Araştırma Makalesi
PDF BibTex RIS Kaynak Göster

SKLBP14: Kare çekirdekli yerel ikili modele dayalı yeni bir dokusal çevresel ses sınıflandırma modeli

Yıl 2023, Cilt: 2 Sayı: 2, 46 - 54, 14.06.2023
https://doi.org/10.5505/fujece.2023.03521

Öz

Günümüzde ileri-ileri (FF) algoritması, makine öğrenimi toplumunda çok popülerdir ve kare tabanlı bir aktivasyon işlevi
kullanır. Bu araştırmada, FF algoritmasından ilham aldık ve yerel ikili örüntü için yeni bir çekirdek sunduk ve bu, kare çekirdekli
yerel ikili örüntü (SKLBP) olarak adlandırıldı. Önerilen tek boyutlu SKLBP'yi konuşlandırarak, yeni bir özellik mühendisliği
modeli sunulmuştur. Önerilen SKLBP tabanlı modelin sınıflandırma yeteneğini ölçmek için, yeni bir dokusal çevresel ses
sınıflandırması (ESC) veri seti topladık. Toplanan veri seti dengeli bir veri seti olup 15 sınıf içermektedir. Her sınıfta 100 ses
vardır. Önerdiğimiz model derin öğrenme yapısını taklit etmiştir. Bu nedenle, ayrık dalgacık dönüşümü kullanarak çok düzeyli
öznitelik çıkarma metodolojisini kullanır. Oluşturulan özellikler, yinelemeli özellik seçicinin girdisi olarak kabul edilmiştir.
Seçilen öznitelik vektörü k en yakın komşu sınıflandırıcının girdisi olarak kullanılmıştır. Önerilen SKLBP tabanlı sinyal
sınıflandırma modeli, %90'ın üzerinde doğruluğa ulaştı. Bu bağlamda, yeni dokusal ESC veri setini toplayarak ve SKLBP tabanlı
ESC modelini önererek ESC metodolojisine katkıda bulunduk.

Kaynakça

  • [1] Demir K, Berna A, Demir F. "Detection of brain tumor with a pre-trained deep learning model based on feature selection using MR images". Firat University Journal of Experimental and Computational Engineering, 2(1), 23-31, 2023.
  • [2] Sevinç A, Özyurt F. "Classification of recyclable waste using deep learning architectures". Firat University Journal of Experimental and Computational Engineering, 1(3), 122-128, 2022.
  • [3] Matwin S, Kouznetsov A, Inkpen D, Frunza O, O'Blenis P. "A new algorithm for reducing the workload of experts in performing systematic reviews". Journal of the American Medical Informatics Association, 17(4), 446-453, 2010.
  • [4] Salamon J, Bello JP. "Deep convolutional neural networks and data augmentation for environmental sound classification". IEEE Signal processing letters, 24(3), 279-283, 2017.
  • [5] Abdoli S, Cardinal P, Koerich AL. "End-to-end environmental sound classification using a 1D convolutional neural network". Expert Systems with Applications, 136, 252-263, 2019.
  • [6] Okaba M, Tuncer T. "An automated location detection method in multi-storey buildings using environmental sound classification based on a new center symmetric nonlinear pattern: CS-LBlock-Pat". Automation in Construction, 125, 103645, 2021.
  • [7] Zhang Y, Zeng J, Li Y, Chen D. "Convolutional neural network-gated recurrent unit neural network with feature fusion for environmental sound classification". Automatic Control and Computer Sciences, 55, 311-318, 2021.
  • [8] Demir F, Abdullah DA, Sengur A. "A new deep CNN model for environmental sound classification". IEEE Access, 8, 66529-66537, 2020.
  • [9] Ojala T, Pietikainen M, Maenpaa T. "Multiresolution gray-scale and rotation invariant texture classification with local binary patterns". IEEE Transactions on pattern analysis and machine intelligence, 24(7), 971-987, 2002.
  • [10] Ahonen T, Hadid A, Pietikäinen M. "Face recognition with local binary patterns". in European conference on computer vision, 2004: Springer, 469-481.
  • [11] Hinton G. "The forward-forward algorithm: Some preliminary investigations". arXiv preprint arXiv:2212.13345, 2022.
  • [12] Kotsiopoulos T, Sarigiannidis P, Ioannidis D, Tzovaras D. "Machine learning and deep learning in smart manufacturing: The smart grid paradigm". Computer Science Review, 40, 100341, 2021.
  • [13] Hall O, Dompae F, Wahab I, Dzanku FM. "A review of machine learning and satellite imagery for poverty prediction: Implications for development research and applications". Journal of International Development, 2023.
  • [14] Tuncer T, Dogan S, Baygin M, Acharya UR. "Tetromino pattern based accurate EEG emotion classification model". Artificial Intelligence in Medicine, 123, 102210, 2022.
  • [15] Tuncer T, Dogan S, Pławiak P, Acharya UR, "Automated arrhythmia detection using novel hexadecimal local pattern and multilevel wavelet transform with ECG signals". Knowledge-Based Systems, 186, 104923, 2019.
  • [16] Tuncer T, Dogan S, Özyurt F, Belhaouari SB, Bensmail H. "Novel Multi Center and Threshold Ternary Pattern Based Method for Disease Detection Method Using Voice". IEEE Access, 8, 84532-84540, 2020.
  • [17] L. E. Peterson, "K-nearest neighbor," Scholarpedia, vol. 4, no. 2, p. 1883, 2009.
  • [18] Maillo J, Ramírez S, Triguero I, Herrera F. "kNN-IS: An Iterative Spark-based design of the k-Nearest Neighbors classifier for big data". Knowledge-Based Systems, 117, 3-15, 2017.
  • [19] Carrington AM. et al. "Deep ROC analysis and AUC as balanced average accuracy, for improved classifier selection, audit and explanation". IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(1), 329-341, 2022.
  • [20] Powers DM. "Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation". arXiv preprint arXiv:2010.16061, 2020.

