Araştırma Makalesi
BibTex RIS Kaynak Göster

Co Katkılı Na0,67Mn0,5Fe0,43Ti0,07O2 Katot Malzemelerinin Üretimi ve Elektrokimyasal Özelliklerinin İncelenmesi

Yıl 2025, Cilt: 37 Sayı: 1, 9 - 18, 27.03.2025

Öz

Bu çalışmada 〖〖Na〗_0,67 (Mn〗_(0,5-x) 〖Co〗_x 〖Fe〗_0,43 〖Ti〗_0,07)O_2 bileşiğinin üretimleri x=0,1, 0,2, 0,3, 0,4 ve 0,5 oranında Co elementi katkılanarak geleneksel katıhal reaksiyon yöntemine göre gerçekleştirilmiştir. Üretilen örneklerin yapısal analizleri sırasıyla X-ışını kırınımı (XRD), Fourier Dönüşümlü Kızılötesi Spektroskopisi (FTIR), Taramalı Elektron Mikroskobu (SEM) ve Enerji Dağılımlı X-Işını (EDX) yöntemleri ile gerçekleştirilmiştir. Hazırlanan toz malzemeler Na-iyon bataryalarda katot aktif malzemelerinin üretiminde kullanılmış ve buton tipi CR2032 hücreler üretilerek elektrokimyasal özellikleri incelenmiştir. Bu Çalışma kapsamında Na metali kullanılarak yarım hücre testleri için Döngüsel Voltametri (CV), Empedans Spektroskopisi (EİS), çevrim performans ölçümleri alınmıştır. Elde edilen batarya test sonuçları değerlendirildiğinde Co katkılanması ile birlikte elektrokimyasal özelliklerin ciddi bir şekilde değiştiği ve x=0,2 katkılı örneklerde kapasite kayıplarının %16,7 değeri ile diğerlerine göre daha az olduğu belirlenmiştir.

