Araştırma Makalesi
BibTex RIS Kaynak Göster

Nonlinear Static Analysis of Ordinary Highway Bridges Considering Geometry and Material Uncertainties

Yıl 2022, Cilt: 34 Sayı: 2, 129 - 137, 30.09.2022

Öz

Material properties are an initial critical step to correctly determine the structure's capacities. Although there are many uncertainties, with the help of the probabilistic approach, the structural components' material strength was determined deterministically. The assumptions made to determine the material strengths generate additional uncertainties in determining the strength of the structures. Nowadays, developing computer technologies enable the determination of the strength capacities of structures with probabilistic approaches that consider these uncertainties in designing structural components. For this reason, while the approaches followed in the regulations included completely deterministic analyses in the past, quasi-statistical methods are used today, and studies are carried out to develop entirely statistical approaches. Therefore, to determine the structure's actual behavior, the uncertainties in the structural components should be taken into account. However, a practical and up-to-date approach has not been developed yet, and the existing methods impose an extensive analytical and computational burden. In this study, an ordinary single-column bridge in Türkiye was considered. Furthermore, the moment-curvature relationship of the pier was simulated considering material uncertainties. In addition, the differences in column heights and span lengths were modeled with the help of the Monte-Carlo simulation. Incremental static analyses were performed, and the lateral load-carrying capacities of the bridge were simulated.

Kaynakça

  • [1] Biondini F. Use of Simulation in Structural Reliability. Struct. Congr. 2008, 2008.
  • [2] Melchers RE. Importance Sampling in Structural Systems. Struct Saf 1989;6:3–10.
  • [3] Infanger G. Monte Carlo (Importance) Sampling Within a Benders Decomposition Algorithm for Stochastic Linear Programs. Ann Oper Res 1992;39:69–95.
  • [4] Oh M, Berger JO. Adaptive importance sampling in monte carlo integration. J Statictical Comput Simul 1992;41:143–68. doi:10.1080/00949659208810398.
  • [5] Yilmaz MF. Reliability analysis of Bridge with Monte-Carlo Simulation. Int. Congr. Phenomenol. Asp. Civ. Eng., Erzurum/ Turkey: PACE 2021; 2021, p. 1–6.
  • [6] Perdomo C, Monteiro R, Sucuoğlu H. Generalized force vectors for multi-mode pushover analysis of bridges. Bull Earthq Eng 2017;15:5247–80. doi:10.1007/s10518-017-0179-6.
  • [7] Pinho R, Casarotti C, Antoniou S. A comparison of single-run pushover analysis techniques for seismic assessment of bridges. Earthq Eng Struct Dyn 2007;36:1347–62. doi:10.1002/eqe.684.
  • [8] Paraskeva TS, Kappos AJ. Further development of a multimodal pushover analysis procedure for seismic assessment of bridges. Earthq Eng Struct Dyn 2009;39:211–22. doi:10.1002/eqe.947.
  • [9] Lu Z, Ge H, Usami T. Applicability of pushover analysis-based seismic performance evaluation procedure for steel arch bridges. Eng Struct 2004;26:1957–77. doi:10.1016/j.engstruct.2004.07.013.
  • [10] Bignell JL, LaFave JM, Hawkins NM. Seismic vulnerability assessment of wall pier supported highway bridges using nonlinear pushover analyses. Eng Struct 2005;27:2044–63. doi:10.1016/j.engstruct.2005.06.015.
  • [11] Zordan T, Briseghella Bruno B, Lan C. Parametric and pushover analyses on integral abutment bridge. Eng Struct 2011;33:502–15. doi:10.1016/j.engstruct.2010.11.009.
  • [12] Guo W, Hu Y, Liu H, Bu D. Seismic performance evaluation of typical piers of China’s high-speed railway bridge line using pushover analysis. Math Probl Eng 2019;2019. doi:10.1155/2019/9514769.
  • [13] Araújo M, Marques M, Delgado R. Multidirectional pushover analysis for seismic assessment of irregular-in-plan bridges. Eng Struct 2014;79:375–89. doi:10.1016/j.engstruct.2014.08.032.
  • [14] Bergami AV, Fiorentino G, Lavorato D, Briseghella B, Nuti C. Application of the incremental modal pushover analysis to bridges subjected to near-fault ground motions. Appl Sci 2020;10:1–19. doi:10.3390/app10196738.
  • [15] Bergami AV, Nuti C, Lavorato D, Fiorentino G, Briseghella B. Incremental Modal Pushover Analysis for Bridges. Appl Sci 2020;10:1–24.
  • [16] Yılmaz MF, Aydın AC. Assessment of an old roadway bridge under static and seismic loading conditions. Chall J Struct Mech 2021;7:107. doi:10.20528/cjsmec.2021.02.006.
  • [17] Avşar Ö, Yakut A, Caner A. Analytical Fragility Curves for Ordinary Highway Bridges in Turkey. Earthq Spectra 2011;27:971–96. doi:10.1193/1.3651349.
  • [18] PEER. Open System for Earthquake Engineering Simulation (OpenSees) 2005.
  • [19] Caltrans. Seismic Design Criteria. Sacramento, CA.: 2006.

