Araştırma Makalesi
BibTex RIS Kaynak Göster

Computational Flow Analysis of the Aerodynamic Effects of Conical Nozzle Design in Spray Nozzles

Yıl 2025, Cilt: 4 Sayı: 3, 474 - 789, 20.10.2025
https://doi.org/10.62520/fujece.1651099

Öz

In this study, spray behavior in the nozzle was analyzed using the computational fluid dynamics (CFD) method through parametric simulations. Accordingly, parametric analyses were conducted using the Response Surface Methodology (RSM) in the commercial software ANSYS Fluent. The input variables were the nozzle outlet angle, the outlet diameter, and the nozzle outlet velocity. The flow velocity and pressure distribution in the control volume, as well as turbulence kinetic energy and eddy viscosity, were compared. For the input variables of the nozzle output angle the minimum value of 145°-165°, the width of the output orifice 0.6-0.8 mm and the outlet velocity of the nozzle 10-16 m/s were sequentially taken as the minimum and maximum values. The maximum flow velocity (1187.34 m/s) occurred at 155°, 0.6 mm, and 16 m/s. The highest pressure (614029 Pa) was recorded at 145° and 0.6 mm, while turbulence kinetic energy peaked at 24260 J at 145° and 13 m/s. The maximum eddy viscosity (0.02339 Pa·s) was found at 155° and 16 m/s. These results provide practical recommendations for optimizing nozzle design using CFD and RSM. The analyses revealed that reducing the nozzle angle increases flow velocity but simultaneously intensifies turbulence, highlighting the trade-off between efficiency and stability. Overall, the study emphasizes the importance of computational methods in nozzle design and offers clear guidelines for achieving improved spray performance.

Etik Beyan

There is no need for an ethics committee approval in the prepared paper. There is no conflict of interest with any person/institution in the prepared paper.

