Research Article
BibTex RIS Cite

Investigation of The Effect of Phase Angle on The Aerodynamic Performance of Three-Bladed Helical Savonius Wind Turbines Using Computational Fluid Dynamics Method

Year 2024, , 52 - 64, 29.02.2024
https://doi.org/10.62520/fujece.1414345

Abstract

In this study, the effect of the phase angle of the semicircular blades between the stages on the aerodynamic performance of the three-blade, double-stage helical Savonius wind turbines (HSWT), which are vertical axis wind turbines, was examined by the computational fluid dynamics (CFD) method. In the Savonius wind turbine system, the drag force effect provides the most significant contribution to aerodynamic performance. Performance improvements that can affect drag force can provide significant advantages. For this purpose, three-bladed double-stage helical Savonius rotors with eccentricity L/H=1/2 and phase angles of the semicircular blades between the stages Ɵ=0°, 45° and 90° were designed. Solidworks R2018 is used for designs and ANSYS-Fluent 18.1 programs are used for analysis. The turbine with L/H=1/2 and Ɵ=90° was produced on a 3D printer and tested experimentally. Experiments were carried out in the T-490 air tunnel. The results obtained were used as a reference for numerical analysis and the ideal turbine model was tried to be determined. 10 different air velocities ranging between 3.83-20.35 m/s were used in the numerical analysis. As a result, an 11.64% increase in the drag force was observed by changing the phase angle from 0° to 45° in HSWT 1/2s. By changing the phase angle from 0° to 45° in HSWT 1/2s, a 10.77% rise in the drag coefficient was observed. It has been evaluated that the HSWT efficiency improved with the increment in drag force.

Ethical Statement

There is no need to obtain ethics committee permission for the article prepared. There is no conflict of interest with any person/institution in the prepared article.

Supporting Institution

This study was supported by the KSU Scientific Research Unit (BAP Project No: 2021/2-3YLS).

Project Number

2021/2-3YLS

Thanks

This study was supported by the KSU Scientific Research Unit (BAP Project No: 2021/2-3YLS