Standart Karayolu Köprüsünün Geometri ve Malzeme Yönünden Belirsizlikleri Dikkate Alarak Doğrusal Olmayan Statik Analizi

Yıl 2022, Cilt: 34 Sayı: 2, 129 - 137, 30.09.2022

Öz

Yapısal kapasitenin belirlenmesinde ilk ve en önemli aşamalardan biri malzeme dayanımlarının belirlenmesidir. Bu kısımda bir çok bilinmeyenin yer almasına karşılık, olasılıksal yaklaşımlardan faydalanılarak malzeme özellikleri deterministik olarak elde edilebilmektedir. Bununla birlikte geliştirilen olasılık modellerinde kullanılan yaklaşımlar ilave belirsizliklerin ortaya çıkmasına neden olmaktadır. Günümüzde gelişen bilişim ve bilgisayar teknolojileri yardımı ile malzeme yönünden belirsizliklerin yapısal tasarımlarda dikkate alınması mümkün hale gelmektedir. Bu nedenle geçmişte yönetmelikler tamamen deterministik yaklaşımları içerirken, günümüzde yarı-deterministik yaklaşımları içermekte ve tam olasılıksal yaklaşımların geliştirilebilmesi için çalışmalar yürütülmektedir. Bütün bunlar yapının performansının belirlenmesinde, yukarıda bahsi geçen belirsizliklerin dikkate alınmasını gerekli kılmaktadır. Ancak halen pratik ve güncel bir hesap yöntemi geliştirilebilmiş değildir. Bu çalışma kapsamında Türkiye karayolu hatlarında yer alan tipik bir köprü türü ele alınmış. Köprü ayağının moment-eğrilik ilişkisi malzeme belirsizlikleri dikkate alınarak modellenmiştir. Ayrıca kolon yükseklikleri ve köprü açıklıklarındaki belirsizlikler de Monte-Carlo yaklaşımı ile modellenmiş, köprünün yatay yük taşıma kapasitesinin belirlenebilmesi için artımsal statik itme analizi gerçekleştirilmiştir.