Kaynakça

  • M. Gorokhovski, and M. Herrmann, “Modeling primary atomization.” Annu. Rev. Fluid Mech.. vol. 40. no. 1. pp. 343–366. Jan. 2008.
  • D. P. Schmidt, and M. L. Corradini, “The internal flow of diesel fuel injector nozzles: A review.” Int. J. Engine Res.. vol. 2. no. 1. pp. 1–22. Feb. 2001.
  • J. Dukowicz, “A particle fluid numerical model for liquid sprays.” J. Comput. Phys.. vol. 35. no. 2. pp. 111–566. Apr. 1980.
  • L. Pickett, J. Manin, C. Genzale, D. Siebers, M. Musculus, and C. Idicheria, “Relationship between diesel fuel spray vapor penetration/dispersion and local fuel mixture fraction.” SAE Int. J. Engines. vol. 4. no. 1. pp. 764–799. Jun. 2011.
  • D. Siebers, “Liquid-phase fuel penetration in diesel sprays.” SAE Tech. Paper. vol. 107. no. 3. pp. 1205–1227. 1998.
  • D. Siebers, “Liquid-phase fuel penetration in diesel sprays based on mixing-limited vaporization.” SAE Trans.. vol. 108. pp. 703–728. 1999.
  • J. Abraham, “What is adequate resolution in the numerical computations of transient jets?.” SAE Trans. J. Engines. vol. 106. pp. 141–151. 1997.
  • V. Iyer, and J. Abraham, “Penetration and dispersion of transient gas jets and sprays.” Combust. Sci. Technol.. vol. 130. no. 1. pp. 315–334. Sep. 1997.
  • W. Ning, R. Reitz, R. Diwakar, and A. Lippert, “An Eulerian-Lagrangian spray and atomization model with improved turbulence modeling.” Atomization Sprays. vol. 19. no. 8. pp. 727–739. Jan. 2009.
  • X. Zhou, “Characterization of interactions between hot air plumes and water sprays for sprinkler protection.” Proc. Combust. Inst.. vol. 35. no. 3. pp. 2723–2729. Jan. 2014.
  • K. McGrattan, A. Hammins, and D. Stroup, “Sprinkler. smoke and heat vent. draft curtain interaction-large scale experiments and model development.” Nat. Inst. Standards Technol.. p. 148. Sep. 1998.
  • A. W. Marshall, and M. di Marzo, “Modelling aspects of sprinkler spray dynamics in fires.” Process Saf. Environ. Prot.. vol. 82. no. 2. pp. 97–104. Mar. 2004.
  • C. T. Crowe, “Modeling spray–air contact in spray-drying systems.” in Adv. Drying. vol. 1. A. S. Mujumdar. Ed. Washington. DC: Hemisphere. 1980. pp. 63–99.
  • D. E. Oakley, R. E. Bahu, and D. Reay, “The aerodynamics of cocurrent spray dryers.” in Proc. 6th Int. Drying Symp. IDS. Versailles. France. 1988. pp. 373–378.
  • K. Inthavong, Z. F. Tian, H. F. Li, J. Y. Tu, W. Yang, and C. L. Xue, “A numerical study of spray particle deposition in a human nasal cavity.” Aerosol Sci. Technol.. vol. 40. no. 11. pp. 1034–1045. Feb. 2006.
  • J. S. Kimbell, R. A. Segal, B. Asgharian, B. A. Wong, J. D. Schroeter, and J. P. Southall, “Characterization of deposition from nasal spray devices using a computational fluid dynamics model of the human nasal passages.” J. Aerosol Med.. vol. 20. no. 1. pp. 59–74. Mar. 2007.
  • P. W. Longest, and M. Hindle, “Evaluation of the Respimat Soft Mist Inhaler using a concurrent CFD and in vitro approach.” J. Aerosol Med.. vol. 22. no. 2. pp. 99–112. Nov. 2008.
  • P. W. Longest, G. Tian, R. L. Walenga, and M. Hindle, “Comparing MDI and DPI aerosol deposition using in vitro experiments and a new stochastic individual path (SIP) model of the conducting airways.” Pharm. Res.. vol. 29. no. 6. pp. 1670–1688. Jan. 2012.
  • T. Zhang, B. Dong, X. Chen, Z. Qiu, R. Jiang, and W. Li, “Spray characteristics of pressure-swirl nozzles at different nozzle diameters.” Appl. Therm. Eng.. vol. 121. pp. 984–991. 2017.
  • B. Önen, E. Altuncu, and A. Çınar, “Erozif aşınma testlerinde farklı nozul tasarımlarının PMMA üzerinde aşınma izi alanı ve yüzey pürüzlülüğüne etkilerinin incelenmesi.” AKU J. Sci. Eng.. vol. 21. pp. 755–763. 2021.
  • C. Du, M. Andersson, and S. Andersson, “Effects of nozzle geometry on the characteristics of an evaporating diesel spray.” SAE Int. J. Fuels Lubr.. vol. 9. no. 3. pp. 493–513. 2016.
  • M. H. H. Ishak, F. Ismail, S. C. Mat, M. Z. Abdullah, M. S. Abdul Aziz, and M. Y. Idroas, “Numerical analysis of nozzle flow and spray characteristics from different nozzles using diesel and biofuel blends.” Energies. vol. 12. no. 2. p. 281. 2019.
  • F. Wang, Z. He, J. Liu, and Q. Wang, “Diesel nozzle geometries on spray characteristics with a spray model coupled with nozzle cavitating flow.” Int. J. Automot. Technol.. vol. 16. pp. 539–549. 2015.
  • X. Hu, H. Wang, Y. Liu, and J. Zhu, “Comparative analysis of spray performance between blade-structured and conventional twin-fluid nozzles using CFD.” Heliyon. vol. 11. no. 4. p. 107108. 2025.
  • T. Yilmaz, and M. Kaya, “Numerical investigation of atomization performance in pneumatic nozzles with aerofoil modifications.” Comput. Fluids. vol. 275. p. 107540. 2025.
  • L. Chen, Y. Zhang, and Q. Xu, “Coupled analysis of internal nozzle flow and external spray characteristics in diesel injectors.” Fuel Commun.. vol. 18. p. 100560. 2024.
  • J. Collazo, J. Porteiro, D. Patino, J. L. Miguez, E. Granada, and J. Moran, “Simulation and experimental validation of a methanol burner.” Fuel. vol. 88. no. 2. pp. 326–334. Feb. 2009.
  • M. Fogliati, D. Fontana, M. Garbero, M. Vanni, G. Baldi, and R. Donde, “CFD simulation of paint deposition in an air spray process.” J. Coat. Technol. Res.. vol. 3. pp. 117–125. Apr. 2006.
  • T. H. Shih, W. W. Liou, A. Shabbir. Z. Yang, and J. Zhu, “A new k-ε eddy viscosity model for high Reynolds number turbulent flows.” Comput. Fluids. vol. 24. no. 3. pp. 227–238. Mar. 1995.
  • P. K. Senecal, D. P. Schmidt, I. Nouar, C. J. Rutland, R. D. Reitz, and M. L. Corradini, “Modeling high-speed viscous liquid sheet atomization.” Int. J. Multiph. Flow. vol. 25. no. 6–7. pp. 1073–1097. Sep.–Nov. 1999.