References

  • K. K. Jaiswal, C. R. Chowdhury, D. Yadav, R. Verma, S. Dutta, K. S. Jaiswal, SangmeshB and K. S. K. Karuppasamy, “Renewable and sustainable clean energy development and impact on social, economic, and environmental health”, Ener. Nex., vol. 7, pp. 100118, April 2022.
  • M. Pourhoseinian, S. Sharifian and N. Asasian-Kolur, “Unsteady-state numerical analysis of advanced Savonius wind turbine”, Energy Sources, Part A Recover. Util. Environ. Eff., vol. 00, no. 00, pp. 1–16, 2021.
  • D. Afungchui, B. Kamoun, A. Helali and A. Ben Djemaa, “The unsteady pressure field and the aerodynamic performances of a Savonius rotor based on the discrete vortex method,” Renew. Energy, vol. 35, no. 1, pp. 307–313, 2010.
  • T. Ogawa, “Theoretical study on the flow about savonius rotor,” J. Fluids Eng. Trans. ASME, vol. 106, no. 1, pp. 85–91, 1984.
  • P. Reupke and S. D. Probert, “Slatted-blade Savonius wind-rotors,” Appl. Energy, vol. 40, no. 1, pp. 65–75, 1991.
  • İ. Şahin, “Bir savonius rüzgar türbininin performansının sayısal incelenmesi ve iyileştirilmesi, Gazi Üniversitesi,” Fen Bilim. Enstitüsü Enerj. Sist. Mühendisliği, Yüksek Lisans Tezi, 2015.
  • X. Liang, S. Fu, B. Ou, C. Wu, C. Y. H. Chao and K. Pi, “A computational study of the effects of the radius ratio and attachment angle on the performance of a Darrieus-Savonius combined wind turbine”, Renew. Energy, vol. 113, pp. 329–334, 2017.
  • L. B. Kothe, S. V. Möller and A. P. Petry, “Numerical and experimental study of a helical Savonius wind turbine and a comparison with a two-stage Savonius turbine”, Renew. Energy, vol. 148, pp. 627–638, 2020.
  • A. S. Saad, A. Elwardany, I. I. El-Sharkawy, S. Ookawara and M. Ahmed, “Performance evaluation of a novel vertical axis wind turbine using twisted blades in multi-stage Savonius rotors”, Energy Convers. Manag., vol. 235, no. February, p. 114013, 2021.
  • S. Evran and S. Z. Yildir, “Numerical and statistical aerodynamic performance analysis of NACA0009 and NACA4415 arfoils”, J. Polytech., vol. 0900, pp. 0–2, 2023.
  • B. Deda Altan and G. S. Gultekin, “Investigation of performance enhancements of savonius wind turbines through additional designs,” Processes, vol. 11, no. 5, 2023.
  • M. Basumatary, A. Biswas and R. D. Misra, “CFD study of a combined lift and drag-based novel Savonius vertical axis water turbine”, J. Mar. Sci. Technol., vol. 28, no. 1, pp. 27–43, 2023.
  • Y. A. Cengel and A. J. Ghajar, “Heat and mass transfer (a practical approach, SI version)”, McGraw-Hill Education, 2011.
  • Y. A. Çengel and J. M. Cimbala, “Fluid Mechanics: Fundamentals and Applications, Forth Edition”, New York: McGraw-Hill Education, 2018.
  • T. S. Rengma and P. M. V. Subbarao, “Optimization of semicircular blade profile of Savonius hydrokinetic turbine using artificial neural network”, Renew. Energy, vol. 200, no. September, pp. 658–673, 2022.
  • M. Basumatary, A. Biswas and R. D. Misra, “Experimental verification of improved performance of Savonius turbine with a combined lift and drag based blade profile for ultra-low head river application”, Sustain. Energy Technol. Assessments, vol. 44, no. December 2020, p. 100999, 2021.
  • K. R. Abdelaziz, M. A. A. Nawar, A. Ramadan, Y. A. Attai and M. H. Mohamed, “Performance investigation of a Savonius rotor by varying the blade arc angles”, Ocean Eng., vol. 260, no. July, p. 112054, 2022.
  • A. Fluent, “ANSYS fluent theory guide 15.0,” ANSYS, Canonsburg, PA, 2013.
  • A. Hesami, A. H. Nikseresht and M. H. Mohamed, “Feasibility study of twin-rotor Savonius wind turbine incorporated with a wind-lens”, Ocean Eng., vol. 247, no. January, p. 110654, 2022.
  • H. E. Tanürün, İ. Ata, M. E. Canli and A. Acir, “Farklı açıklık oranlarındaki NACA-0018 rüzgâr türbini kanat modeli performansının sayısal ve deneysel incelenmesi”, Politek. Derg., vol. 23, no. 2, pp. 371–381, 2020.
  • D. H. Didane, M. N. A. Bajuri, M. I. Boukhari and B. Manshoor, “Performance investigation of vertical axis wind turbine with savonius rotor using computational fluid dynamics (CFD)”, CFD Lett., vol. 14, no. 8, pp. 116–124, 2022.
  • H. A. Hassan Saeed, A. M. Nagib Elmekawy and S. Z. Kassab, “Numerical study of improving Savonius turbine power coefficient by various blade shapes”, Alexandria Eng. J., vol. 58, no. 2, pp. 429–441, 2019.
  • M. S. Abdullah, M. H. H. Ishak and F. Ismail, “Numerical study of the 3D Savonius turbine under stationary conditions”, Eng. Fail. Anal., vol. 136, no. February, p. 106199, 2022.
  • M. H. M. Al Ghriybah, “An experimental study on improvement of a savonius rotor performance with multiple halves blades”, Near East University, 2017.
  • M. M. Kamal and R. P. Saini, “A numerical investigation on the influence of savonius blade helicity on the performance characteristics of hybrid cross-flow hydrokinetic turbine”, Renew. Energy, vol. 190, pp. 788–804, 2022.
  • M. B. Salleh, N. M. Kamaruddin and Z. Mohamed-Kassim, “The effects of deflector longitudinal position and height on the power performance of a conventional Savonius turbine”, Energy Convers. Manag., vol. 226, no. August, p. 113584, 2020.
  • I. S. Utomo, D. D. D. P. Tjahjana and S. Hadi, “Experimental studies of Savonius wind turbines with variations sizes and fin numbers towards performance”, AIP Conf. Proc., vol. 1931, 2018.
  • F. Wenehenubun, A. Saputra and H. Sutanto, “An experimental study on the performance of Savonius wind turbines related with the number of blades”, Energy Procedia, vol. 68, pp. 297–304, 2015.