Kaynakça

  • [1] Biondini F. Use of Simulation in Structural Reliability. Struct. Congr. 2008, 2008.
  • [2] Melchers RE. Importance Sampling in Structural Systems. Struct Saf 1989;6:3–10.
  • [3] Infanger G. Monte Carlo (Importance) Sampling Within a Benders Decomposition Algorithm for Stochastic Linear Programs. Ann Oper Res 1992;39:69–95.
  • [4] Oh M, Berger JO. Adaptive importance sampling in monte carlo integration. J Statictical Comput Simul 1992;41:143–68. doi:10.1080/00949659208810398.
  • [5] Yilmaz MF. Reliability analysis of Bridge with Monte-Carlo Simulation. Int. Congr. Phenomenol. Asp. Civ. Eng., Erzurum/ Turkey: PACE 2021; 2021, p. 1–6.
  • [6] Perdomo C, Monteiro R, Sucuoğlu H. Generalized force vectors for multi-mode pushover analysis of bridges. Bull Earthq Eng 2017;15:5247–80. doi:10.1007/s10518-017-0179-6.
  • [7] Pinho R, Casarotti C, Antoniou S. A comparison of single-run pushover analysis techniques for seismic assessment of bridges. Earthq Eng Struct Dyn 2007;36:1347–62. doi:10.1002/eqe.684.
  • [8] Paraskeva TS, Kappos AJ. Further development of a multimodal pushover analysis procedure for seismic assessment of bridges. Earthq Eng Struct Dyn 2009;39:211–22. doi:10.1002/eqe.947.
  • [9] Lu Z, Ge H, Usami T. Applicability of pushover analysis-based seismic performance evaluation procedure for steel arch bridges. Eng Struct 2004;26:1957–77. doi:10.1016/j.engstruct.2004.07.013.
  • [10] Bignell JL, LaFave JM, Hawkins NM. Seismic vulnerability assessment of wall pier supported highway bridges using nonlinear pushover analyses. Eng Struct 2005;27:2044–63. doi:10.1016/j.engstruct.2005.06.015.
  • [11] Zordan T, Briseghella Bruno B, Lan C. Parametric and pushover analyses on integral abutment bridge. Eng Struct 2011;33:502–15. doi:10.1016/j.engstruct.2010.11.009.
  • [12] Guo W, Hu Y, Liu H, Bu D. Seismic performance evaluation of typical piers of China’s high-speed railway bridge line using pushover analysis. Math Probl Eng 2019;2019. doi:10.1155/2019/9514769.
  • [13] Araújo M, Marques M, Delgado R. Multidirectional pushover analysis for seismic assessment of irregular-in-plan bridges. Eng Struct 2014;79:375–89. doi:10.1016/j.engstruct.2014.08.032.
  • [14] Bergami AV, Fiorentino G, Lavorato D, Briseghella B, Nuti C. Application of the incremental modal pushover analysis to bridges subjected to near-fault ground motions. Appl Sci 2020;10:1–19. doi:10.3390/app10196738.
  • [15] Bergami AV, Nuti C, Lavorato D, Fiorentino G, Briseghella B. Incremental Modal Pushover Analysis for Bridges. Appl Sci 2020;10:1–24.
  • [16] Yılmaz MF, Aydın AC. Assessment of an old roadway bridge under static and seismic loading conditions. Chall J Struct Mech 2021;7:107. doi:10.20528/cjsmec.2021.02.006.
  • [17] Avşar Ö, Yakut A, Caner A. Analytical Fragility Curves for Ordinary Highway Bridges in Turkey. Earthq Spectra 2011;27:971–96. doi:10.1193/1.3651349.
  • [18] PEER. Open System for Earthquake Engineering Simulation (OpenSees) 2005.
  • [19] Caltrans. Seismic Design Criteria. Sacramento, CA.: 2006.
Toplam 19 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm FBD
Yazarlar

Mehmet Fatih Yilmaz 0000-0002-2746-7589

Yayımlanma Tarihi 30 Eylül 2022
Gönderilme Tarihi 8 Haziran 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 34 Sayı: 2

Kaynak Göster

APA Yilmaz, M. F. (2022). Nonlinear Static Analysis of Ordinary Highway Bridges Considering Geometry and Material Uncertainties. Fırat Üniversitesi Fen Bilimleri Dergisi, 34(2), 129-137.
AMA Yilmaz MF. Nonlinear Static Analysis of Ordinary Highway Bridges Considering Geometry and Material Uncertainties. Fırat Üniversitesi Fen Bilimleri Dergisi. Eylül 2022;34(2):129-137.
Chicago Yilmaz, Mehmet Fatih. “Nonlinear Static Analysis of Ordinary Highway Bridges Considering Geometry and Material Uncertainties”. Fırat Üniversitesi Fen Bilimleri Dergisi 34, sy. 2 (Eylül 2022): 129-37.
EndNote Yilmaz MF (01 Eylül 2022) Nonlinear Static Analysis of Ordinary Highway Bridges Considering Geometry and Material Uncertainties. Fırat Üniversitesi Fen Bilimleri Dergisi 34 2 129–137.
IEEE M. F. Yilmaz, “Nonlinear Static Analysis of Ordinary Highway Bridges Considering Geometry and Material Uncertainties”, Fırat Üniversitesi Fen Bilimleri Dergisi, c. 34, sy. 2, ss. 129–137, 2022.
ISNAD Yilmaz, Mehmet Fatih. “Nonlinear Static Analysis of Ordinary Highway Bridges Considering Geometry and Material Uncertainties”. Fırat Üniversitesi Fen Bilimleri Dergisi 34/2 (Eylül 2022), 129-137.
JAMA Yilmaz MF. Nonlinear Static Analysis of Ordinary Highway Bridges Considering Geometry and Material Uncertainties. Fırat Üniversitesi Fen Bilimleri Dergisi. 2022;34:129–137.
MLA Yilmaz, Mehmet Fatih. “Nonlinear Static Analysis of Ordinary Highway Bridges Considering Geometry and Material Uncertainties”. Fırat Üniversitesi Fen Bilimleri Dergisi, c. 34, sy. 2, 2022, ss. 129-37.
Vancouver Yilmaz MF. Nonlinear Static Analysis of Ordinary Highway Bridges Considering Geometry and Material Uncertainties. Fırat Üniversitesi Fen Bilimleri Dergisi. 2022;34(2):129-37.