Case Report
BibTex RIS Cite

Using computational fluid dynamics for wave generation and evaluation of results in numerical wave tank modelling

Year 2022, , 31 - 42, 24.02.2022
https://doi.org/10.5505/fujece.2022.76486

Abstract

In this paper, computational modeling of wave generation and evaluation of results are given. The analysis of Computational Fluid Dynamics is performed in the ANSYS Fluent module. The model of numerical analysis is made time-dependent. The Numerical Wave Tank is an engineering research equipment for studying sea waves that requires the least amount of people and materials. The Numerical Wave Tank may be used to simulate the motion of the ocean and sea waves with a modeled moving wall as a wave-maker. To generate regular gravity waves, a Numerical Wave Tank based on Reynolds Averaged Navier Stokes equations and the Volume of Fluid technique is modeled using Dynamic Mesh Technique. Wave heights, water depths, wavelength and wave periods are chosen variable parameters. Water volume fraction, velocities, turbulence kinetic energy and dynamic pressure are evaluated results. A brief explanation of how to generate waves influence is made.

References

  • [1] Agamloh EB, Wallace AK, von Jouanne A. “Application of fluid-structure interaction simulation of an ocean wave energy extraction device”. Renewable Energy, 33(4), 748–757, 2008.
  • [2] Liang B, Wu G, Liu F, Fan H, Li H. “Numerical study of wave transmission over double submerged breakwaters using non-hydrostatic wave model”. Oceanologia, 57(4), 308–317, 2015. [3] Finnegan W, Goggins J. “Linear irregular wave generation in a numerical wave tank”. Applied Ocean Research, 52, 188–200, 2015.
  • [4] Bhinder MA, Babarit A, Gentaz L, Ferrant P. “Potential time domain model with viscous correction and CFD analysis of a generic surging floating wave energy converter”. International Journal of Marine Energy, 10, 70–96, 2015.
  • [5] Yao Y, Chen Y, Zhou H, Yang H. “Numerical modeling of current loads on a net cage considering fluid–structure interaction”. Journal of Fluids and Structures, 62, 350–366, 2016.
  • [6] Liaghat T, Guibault F, Allenbach L, Nennemann B. “Two-way fluid-structure coupling in vibration and damping analysis of an oscillating hydrofoil”. ASME International Mechanical Engineering Congress and Exposition Proceedings, Huston, Texas, USA, 1-13, 9-15 November 2015.
  • [7] Liu Z, Hyun BS, Hong KY. “Application of numerical wave tank to OWC air chamber for wave energy conversion”. Proceedings Eighteenth International Offshore and Polar Engineering Conference, Canada, 350–356, July 2008.
  • [8] Wang BL, Liu H. “Higher order Boussinesq-type equations for water waves on uneven bottom”. Applied Mathematics and Mechanics, 26(6), 774–784, 2005.
  • [9] Zhu Y, Li Y, Tao A, Zhang J. “Numerical modeling of wave interaction with double curtain-wall breakwater”. Procedia Engineering, 116(1), 1009–1018, 2015.
  • [10] Ojieh NC, Barltrop NDP, Xu L. “RANS investigation of the kinematics of an alternative extreme wave”. Ocean Engineering, 36(17-18), 1415–1424, 2009.
  • [11] Liang X, Yang J, Li J, Li X. “A numerical study on local characteristics of predetermined irregular wave trains”. Ocean Engineering, 38(4), 651–657, 2011.
  • [12] McCormick ME. "Ocean engineering wave mechanics". John Wiley & Sons Inc, 1973.
  • [13] ANSYS Fluent Theory Guide 15.0. ANSYS, Inc.
  • [14] Versteeg HK, Malalasekara W. "An introduction to computational fluid dynamics the finite volume method". London: Longman Group, 1995.
  • [15] Dean RG, Dalrymple RA. Water Wave Mechanics for Engineers and Scientists, 2. World Scientific, 1991.
  • [16] Liu Z, Hyun B, Jin J. “Numerical analysis of wave field in owc chamber using VOF model”. Journal of Ocean Engineering and Technology, 22(2), 1-6, 2008.
  • [17] Gomes MN, Isoldi LA, Olinto CR, Rocha LAO, Souza JA. “Computational modeling of a regular wave tank”. Journal of Thermal Engineering, 8(1), 44–50, 2009.
  • [18] Gomes MN, Isoldi LA, Olinto CR, Rocha LAO, Souza JA. “Computational modeling of a regular wave tank”. Proc. - 2009 3rd South. Conf. Comput. Model. MCSUL, 60–65, 2009.
Year 2022, , 31 - 42, 24.02.2022
https://doi.org/10.5505/fujece.2022.76486