Hesaplamalı Akışkanlar Dinamiği Yöntemi Kullanarak Üç Kanatlı Helisel Savonius Rüzgâr Türbinlerinin Aerodinamik Performansına Faz Açısı Etkisinin Araştırılması

Year 2024, , 52 - 64, 29.02.2024
https://doi.org/10.62520/fujece.1414345

Abstract

Bu çalışmada dikey eksenli rüzgâr türbinlerinden üç kanatlı çift kademeli helisel Savonius rüzgâr türbinlerinin (HSRT) kademeler arasındaki yarı dairesel kanatların birbirlerine olan faz açısının aerodinamik performansına olan etkisi hesaplamalı akışkanlar dinamiği (HAD) yöntemiyle incelenmiştir. Savonius rüzgâr türbini sisteminde aerodinamik performansa en ciddi katkıyı sürüklenme kuvveti etkisi sağlar. Sürüklenme kuvvetine etki edebilecek performans iyileştirmeleri önemli avantajlar sağlayabilir. Bu amaç için merkezden kaçıklığı L/H=1/2 olan ve kademeler arasındaki yarı dairesel kanatların faz açıları Ɵ=0°, 45° ve 90° olan üç kanatlı çift kademeli helisel Savonius rotorları tasarlanmıştır. Tasarımlar için Solidworks R2018, analizler için ANSYS-Fluent 18.1 programları kullanılmıştır. L/H=1/2 ve Ɵ=90° olan türbin 3B yazıcıda üretilmiş ve deneysel olarak test edilmiştir. Deneyler T-490 hava tünelinde gerçekleştirilmiştir. Elde edilen sonuçlar sayısal analizlere referans olarak kullanılmış ve en ideal türbin modeli belirlenmeye çalışılmıştır. Sayısal analizde 3,83-20,35 m/s arasında değişen 10 farklı hava hızı kullanılmıştır. Sonuç olarak HSRT 1/2’lerde; faz açısının 0°’den, 45°’ye değiştirilmesi ile sürüklenme kuvvetinde %11,64 oranında artış görülmüştür. HSRT 1/2’lerde; faz açısının 0°’den, 45°’ye değiştirilmesi ile sürüklenme katsayısında %10,77 oranında düşüş olduğu görülmüştür. Sürüklenme kuvvetinde meydana gelen iyileşme ile HSRT veriminde gelişme olacağı değerlendirilmiştir.