Sprey Nozullerde Konik Nozul Tasarımının Aerodinamik Etkilerinin Hesaplamalı Akışa Dayalı Analizi

Yıl 2025, Cilt: 4 Sayı: 3, 474 - 789, 20.10.2025
https://doi.org/10.62520/fujece.1651099

Öz

Bu çalışmada, spreyleme nozülü ucundaki püskürtme davranışı hesaplamalı akışkanlar dinamiği yöntemi ile parametrik analiz yapılarak incelenmiştir. Bu amaçla, Ansys Fluent ticari yazılımı kullanılarak deneysel tasarım yöntemi olan Yanıt Yüzey Yönteminin (RSM) oluşturduğu parametrik tablo ile analizler yürütülmüştür. Giriş değişkenleri olarak nozül çıkış açısı, nozül çıkış çapı ve nozül çıkış hızı seçilmiştir. Buna bağlı olarak, kontrol hacmindeki püskürtme davranışını gösteren akış hızı ve basınç dağılımı ile türbülans kinetik enerjisi ve Eddy viskozitesi incelenerek karşılaştırılmıştır. Giriş değişkenleri için nozül çıkış açısı 145°-165°, çıkış çapı 0,6-0,8 mm ve nozül çıkış hızı ise 10-16 m/s olarak sırasıyla minimum ve maksimum değer aralığında alınmıştır. Çalışma sonunda maksimum akış hızı olan 1187.34 m/s değerine; nozül çıkış açısı 155°, nozül çıkış çap değeri 0.6 mm ve çıkış hızı 16 m/s değerindeyken ulaşılmıştır. Maksimum basınç değerine; 145° nozul açısı ve 0.6 mm nozul çapı ile 614029 Pa değerinde ulaşılırken, maksimum türbülans kinetik enerjisi olan 24260 J değerine ise 145° nozül çıkış açısı ve 13 m/s nozül çıkış hızı ile ulaşılmıştır. Eddy viskozitesi için de maksimum değer olan 0.02339 Pa·s değerine, 155°lik nozül çıkış açısı ve 16 m/s nozül çıkış hız değerinde ulaşılmıştır. Analiz sonucu elde edilen sayısal bulgular ile bir nozulun nasıl tasarlanması gerektiği konusunda öneriler yapılmıştır. RSM yöntemi ile elde edilen bulgulara göre, nozul açısı azaltıldığında akış hızının arttığı buna karşın türbülans davranışının güçlendiği görülmüştür. Bu nedenle özellikle bir nozul tasarımı ile yapılacak çalışmalarda, bu konunun sayısal bir yöntemle ele alınması ve sonuçlardan elde edilen bazı önerilerle sunulması gerektiği görülmüştür.

Etik Beyan

Hazırlanan bildiride etik kurul onayına gerek yoktur. Hazırlanan bildiride herhangi bir kişi/kurumla çıkar çatışması bulunmamaktadır.