Abstract

References

  • [1] Agamloh EB, Wallace AK, von Jouanne A. “Application of fluid-structure interaction simulation of an ocean wave energy extraction device”. Renewable Energy, 33(4), 748–757, 2008.
  • [2] Liang B, Wu G, Liu F, Fan H, Li H. “Numerical study of wave transmission over double submerged breakwaters using non-hydrostatic wave model”. Oceanologia, 57(4), 308–317, 2015. [3] Finnegan W, Goggins J. “Linear irregular wave generation in a numerical wave tank”. Applied Ocean Research, 52, 188–200, 2015.
  • [4] Bhinder MA, Babarit A, Gentaz L, Ferrant P. “Potential time domain model with viscous correction and CFD analysis of a generic surging floating wave energy converter”. International Journal of Marine Energy, 10, 70–96, 2015.
  • [5] Yao Y, Chen Y, Zhou H, Yang H. “Numerical modeling of current loads on a net cage considering fluid–structure interaction”. Journal of Fluids and Structures, 62, 350–366, 2016.
  • [6] Liaghat T, Guibault F, Allenbach L, Nennemann B. “Two-way fluid-structure coupling in vibration and damping analysis of an oscillating hydrofoil”. ASME International Mechanical Engineering Congress and Exposition Proceedings, Huston, Texas, USA, 1-13, 9-15 November 2015.
  • [7] Liu Z, Hyun BS, Hong KY. “Application of numerical wave tank to OWC air chamber for wave energy conversion”. Proceedings Eighteenth International Offshore and Polar Engineering Conference, Canada, 350–356, July 2008.
  • [8] Wang BL, Liu H. “Higher order Boussinesq-type equations for water waves on uneven bottom”. Applied Mathematics and Mechanics, 26(6), 774–784, 2005.
  • [9] Zhu Y, Li Y, Tao A, Zhang J. “Numerical modeling of wave interaction with double curtain-wall breakwater”. Procedia Engineering, 116(1), 1009–1018, 2015.
  • [10] Ojieh NC, Barltrop NDP, Xu L. “RANS investigation of the kinematics of an alternative extreme wave”. Ocean Engineering, 36(17-18), 1415–1424, 2009.
  • [11] Liang X, Yang J, Li J, Li X. “A numerical study on local characteristics of predetermined irregular wave trains”. Ocean Engineering, 38(4), 651–657, 2011.
  • [12] McCormick ME. "Ocean engineering wave mechanics". John Wiley & Sons Inc, 1973.
  • [13] ANSYS Fluent Theory Guide 15.0. ANSYS, Inc.
  • [14] Versteeg HK, Malalasekara W. "An introduction to computational fluid dynamics the finite volume method". London: Longman Group, 1995.
  • [15] Dean RG, Dalrymple RA. Water Wave Mechanics for Engineers and Scientists, 2. World Scientific, 1991.
  • [16] Liu Z, Hyun B, Jin J. “Numerical analysis of wave field in owc chamber using VOF model”. Journal of Ocean Engineering and Technology, 22(2), 1-6, 2008.
  • [17] Gomes MN, Isoldi LA, Olinto CR, Rocha LAO, Souza JA. “Computational modeling of a regular wave tank”. Journal of Thermal Engineering, 8(1), 44–50, 2009.
  • [18] Gomes MN, Isoldi LA, Olinto CR, Rocha LAO, Souza JA. “Computational modeling of a regular wave tank”. Proc. - 2009 3rd South. Conf. Comput. Model. MCSUL, 60–65, 2009.
There are 17 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Case Report
Authors

Halil İbrahim Yamaç This is me 0000-0002-4628-0971

Ahmet Koca This is me 0000-0002-0137-6988

Taner Yılmaz This is me 0000-0002-1721-9071

Publication Date February 24, 2022
Published in Issue Year 2022

Cite

APA Yamaç, H. İ., Koca, A., & Yılmaz, T. (2022). Using computational fluid dynamics for wave generation and evaluation of results in numerical wave tank modelling. Firat University Journal of Experimental and Computational Engineering, 1(1), 31-42. https://doi.org/10.5505/fujece.2022.76486
AMA Yamaç Hİ, Koca A, Yılmaz T. Using computational fluid dynamics for wave generation and evaluation of results in numerical wave tank modelling. FUJECE. February 2022;1(1):31-42. doi:10.5505/fujece.2022.76486
Chicago Yamaç, Halil İbrahim, Ahmet Koca, and Taner Yılmaz. “Using Computational Fluid Dynamics for Wave Generation and Evaluation of Results in Numerical Wave Tank Modelling”. Firat University Journal of Experimental and Computational Engineering 1, no. 1 (February 2022): 31-42. https://doi.org/10.5505/fujece.2022.76486.
EndNote Yamaç Hİ, Koca A, Yılmaz T (February 1, 2022) Using computational fluid dynamics for wave generation and evaluation of results in numerical wave tank modelling. Firat University Journal of Experimental and Computational Engineering 1 1 31–42.
IEEE H. İ. Yamaç, A. Koca, and T. Yılmaz, “Using computational fluid dynamics for wave generation and evaluation of results in numerical wave tank modelling”, FUJECE, vol. 1, no. 1, pp. 31–42, 2022, doi: 10.5505/fujece.2022.76486.
ISNAD Yamaç, Halil İbrahim et al. “Using Computational Fluid Dynamics for Wave Generation and Evaluation of Results in Numerical Wave Tank Modelling”. Firat University Journal of Experimental and Computational Engineering 1/1 (February 2022), 31-42. https://doi.org/10.5505/fujece.2022.76486.
JAMA Yamaç Hİ, Koca A, Yılmaz T. Using computational fluid dynamics for wave generation and evaluation of results in numerical wave tank modelling. FUJECE. 2022;1:31–42.
MLA Yamaç, Halil İbrahim et al. “Using Computational Fluid Dynamics for Wave Generation and Evaluation of Results in Numerical Wave Tank Modelling”. Firat University Journal of Experimental and Computational Engineering, vol. 1, no. 1, 2022, pp. 31-42, doi:10.5505/fujece.2022.76486.
Vancouver Yamaç Hİ, Koca A, Yılmaz T. Using computational fluid dynamics for wave generation and evaluation of results in numerical wave tank modelling. FUJECE. 2022;1(1):31-42.