Kaynakça

  • Aldhafeeri T, Tran MK, Vrolyk R, Pope M, Fowler M. A Review of Methane Gas Detection Sensors: Recent Developments and Future Perspectives. Inventions 2020; 5, 28.
  • Şahin A. Lityum kükürt pillerde h-bn/rgo/s katot uygulamaları= H-bn/rgo/s cathode applications in lithium sulfur batteries, MSc thesis, Sakarya University, 2022.
  • Mert MS, Merve S, and Mert HH. Isıl Enerji Depolama Sistemleri İçin Organik Faz Değiştiren Maddelerin Mevcut Durumu Üzerine Bir İnceleme. Mühendis bilim tasar derg 2018; 6(1): p. 161-174.
  • https://cevreselgostergeler.csb.gov.tr/yakita-gore-birincil-enerji-tuketimi-i-85801
  • Shamsi H, Tran MK, Akbarpour S, Maroufmashat A, & Fowler M. Fowler, M. Macro-Level Optimization of Hydrogen Infrastructure and Supply Chain for Zero-emission Vehicles on a Canadian Corridor. J Clean Prod 2020; 125163.
  • Taefi TT, Kreutzfeldt J, Held T, Fink A. Supporting the adoption of electric vehicles in urban road freight transport—A multi-criteria analysis of policy measures in Germany. Transp Res Part A Policy Pract 2016; 91, 61–79.
  • Fathabadi H. Utilization of electric vehicles and renewable energy sources used as distributed generators for improving characteristics of electric power distribution systems. Energy 2015; 90, 1100–1110.
  • https://cevreselgostergeler.csb.gov.tr/yakita-gore-birincil-enerji-tuketimi-i-85801
  • Ellabban O, Abu-Rub H, & Blaabjerg F. Renewable energy resources: Current status, future prospects and their enabling technology. Renew Sustain Energy Rev 2014; 39, 748-764.
  • Koç E, Kaya K. Enerji Kaynakları–Yenilenebilir Enerji Durumu. Mühendis ve Makine 2015; cilt 56, sayı 668, s. 36-47.
  • Bağcı E. Türkiye’de yenilenebilir enerji potansiyeli, üretimi, tüketimi ve cari işlemler dengesi ilişkisi. R&S-Res Stud Anatolia 2019; 2.4: 101-117.
  • Tran MK, Sherman S, Samadani E, Vrolyk R, Wong D, Lowery M, & Fowler M. Environmental and economic benefits of a battery electric vehicle powertrain with a zinc–air range extender in the transition to electric vehicles. Vehicles 2020; 2(3), 398-412.
  • Tran MK, Bhatti A, Vrolyk R, Wong D, Panchal S, Fowler M, & Fraser R. A Review of Range Extenders in Battery Electric Vehicles: Current Progress and Future Perspectives. World Electr Veh J 2021; 12(2), 54.
  • Tran M K, Akinsanya M, Panchal S, Fraser R, & Fowler M. Design of a hybrid electric vehicle powertrain for performance optimization considering various powertrain components and configurations. Vehicles 2020; 3(1), 20-32.
  • Cunanan C, Tran MK, Lee Y, Kwok S, Leung V, Fowler M. A Review of Heavy-Duty Vehicle Powertrain Technologies: Diesel Engine Vehicles, Battery Electric Vehicles, and Hydrogen Fuel Cell Electric Vehicles. Clean Technol 2021; 3, 28.
  • Khan N, Dilshad S, Khalid R, Kalair AR, Abas N. Review of energy storage and transportation of energy. Energy Storage 2019; 1 (3): p. e49.
  • Sun P, Bisschop R, Niu H, Huang X. A Review of Battery Fires in Electric Vehicles; Springer: New York, NY, USA, 2020.
  • Pfrang A, Kriston A, Ruiz V, Lebedeva N, di Persio F. Safety of Rechargeable Energy Storage Systems with a Focus on Li-Ion Technology; Elsevier Inc.: Amsterdam, The Netherlands, 2017.
  • Spotnitz R, Franklin J. Abuse behavior of high-power, lithium-ion cells. J Power Sources 2003; 113, 81–100.
  • Bandhauer TM, Garimella S, Fuller TF. A Critical Review of Thermal Issues in Lithium-Ion Batteries. J Electrochem Soc 2011; 158, R1–R25.
  • Wang Q, Sun J, Yao X, Chen C. Thermal Behavior of Lithiated Graphite with Electrolyte in Lithium-Ion Batteries. J Electrochem Soc 2006; 153, A329.
  • Forte F, Pietrantonio M, Pucciarmati S, Puzone M, Fontana D. Lithium Iron Phosphate Batteries Recycling: An Assessment of Current Status. Crit Rev Environ Sci Technol 2020; 1–28.
  • Dogan E, Altundag S, Altin S, Arshad M, Balci E, & Altin E. Production of V‐Doped P2‐type Na0. 67Mn0. 5Fe0. 43Al0. 07O2 Cathodes and Investigation of Na‐Ion Full Cells Performance. Energy Tech 2024; 12(1), 2300837.
  • Demirel Y. Production, Conversion, Storage, Conservation, and Coupling. Springer Science & Business Media, 2012.
  • Alva G, Lin Y, & Fang G. An overview of thermal energy storage systems. Energy 2018; 144, 341-378.
  • Ibrahim H, Ilinca A, & Perron J. Energy storage systems-Characteristics and comparisons. Renew Sust Energ Rev 2008; 12(5), 1221-1250.
  • Liming H, Haque E, & Barg S. Public policy discourse, planning and measures toward sustainable energy strategies in Canada. Renew Sust Energ Rev 2008; 12(1), 91-115.
  • Liu Y, Wang D, Li P, Liu Y, Sun Y, Liu Y, & Guo X. The Relationship between Initial Coulombic Efficiency and Transition Metal Ion Redox in P2-Na0. 85 [Cu0. 1Fe x Mn1–x] O2 Cathodes. Ind Eng Chem Res 2022; 61(31), 11494-11503.
  • Feng J, Luo S-h, Wang J, Li P, Yan S, Li J, Hou P-q, Wang Q, Zhang Y, Liu X. Stable electrochemical properties of magnesium-doped co-free layered P2-Type Na0.67Ni0.33Mn0.67O2 cathode material for sodium ion batteries. ACS Sustaın Chem Eng, 2022; 10(15), 4994-5004.
  • Senthilkumar M, Satyavani TVSL, Jagadish K, Sahoo PK, & Kumar AS. Fabrication and testing of sodium-ion full cell with P2-Na0.67 Ni0.167Co0.167 Mn0.67O2 (Na-NCM) and hard carbon in coin cell and 2 Ah prismatic cell configuration. Int J Hydrogen Energy 2022; 47(3), 1790-1803.
  • Dogan E, Altundag S, Altin E, Oz E, Altin S. P2-type Na0.67Mn0.5-xVxFe0.43Ti0.07O2 powders for Na-ion cathodes: Ex-situ structural analysis and full-cell study. Electrochim Acta 2024; 473, 143470.
  • Feng J, Luo S-H, Wang J, Li P, Yan S, Li J, Hou P-Q, Wang Q, Zhang Y, Liu X. Stable Electrochemical Properties of Magnesium-Doped Co-Free Layered P2-Type Na0.67Ni0.33Mn0.67O2 Cathode Material for Sodium Ion Batteries. ACS Sustaın Chem Eng 2022; 10(15), 4994–5004.