Kaynakça

  • M. Gorokhovski, and M. Herrmann, “Modeling primary atomization.” Annu. Rev. Fluid Mech.. vol. 40. no. 1. pp. 343–366. Jan. 2008.
  • D. P. Schmidt, and M. L. Corradini, “The internal flow of diesel fuel injector nozzles: A review.” Int. J. Engine Res.. vol. 2. no. 1. pp. 1–22. Feb. 2001.
  • J. Dukowicz, “A particle fluid numerical model for liquid sprays.” J. Comput. Phys.. vol. 35. no. 2. pp. 111–566. Apr. 1980.
  • L. Pickett, J. Manin, C. Genzale, D. Siebers, M. Musculus, and C. Idicheria, “Relationship between diesel fuel spray vapor penetration/dispersion and local fuel mixture fraction.” SAE Int. J. Engines. vol. 4. no. 1. pp. 764–799. Jun. 2011.
  • D. Siebers, “Liquid-phase fuel penetration in diesel sprays.” SAE Tech. Paper. vol. 107. no. 3. pp. 1205–1227. 1998.
  • D. Siebers, “Liquid-phase fuel penetration in diesel sprays based on mixing-limited vaporization.” SAE Trans.. vol. 108. pp. 703–728. 1999.
  • J. Abraham, “What is adequate resolution in the numerical computations of transient jets?.” SAE Trans. J. Engines. vol. 106. pp. 141–151. 1997.
  • V. Iyer, and J. Abraham, “Penetration and dispersion of transient gas jets and sprays.” Combust. Sci. Technol.. vol. 130. no. 1. pp. 315–334. Sep. 1997.
  • W. Ning, R. Reitz, R. Diwakar, and A. Lippert, “An Eulerian-Lagrangian spray and atomization model with improved turbulence modeling.” Atomization Sprays. vol. 19. no. 8. pp. 727–739. Jan. 2009.
  • X. Zhou, “Characterization of interactions between hot air plumes and water sprays for sprinkler protection.” Proc. Combust. Inst.. vol. 35. no. 3. pp. 2723–2729. Jan. 2014.
  • K. McGrattan, A. Hammins, and D. Stroup, “Sprinkler. smoke and heat vent. draft curtain interaction-large scale experiments and model development.” Nat. Inst. Standards Technol.. p. 148. Sep. 1998.
  • A. W. Marshall, and M. di Marzo, “Modelling aspects of sprinkler spray dynamics in fires.” Process Saf. Environ. Prot.. vol. 82. no. 2. pp. 97–104. Mar. 2004.
  • C. T. Crowe, “Modeling spray–air contact in spray-drying systems.” in Adv. Drying. vol. 1. A. S. Mujumdar. Ed. Washington. DC: Hemisphere. 1980. pp. 63–99.
  • D. E. Oakley, R. E. Bahu, and D. Reay, “The aerodynamics of cocurrent spray dryers.” in Proc. 6th Int. Drying Symp. IDS. Versailles. France. 1988. pp. 373–378.
  • K. Inthavong, Z. F. Tian, H. F. Li, J. Y. Tu, W. Yang, and C. L. Xue, “A numerical study of spray particle deposition in a human nasal cavity.” Aerosol Sci. Technol.. vol. 40. no. 11. pp. 1034–1045. Feb. 2006.
  • J. S. Kimbell, R. A. Segal, B. Asgharian, B. A. Wong, J. D. Schroeter, and J. P. Southall, “Characterization of deposition from nasal spray devices using a computational fluid dynamics model of the human nasal passages.” J. Aerosol Med.. vol. 20. no. 1. pp. 59–74. Mar. 2007.
  • P. W. Longest, and M. Hindle, “Evaluation of the Respimat Soft Mist Inhaler using a concurrent CFD and in vitro approach.” J. Aerosol Med.. vol. 22. no. 2. pp. 99–112. Nov. 2008.
  • P. W. Longest, G. Tian, R. L. Walenga, and M. Hindle, “Comparing MDI and DPI aerosol deposition using in vitro experiments and a new stochastic individual path (SIP) model of the conducting airways.” Pharm. Res.. vol. 29. no. 6. pp. 1670–1688. Jan. 2012.
  • T. Zhang, B. Dong, X. Chen, Z. Qiu, R. Jiang, and W. Li, “Spray characteristics of pressure-swirl nozzles at different nozzle diameters.” Appl. Therm. Eng.. vol. 121. pp. 984–991. 2017.
  • B. Önen, E. Altuncu, and A. Çınar, “Erozif aşınma testlerinde farklı nozul tasarımlarının PMMA üzerinde aşınma izi alanı ve yüzey pürüzlülüğüne etkilerinin incelenmesi.” AKU J. Sci. Eng.. vol. 21. pp. 755–763. 2021.
  • C. Du, M. Andersson, and S. Andersson, “Effects of nozzle geometry on the characteristics of an evaporating diesel spray.” SAE Int. J. Fuels Lubr.. vol. 9. no. 3. pp. 493–513. 2016.
  • M. H. H. Ishak, F. Ismail, S. C. Mat, M. Z. Abdullah, M. S. Abdul Aziz, and M. Y. Idroas, “Numerical analysis of nozzle flow and spray characteristics from different nozzles using diesel and biofuel blends.” Energies. vol. 12. no. 2. p. 281. 2019.
  • F. Wang, Z. He, J. Liu, and Q. Wang, “Diesel nozzle geometries on spray characteristics with a spray model coupled with nozzle cavitating flow.” Int. J. Automot. Technol.. vol. 16. pp. 539–549. 2015.
  • X. Hu, H. Wang, Y. Liu, and J. Zhu, “Comparative analysis of spray performance between blade-structured and conventional twin-fluid nozzles using CFD.” Heliyon. vol. 11. no. 4. p. 107108. 2025.
  • T. Yilmaz, and M. Kaya, “Numerical investigation of atomization performance in pneumatic nozzles with aerofoil modifications.” Comput. Fluids. vol. 275. p. 107540. 2025.
  • L. Chen, Y. Zhang, and Q. Xu, “Coupled analysis of internal nozzle flow and external spray characteristics in diesel injectors.” Fuel Commun.. vol. 18. p. 100560. 2024.
  • J. Collazo, J. Porteiro, D. Patino, J. L. Miguez, E. Granada, and J. Moran, “Simulation and experimental validation of a methanol burner.” Fuel. vol. 88. no. 2. pp. 326–334. Feb. 2009.
  • M. Fogliati, D. Fontana, M. Garbero, M. Vanni, G. Baldi, and R. Donde, “CFD simulation of paint deposition in an air spray process.” J. Coat. Technol. Res.. vol. 3. pp. 117–125. Apr. 2006.
  • T. H. Shih, W. W. Liou, A. Shabbir. Z. Yang, and J. Zhu, “A new k-ε eddy viscosity model for high Reynolds number turbulent flows.” Comput. Fluids. vol. 24. no. 3. pp. 227–238. Mar. 1995.
  • P. K. Senecal, D. P. Schmidt, I. Nouar, C. J. Rutland, R. D. Reitz, and M. L. Corradini, “Modeling high-speed viscous liquid sheet atomization.” Int. J. Multiph. Flow. vol. 25. no. 6–7. pp. 1073–1097. Sep.–Nov. 1999.
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Gaz Dinamiği, Makine Mühendisliğinde Sayısal Yöntemler, Makine Mühendisliği (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Fuat Tan 0000-0002-4194-5591