Project Number

2021/2-3YLS

References

  • K. K. Jaiswal, C. R. Chowdhury, D. Yadav, R. Verma, S. Dutta, K. S. Jaiswal, SangmeshB and K. S. K. Karuppasamy, “Renewable and sustainable clean energy development and impact on social, economic, and environmental health”, Ener. Nex., vol. 7, pp. 100118, April 2022.
  • M. Pourhoseinian, S. Sharifian and N. Asasian-Kolur, “Unsteady-state numerical analysis of advanced Savonius wind turbine”, Energy Sources, Part A Recover. Util. Environ. Eff., vol. 00, no. 00, pp. 1–16, 2021.
  • D. Afungchui, B. Kamoun, A. Helali and A. Ben Djemaa, “The unsteady pressure field and the aerodynamic performances of a Savonius rotor based on the discrete vortex method,” Renew. Energy, vol. 35, no. 1, pp. 307–313, 2010.
  • T. Ogawa, “Theoretical study on the flow about savonius rotor,” J. Fluids Eng. Trans. ASME, vol. 106, no. 1, pp. 85–91, 1984.
  • P. Reupke and S. D. Probert, “Slatted-blade Savonius wind-rotors,” Appl. Energy, vol. 40, no. 1, pp. 65–75, 1991.
  • İ. Şahin, “Bir savonius rüzgar türbininin performansının sayısal incelenmesi ve iyileştirilmesi, Gazi Üniversitesi,” Fen Bilim. Enstitüsü Enerj. Sist. Mühendisliği, Yüksek Lisans Tezi, 2015.
  • X. Liang, S. Fu, B. Ou, C. Wu, C. Y. H. Chao and K. Pi, “A computational study of the effects of the radius ratio and attachment angle on the performance of a Darrieus-Savonius combined wind turbine”, Renew. Energy, vol. 113, pp. 329–334, 2017.
  • L. B. Kothe, S. V. Möller and A. P. Petry, “Numerical and experimental study of a helical Savonius wind turbine and a comparison with a two-stage Savonius turbine”, Renew. Energy, vol. 148, pp. 627–638, 2020.
  • A. S. Saad, A. Elwardany, I. I. El-Sharkawy, S. Ookawara and M. Ahmed, “Performance evaluation of a novel vertical axis wind turbine using twisted blades in multi-stage Savonius rotors”, Energy Convers. Manag., vol. 235, no. February, p. 114013, 2021.
  • S. Evran and S. Z. Yildir, “Numerical and statistical aerodynamic performance analysis of NACA0009 and NACA4415 arfoils”, J. Polytech., vol. 0900, pp. 0–2, 2023.
  • B. Deda Altan and G. S. Gultekin, “Investigation of performance enhancements of savonius wind turbines through additional designs,” Processes, vol. 11, no. 5, 2023.
  • M. Basumatary, A. Biswas and R. D. Misra, “CFD study of a combined lift and drag-based novel Savonius vertical axis water turbine”, J. Mar. Sci. Technol., vol. 28, no. 1, pp. 27–43, 2023.
  • Y. A. Cengel and A. J. Ghajar, “Heat and mass transfer (a practical approach, SI version)”, McGraw-Hill Education, 2011.
  • Y. A. Çengel and J. M. Cimbala, “Fluid Mechanics: Fundamentals and Applications, Forth Edition”, New York: McGraw-Hill Education, 2018.
  • T. S. Rengma and P. M. V. Subbarao, “Optimization of semicircular blade profile of Savonius hydrokinetic turbine using artificial neural network”, Renew. Energy, vol. 200, no. September, pp. 658–673, 2022.
  • M. Basumatary, A. Biswas and R. D. Misra, “Experimental verification of improved performance of Savonius turbine with a combined lift and drag based blade profile for ultra-low head river application”, Sustain. Energy Technol. Assessments, vol. 44, no. December 2020, p. 100999, 2021.
  • K. R. Abdelaziz, M. A. A. Nawar, A. Ramadan, Y. A. Attai and M. H. Mohamed, “Performance investigation of a Savonius rotor by varying the blade arc angles”, Ocean Eng., vol. 260, no. July, p. 112054, 2022.
  • A. Fluent, “ANSYS fluent theory guide 15.0,” ANSYS, Canonsburg, PA, 2013.
  • A. Hesami, A. H. Nikseresht and M. H. Mohamed, “Feasibility study of twin-rotor Savonius wind turbine incorporated with a wind-lens”, Ocean Eng., vol. 247, no. January, p. 110654, 2022.
  • H. E. Tanürün, İ. Ata, M. E. Canli and A. Acir, “Farklı açıklık oranlarındaki NACA-0018 rüzgâr türbini kanat modeli performansının sayısal ve deneysel incelenmesi”, Politek. Derg., vol. 23, no. 2, pp. 371–381, 2020.
  • D. H. Didane, M. N. A. Bajuri, M. I. Boukhari and B. Manshoor, “Performance investigation of vertical axis wind turbine with savonius rotor using computational fluid dynamics (CFD)”, CFD Lett., vol. 14, no. 8, pp. 116–124, 2022.
  • H. A. Hassan Saeed, A. M. Nagib Elmekawy and S. Z. Kassab, “Numerical study of improving Savonius turbine power coefficient by various blade shapes”, Alexandria Eng. J., vol. 58, no. 2, pp. 429–441, 2019.
  • M. S. Abdullah, M. H. H. Ishak and F. Ismail, “Numerical study of the 3D Savonius turbine under stationary conditions”, Eng. Fail. Anal., vol. 136, no. February, p. 106199, 2022.
  • M. H. M. Al Ghriybah, “An experimental study on improvement of a savonius rotor performance with multiple halves blades”, Near East University, 2017.
  • M. M. Kamal and R. P. Saini, “A numerical investigation on the influence of savonius blade helicity on the performance characteristics of hybrid cross-flow hydrokinetic turbine”, Renew. Energy, vol. 190, pp. 788–804, 2022.
  • M. B. Salleh, N. M. Kamaruddin and Z. Mohamed-Kassim, “The effects of deflector longitudinal position and height on the power performance of a conventional Savonius turbine”, Energy Convers. Manag., vol. 226, no. August, p. 113584, 2020.
  • I. S. Utomo, D. D. D. P. Tjahjana and S. Hadi, “Experimental studies of Savonius wind turbines with variations sizes and fin numbers towards performance”, AIP Conf. Proc., vol. 1931, 2018.
  • F. Wenehenubun, A. Saputra and H. Sutanto, “An experimental study on the performance of Savonius wind turbines related with the number of blades”, Energy Procedia, vol. 68, pp. 297–304, 2015.
There are 28 citations in total.