Production of Co Doped Na0.67Mn0.5Fe0.43Ti0.07O2 Cathode Materials and Examination of Electrochemical Properties

Yıl 2025, Cilt: 37 Sayı: 1, 9 - 18, 27.03.2025

Öz

In this study, the production of compound 〖〖Na〗_0.67 (Mn〗_(0.5-x) 〖Co〗_x 〖Fe〗_0.43 〖Ti〗_0.07)O_2 was carried out according to the traditional solid-state reaction method by adding Co element at the ratio of x = 0.1, 0.2, 0.3, 0.4 and 0.5. Structural analysis of the produced samples were performed by X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscope (SEM) and Energy Dispersive X-Ray (EDX) analyses, respectively. The prepared powder materials were used in the production of cathode active materials in Na-ion batteries and button type CR2032 cells were produced and battery properties were examined. The performances of the batteries were investigated by performing electrochemical analyzes with the produced battery cells. Within the scope of this study, Cyclic Voltammetry (CV), Impedance Spectroscopy (EIS) and cycle performance measurements were taken for half-cell tests using Na metal. When the battery test results were evaluated, it was determined that the electrochemical properties changed significantly with Co doping, and capacity losses were less in samples with x = 0.2 doping.

Kaynakça

  • Aldhafeeri T, Tran MK, Vrolyk R, Pope M, Fowler M. A Review of Methane Gas Detection Sensors: Recent Developments and Future Perspectives. Inventions 2020; 5, 28.
  • Şahin A. Lityum kükürt pillerde h-bn/rgo/s katot uygulamaları= H-bn/rgo/s cathode applications in lithium sulfur batteries, MSc thesis, Sakarya University, 2022.
  • Mert MS, Merve S, and Mert HH. Isıl Enerji Depolama Sistemleri İçin Organik Faz Değiştiren Maddelerin Mevcut Durumu Üzerine Bir İnceleme. Mühendis bilim tasar derg 2018; 6(1): p. 161-174.
  • https://cevreselgostergeler.csb.gov.tr/yakita-gore-birincil-enerji-tuketimi-i-85801
  • Shamsi H, Tran MK, Akbarpour S, Maroufmashat A, & Fowler M. Fowler, M. Macro-Level Optimization of Hydrogen Infrastructure and Supply Chain for Zero-emission Vehicles on a Canadian Corridor. J Clean Prod 2020; 125163.
  • Taefi TT, Kreutzfeldt J, Held T, Fink A. Supporting the adoption of electric vehicles in urban road freight transport—A multi-criteria analysis of policy measures in Germany. Transp Res Part A Policy Pract 2016; 91, 61–79.
  • Fathabadi H. Utilization of electric vehicles and renewable energy sources used as distributed generators for improving characteristics of electric power distribution systems. Energy 2015; 90, 1100–1110.
  • https://cevreselgostergeler.csb.gov.tr/yakita-gore-birincil-enerji-tuketimi-i-85801
  • Ellabban O, Abu-Rub H, & Blaabjerg F. Renewable energy resources: Current status, future prospects and their enabling technology. Renew Sustain Energy Rev 2014; 39, 748-764.
  • Koç E, Kaya K. Enerji Kaynakları–Yenilenebilir Enerji Durumu. Mühendis ve Makine 2015; cilt 56, sayı 668, s. 36-47.
  • Bağcı E. Türkiye’de yenilenebilir enerji potansiyeli, üretimi, tüketimi ve cari işlemler dengesi ilişkisi. R&S-Res Stud Anatolia 2019; 2.4: 101-117.
  • Tran MK, Sherman S, Samadani E, Vrolyk R, Wong D, Lowery M, & Fowler M. Environmental and economic benefits of a battery electric vehicle powertrain with a zinc–air range extender in the transition to electric vehicles. Vehicles 2020; 2(3), 398-412.
  • Tran MK, Bhatti A, Vrolyk R, Wong D, Panchal S, Fowler M, & Fraser R. A Review of Range Extenders in Battery Electric Vehicles: Current Progress and Future Perspectives. World Electr Veh J 2021; 12(2), 54.