Alp Eren Dede 0009-0009-5391-8695

Gönderilme Tarihi 4 Mart 2025
Kabul Tarihi 16 Haziran 2025
Yayımlanma Tarihi 20 Ekim 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 4 Sayı: 3

Kaynak Göster

APA Tan, F., & Dede, A. E. (2025). Computational Flow Analysis of the Aerodynamic Effects of Conical Nozzle Design in Spray Nozzles. Firat University Journal of Experimental and Computational Engineering, 4(3), 474-789. https://doi.org/10.62520/fujece.1651099
AMA 1.Tan F, Dede AE. Computational Flow Analysis of the Aerodynamic Effects of Conical Nozzle Design in Spray Nozzles. Firat University Journal of Experimental and Computational Engineering. 2025;4(3):474-789. doi:10.62520/fujece.1651099
Chicago Tan, Fuat, ve Alp Eren Dede. 2025. “Computational Flow Analysis of the Aerodynamic Effects of Conical Nozzle Design in Spray Nozzles”. Firat University Journal of Experimental and Computational Engineering 4 (3): 474-789. https://doi.org/10.62520/fujece.1651099.
EndNote Tan F, Dede AE (01 Ekim 2025) Computational Flow Analysis of the Aerodynamic Effects of Conical Nozzle Design in Spray Nozzles. Firat University Journal of Experimental and Computational Engineering 4 3 474–789.
IEEE [1]F. Tan ve A. E. Dede, “Computational Flow Analysis of the Aerodynamic Effects of Conical Nozzle Design in Spray Nozzles”, Firat University Journal of Experimental and Computational Engineering, c. 4, sy 3, ss. 474–789, Eki. 2025, doi: 10.62520/fujece.1651099.
ISNAD Tan, Fuat - Dede, Alp Eren. “Computational Flow Analysis of the Aerodynamic Effects of Conical Nozzle Design in Spray Nozzles”. Firat University Journal of Experimental and Computational Engineering 4/3 (01 Ekim 2025): 474-789. https://doi.org/10.62520/fujece.1651099.
JAMA 1.Tan F, Dede AE. Computational Flow Analysis of the Aerodynamic Effects of Conical Nozzle Design in Spray Nozzles. Firat University Journal of Experimental and Computational Engineering. 2025;4:474–789.
MLA Tan, Fuat, ve Alp Eren Dede. “Computational Flow Analysis of the Aerodynamic Effects of Conical Nozzle Design in Spray Nozzles”. Firat University Journal of Experimental and Computational Engineering, c. 4, sy 3, Ekim 2025, ss. 474-89, doi:10.62520/fujece.1651099.
Vancouver 1.Tan F, Dede AE. Computational Flow Analysis of the Aerodynamic Effects of Conical Nozzle Design in Spray Nozzles. Firat University Journal of Experimental and Computational Engineering [Internet]. 01 Ekim 2025;4(3):474-789. Erişim adresi: https://izlik.org/JA27ME86RR