The Journal of Mathematical Behavior, 23(3), 271-300.
  • Guler, H. K., & Gurbuz, M. C. (2018). Construction Process of the Length of 3√ 2 by Paper Folding. International Journal of Research in Education and Science, 4(1), 121-135.
  • Hassan, I., & Mitchelmore, M. (2006). The role of abstraction in learning about rates of change. https://www.researchgate.net/profile/MichaelMitchelmore/publication/251813376_The_Role_of_Abstraction_in_Learning_about_Rates_of_Change/links/0deec53687166f24d5000000/The-Role-of-Abstraction-in-Learning-about-Rates-of-Change.pdf
  • Hershkowitz, R. (2009). Contour lines between a model as a theoretical framework and the same model as methodological tool. Transformation of knowledge through classroom interaction, 273-280.
  • Hershkowitz, R., Hadas, N., Dreyfus, T., & Schwarz, B. (2007). Abstracting processes, from individuals’constructing of knowledge to a group’s “shared knowledge”. Mathematics Education Research Journal, 19(2), 41-68.
  • Hershkowitz, R., Parzysz, B., & Van Dormolen, J. (1996). Space and shape. In International handbook of mathematics education (pp. 161-204). Springer, Dordrecht.
  • Hershkowitz, R., Schwarz, B. B., & Dreyfus, T. (2001). Abstraction in context: Epistemic actions. Journal for Research in Mathematics Education, 195-222.
  • Hershkowitz, R., Tabach, M., Rasmussen, C., & Dreyfus, T. (2014). Knowledge shifts in a probability classroom: a case study coordinating two methodologies. ZDM, 46(3), 363-387.
  • Katrancı, Y., & Altun, M. (2013a). İlköğretim ikinci kademe öğrencilerinin olasılık bilgisini oluşturma ve pekiştirme süreci. Kalem Eğitim ve İnsan Bilimleri Dergisi, 3(2), 11-58.
  • Katrancı, Y., & Altun, M. (2013b). The process of constructing absolute value function knowledge for high school students. International Journal on New Trends in Education and Their Implications.
  • Kidron, I., Lenfant, A., Bikner-Ahsbahs, A., Artigue, M., & Dreyfus, T. (2008). Toward networking three theoretical approaches: the case of social interactions. ZDM, 40(2), 247-264.
  • Kidron, I., & Dreyfus, T. (2010). Justification enlightenment and combining constructions of knowledge. Educational Studies in Mathematics, 74(1), 75-93.
  • Kidron, I., & Dreyfus, T. (2014). Proof image. Educational Studies in Mathematics, 87(3), 297-321.
  • Liz, B., Dreyfus, T., Mason, J., Tsamir, P., Watson, A., & Zaslavsky, O. (2006). Exemplification in mathematics education. In Proceedings of the 30th Conference of the International Group for the Psychology of Mathematics Education (July, Vol. 1, pp. 126-154).
  • Memnun, D. S., & Altun, M. (2012a). Rbc+ c modeline göre doğrunun denklemi kavramının soyutlanması üzerine bir çalışma: özel bir durum çalışması. Cumhuriyet Uluslararası Eğitim Dergisi, 1(1), 17-37.
  • Memnun, D, Altun, M. (2012b). Matematiksel başarı düzeyleri farklı iki altıncı sınıf öğrencisinin koordinat sistemini soyutlamaları üzerine bir örnek olay çalışması. Elektronik Sosyal Bilimler Dergisi (elektronik), 11(41), 34-52.
  • Memnun, D. S., Aydın, B., Özbilen, Ö., & Erdoğan, G. (2017). The abstraction process of limit knowledge. Educational Sciences: Theory & Practice, 17(2).
  • Monaghan, J., & Ozmantar, M. F. (2006). Abstraction and consolidation. Educational Studies in Mathematics, 62(3), 233-258.
  • Ozmantar, M. F. (2004). Scaffolding, abstraction and emergent goals. Proceedings of the British Society for Research into Learning Mathematics, 24(2), 83-89.
  • Ozmantar, M. F., & Monaghan, J. (2007). A dialectical approach to the formation of mathematical abstractions. Mathematics Education Research Journal, 19(2), 89-112.
  • Ozmantar, M.F. (2005). An investigation of the formation of mathematical abstractions through scaffolding. The University of Leeds, School of Education (Unpublished Doctoral Thesis), Leeds, United Kingdom.
  • Piaget, J. (1970). Genetic epistemology. American Behavioral Scientist, New York.
  • Ron, G., Dreyfus, T., & Hershkowitz, R. (2010). Partially correct constructs illuminate students’inconsistent answers. Educational Studies in Mathematics, 75(1), 65-87.
  • Ron, G., Dreyfus, T., & Hershkowitz, R. (2017). Looking back to the roots of partially correct constructs: The case of the area model in probability. The Journal of Mathematical Behavior, 45, 15-34.
  • Schwarz, B., & Dreyfus, T. (2009). The nested epistemic actions model for abstraction in context. In Transformation of knowledge through classroom interaction (pp. 19-49). Routledge.
  • Schwarz, B., Dreyfus, T., Hadas, N., & Hershkowitz, R. (2004). Teacher Guidance of Knowledge Construction. International Group for the Psychology of Mathematics Education.
  • Schwarz, B., Dreyfus, T., & Hershkowitz, R. (Eds.). (2009). Transformation of knowledge through classroom interaction. Routledge.
  • Tabach, M., Hershkowitz, R., & Schwarz, B. (2006). Constructing and consolidating of algebraic knowledge within dyadic processes: A case study. Educational studies in mathematics, 63(3), 235-258.
  • Yeşildere, S. (2006). Farklı matematiksel güce sahip ilköğretim 6, 7 ve 8 sınıf öğrencilerinin matematiksel düşünme ve bilgiyi oluşturma süreçlerinin incelenmesi. (Yayımlanmamış Doktora Tezi). DEÜ Eğitim Bilimleri Enstitüsü, İzmir.
  • Yeşildere, S., & Türnüklü, E. B. (2008). İlköğretim sekizinci sınıf öğrencilerinin bilgi oluşturma süreçlerinin matematiksel güçlerine göre incelenmesi. Uludağ Üniversitesi Eğitim Fakültesi Dergisi, 21(2), 485-510
Toplam 51 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Matematik Eğitimi
Bölüm Araştırma Makaleleri
Yazarlar

Rümeysa Beyazhançer 0000-0001-5061-8835

Murat Altun

Yayımlanma Tarihi 30 Eylül 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 6 Sayı: 3

Kaynak Göster

APA Beyazhançer, R., & Altun, M. (2023). Bir Soyutlama süreci; RBC+C ile ilgili Alanyazının Tematik Analizi. Fen Matematik Girişimcilik Ve Teknoloji Eğitimi Dergisi, 6(3), 244-264.