  • Tran M K, Akinsanya M, Panchal S, Fraser R, & Fowler M. Design of a hybrid electric vehicle powertrain for performance optimization considering various powertrain components and configurations. Vehicles 2020; 3(1), 20-32.
  • Cunanan C, Tran MK, Lee Y, Kwok S, Leung V, Fowler M. A Review of Heavy-Duty Vehicle Powertrain Technologies: Diesel Engine Vehicles, Battery Electric Vehicles, and Hydrogen Fuel Cell Electric Vehicles. Clean Technol 2021; 3, 28.
  • Khan N, Dilshad S, Khalid R, Kalair AR, Abas N. Review of energy storage and transportation of energy. Energy Storage 2019; 1 (3): p. e49.
  • Sun P, Bisschop R, Niu H, Huang X. A Review of Battery Fires in Electric Vehicles; Springer: New York, NY, USA, 2020.
  • Pfrang A, Kriston A, Ruiz V, Lebedeva N, di Persio F. Safety of Rechargeable Energy Storage Systems with a Focus on Li-Ion Technology; Elsevier Inc.: Amsterdam, The Netherlands, 2017.
  • Spotnitz R, Franklin J. Abuse behavior of high-power, lithium-ion cells. J Power Sources 2003; 113, 81–100.
  • Bandhauer TM, Garimella S, Fuller TF. A Critical Review of Thermal Issues in Lithium-Ion Batteries. J Electrochem Soc 2011; 158, R1–R25.
  • Wang Q, Sun J, Yao X, Chen C. Thermal Behavior of Lithiated Graphite with Electrolyte in Lithium-Ion Batteries. J Electrochem Soc 2006; 153, A329.
  • Forte F, Pietrantonio M, Pucciarmati S, Puzone M, Fontana D. Lithium Iron Phosphate Batteries Recycling: An Assessment of Current Status. Crit Rev Environ Sci Technol 2020; 1–28.
  • Dogan E, Altundag S, Altin S, Arshad M, Balci E, & Altin E. Production of V‐Doped P2‐type Na0. 67Mn0. 5Fe0. 43Al0. 07O2 Cathodes and Investigation of Na‐Ion Full Cells Performance. Energy Tech 2024; 12(1), 2300837.
  • Demirel Y. Production, Conversion, Storage, Conservation, and Coupling. Springer Science & Business Media, 2012.
  • Alva G, Lin Y, & Fang G. An overview of thermal energy storage systems. Energy 2018; 144, 341-378.
  • Ibrahim H, Ilinca A, & Perron J. Energy storage systems-Characteristics and comparisons. Renew Sust Energ Rev 2008; 12(5), 1221-1250.
  • Liming H, Haque E, & Barg S. Public policy discourse, planning and measures toward sustainable energy strategies in Canada. Renew Sust Energ Rev 2008; 12(1), 91-115.
  • Liu Y, Wang D, Li P, Liu Y, Sun Y, Liu Y, & Guo X. The Relationship between Initial Coulombic Efficiency and Transition Metal Ion Redox in P2-Na0. 85 [Cu0. 1Fe x Mn1–x] O2 Cathodes. Ind Eng Chem Res 2022; 61(31), 11494-11503.
  • Feng J, Luo S-h, Wang J, Li P, Yan S, Li J, Hou P-q, Wang Q, Zhang Y, Liu X. Stable electrochemical properties of magnesium-doped co-free layered P2-Type Na0.67Ni0.33Mn0.67O2 cathode material for sodium ion batteries. ACS Sustaın Chem Eng, 2022; 10(15), 4994-5004.
  • Senthilkumar M, Satyavani TVSL, Jagadish K, Sahoo PK, & Kumar AS. Fabrication and testing of sodium-ion full cell with P2-Na0.67 Ni0.167Co0.167 Mn0.67O2 (Na-NCM) and hard carbon in coin cell and 2 Ah prismatic cell configuration. Int J Hydrogen Energy 2022; 47(3), 1790-1803.
  • Dogan E, Altundag S, Altin E, Oz E, Altin S. P2-type Na0.67Mn0.5-xVxFe0.43Ti0.07O2 powders for Na-ion cathodes: Ex-situ structural analysis and full-cell study. Electrochim Acta 2024; 473, 143470.
  • Feng J, Luo S-H, Wang J, Li P, Yan S, Li J, Hou P-Q, Wang Q, Zhang Y, Liu X. Stable Electrochemical Properties of Magnesium-Doped Co-Free Layered P2-Type Na0.67Ni0.33Mn0.67O2 Cathode Material for Sodium Ion Batteries. ACS Sustaın Chem Eng 2022; 10(15), 4994–5004.
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Genel Fizik
Bölüm FBD
Yazarlar