Details

Primary Language English
Subjects Electrical Energy Generation (Incl. Renewables, Excl. Photovoltaics)
Journal Section Research Articles
Authors

Mernuş Gül 0000-0002-0659-7464

Muhammed Safa Kamer 0000-0003-3852-1031

Erdem Alıç 0000-0002-2852-0353

Project Number 2021/2-3YLS
Publication Date February 29, 2024
Submission Date January 3, 2024
Acceptance Date February 12, 2024
Published in Issue Year 2024

Cite

APA Gül, M., Kamer, M. S., & Alıç, E. (2024). Investigation of The Effect of Phase Angle on The Aerodynamic Performance of Three-Bladed Helical Savonius Wind Turbines Using Computational Fluid Dynamics Method. Firat University Journal of Experimental and Computational Engineering, 3(1), 52-64. https://doi.org/10.62520/fujece.1414345
AMA Gül M, Kamer MS, Alıç E. Investigation of The Effect of Phase Angle on The Aerodynamic Performance of Three-Bladed Helical Savonius Wind Turbines Using Computational Fluid Dynamics Method. FUJECE. February 2024;3(1):52-64. doi:10.62520/fujece.1414345
Chicago Gül, Mernuş, Muhammed Safa Kamer, and Erdem Alıç. “Investigation of The Effect of Phase Angle on The Aerodynamic Performance of Three-Bladed Helical Savonius Wind Turbines Using Computational Fluid Dynamics Method”. Firat University Journal of Experimental and Computational Engineering 3, no. 1 (February 2024): 52-64. https://doi.org/10.62520/fujece.1414345.
EndNote Gül M, Kamer MS, Alıç E (February 1, 2024) Investigation of The Effect of Phase Angle on The Aerodynamic Performance of Three-Bladed Helical Savonius Wind Turbines Using Computational Fluid Dynamics Method. Firat University Journal of Experimental and Computational Engineering 3 1 52–64.
IEEE M. Gül, M. S. Kamer, and E. Alıç, “Investigation of The Effect of Phase Angle on The Aerodynamic Performance of Three-Bladed Helical Savonius Wind Turbines Using Computational Fluid Dynamics Method”, FUJECE, vol. 3, no. 1, pp. 52–64, 2024, doi: 10.62520/fujece.1414345.
ISNAD Gül, Mernuş et al. “Investigation of The Effect of Phase Angle on The Aerodynamic Performance of Three-Bladed Helical Savonius Wind Turbines Using Computational Fluid Dynamics Method”. Firat University Journal of Experimental and Computational Engineering 3/1 (February 2024), 52-64. https://doi.org/10.62520/fujece.1414345.
JAMA Gül M, Kamer MS, Alıç E. Investigation of The Effect of Phase Angle on The Aerodynamic Performance of Three-Bladed Helical Savonius Wind Turbines Using Computational Fluid Dynamics Method. FUJECE. 2024;3:52–64.
MLA Gül, Mernuş et al. “Investigation of The Effect of Phase Angle on The Aerodynamic Performance of Three-Bladed Helical Savonius Wind Turbines Using Computational Fluid Dynamics Method”. Firat University Journal of Experimental and Computational Engineering, vol. 3, no. 1, 2024, pp. 52-64, doi:10.62520/fujece.1414345.
Vancouver Gül M, Kamer MS, Alıç E. Investigation of The Effect of Phase Angle on The Aerodynamic Performance of Three-Bladed Helical Savonius Wind Turbines Using Computational Fluid Dynamics Method. FUJECE. 2024;3(1):52-64.