Ömer Faruk Toy 0000-0002-9257-4866

Murat Buldu 0009-0004-8005-1007

Serdar Altın 0000-0002-4590-907X

Canan Aksu Canbay 0000-0002-5151-4576

Yayımlanma Tarihi 27 Mart 2025
Gönderilme Tarihi 10 Haziran 2024
Kabul Tarihi 18 Aralık 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 37 Sayı: 1

Kaynak Göster

APA Toy, Ö. F., Buldu, M., Altın, S., Aksu Canbay, C. (2025). Co Katkılı Na0,67Mn0,5Fe0,43Ti0,07O2 Katot Malzemelerinin Üretimi ve Elektrokimyasal Özelliklerinin İncelenmesi. Fırat Üniversitesi Fen Bilimleri Dergisi, 37(1), 9-18.
AMA Toy ÖF, Buldu M, Altın S, Aksu Canbay C. Co Katkılı Na0,67Mn0,5Fe0,43Ti0,07O2 Katot Malzemelerinin Üretimi ve Elektrokimyasal Özelliklerinin İncelenmesi. Fırat Üniversitesi Fen Bilimleri Dergisi. Mart 2025;37(1):9-18.
Chicago Toy, Ömer Faruk, Murat Buldu, Serdar Altın, ve Canan Aksu Canbay. “Co Katkılı Na0,67Mn0,5Fe0,43Ti0,07O2 Katot Malzemelerinin Üretimi Ve Elektrokimyasal Özelliklerinin İncelenmesi”. Fırat Üniversitesi Fen Bilimleri Dergisi 37, sy. 1 (Mart 2025): 9-18.
EndNote Toy ÖF, Buldu M, Altın S, Aksu Canbay C (01 Mart 2025) Co Katkılı Na0,67Mn0,5Fe0,43Ti0,07O2 Katot Malzemelerinin Üretimi ve Elektrokimyasal Özelliklerinin İncelenmesi. Fırat Üniversitesi Fen Bilimleri Dergisi 37 1 9–18.
IEEE Ö. F. Toy, M. Buldu, S. Altın, ve C. Aksu Canbay, “Co Katkılı Na0,67Mn0,5Fe0,43Ti0,07O2 Katot Malzemelerinin Üretimi ve Elektrokimyasal Özelliklerinin İncelenmesi”, Fırat Üniversitesi Fen Bilimleri Dergisi, c. 37, sy. 1, ss. 9–18, 2025.
ISNAD Toy, Ömer Faruk vd. “Co Katkılı Na0,67Mn0,5Fe0,43Ti0,07O2 Katot Malzemelerinin Üretimi Ve Elektrokimyasal Özelliklerinin İncelenmesi”. Fırat Üniversitesi Fen Bilimleri Dergisi 37/1 (Mart 2025), 9-18.
JAMA Toy ÖF, Buldu M, Altın S, Aksu Canbay C. Co Katkılı Na0,67Mn0,5Fe0,43Ti0,07O2 Katot Malzemelerinin Üretimi ve Elektrokimyasal Özelliklerinin İncelenmesi. Fırat Üniversitesi Fen Bilimleri Dergisi. 2025;37:9–18.
MLA Toy, Ömer Faruk vd. “Co Katkılı Na0,67Mn0,5Fe0,43Ti0,07O2 Katot Malzemelerinin Üretimi Ve Elektrokimyasal Özelliklerinin İncelenmesi”. Fırat Üniversitesi Fen Bilimleri Dergisi, c. 37, sy. 1, 2025, ss. 9-18.
Vancouver Toy ÖF, Buldu M, Altın S, Aksu Canbay C. Co Katkılı Na0,67Mn0,5Fe0,43Ti0,07O2 Katot Malzemelerinin Üretimi ve Elektrokimyasal Özelliklerinin İncelenmesi. Fırat Üniversitesi Fen Bilimleri Dergisi. 2025;37(1):9-18.