SKLBP14: A new textural environmental sound classification model based on a squarekernelled local binary pattern

Yıl 2023, Cilt: 2 Sayı: 2, 46 - 54, 14.06.2023
https://doi.org/10.5505/fujece.2023.03521

Öz

Nowadays, the forward-forward (FF) algorithm is very popular in the machine learning society, and it uses a square-based activation
function. In this research, we inspired the FF algorithm and presented a new kernel for a local binary pattern named square-kernelled
local binary pattern (SKLBP). By deploying the proposed one-dimensional SKLBP, a new feature engineering model has been
presented. To measure the classification ability of the proposed SKLBP-based model, we have collected a new textural environmental
sound classification (ESC) dataset. The collected dataset is a balanced dataset, and it contains 15 classes. There are 100 sounds in each
class. Our proposed model has mimicked the deep learning structure. Therefore, it uses multileveled feature extraction methodology
by using discrete wavelet transform. The features generated have been considered as input for the iterative feature selector. The chosen
feature vector has been utilized as input of the k nearest neighbor classifier. The proposed SKLBP-based signal classification model
reached 94% classification accuracy. In this aspect, we contributed to the ESC methodology by collecting the new textural ESC dataset
and proposing the SKLBP-based ESC model.

Kaynakça

  • [1] Demir K, Berna A, Demir F. "Detection of brain tumor with a pre-trained deep learning model based on feature selection using MR images". Firat University Journal of Experimental and Computational Engineering, 2(1), 23-31, 2023.
  • [2] Sevinç A, Özyurt F. "Classification of recyclable waste using deep learning architectures". Firat University Journal of Experimental and Computational Engineering, 1(3), 122-128, 2022.
  • [3] Matwin S, Kouznetsov A, Inkpen D, Frunza O, O'Blenis P. "A new algorithm for reducing the workload of experts in performing systematic reviews". Journal of the American Medical Informatics Association, 17(4), 446-453, 2010.
  • [4] Salamon J, Bello JP. "Deep convolutional neural networks and data augmentation for environmental sound classification". IEEE Signal processing letters, 24(3), 279-283, 2017.
  • [5] Abdoli S, Cardinal P, Koerich AL. "End-to-end environmental sound classification using a 1D convolutional neural network". Expert Systems with Applications, 136, 252-263, 2019.
  • [6] Okaba M, Tuncer T. "An automated location detection method in multi-storey buildings using environmental sound classification based on a new center symmetric nonlinear pattern: CS-LBlock-Pat". Automation in Construction, 125, 103645, 2021.
  • [7] Zhang Y, Zeng J, Li Y, Chen D. "Convolutional neural network-gated recurrent unit neural network with feature fusion for environmental sound classification". Automatic Control and Computer Sciences, 55, 311-318, 2021.
  • [8] Demir F, Abdullah DA, Sengur A. "A new deep CNN model for environmental sound classification". IEEE Access, 8, 66529-66537, 2020.
  • [9] Ojala T, Pietikainen M, Maenpaa T. "Multiresolution gray-scale and rotation invariant texture classification with local binary patterns". IEEE Transactions on pattern analysis and machine intelligence, 24(7), 971-987, 2002.
  • [10] Ahonen T, Hadid A, Pietikäinen M. "Face recognition with local binary patterns". in European conference on computer vision, 2004: Springer, 469-481.
  • [11] Hinton G. "The forward-forward algorithm: Some preliminary investigations". arXiv preprint arXiv:2212.13345, 2022.
  • [12] Kotsiopoulos T, Sarigiannidis P, Ioannidis D, Tzovaras D. "Machine learning and deep learning in smart manufacturing: The smart grid paradigm". Computer Science Review, 40, 100341, 2021.
  • [13] Hall O, Dompae F, Wahab I, Dzanku FM. "A review of machine learning and satellite imagery for poverty prediction: Implications for development research and applications". Journal of International Development, 2023.
  • [14] Tuncer T, Dogan S, Baygin M, Acharya UR. "Tetromino pattern based accurate EEG emotion classification model". Artificial Intelligence in Medicine, 123, 102210, 2022.
  • [15] Tuncer T, Dogan S, Pławiak P, Acharya UR, "Automated arrhythmia detection using novel hexadecimal local pattern and multilevel wavelet transform with ECG signals". Knowledge-Based Systems, 186, 104923, 2019.
  • [16] Tuncer T, Dogan S, Özyurt F, Belhaouari SB, Bensmail H. "Novel Multi Center and Threshold Ternary Pattern Based Method for Disease Detection Method Using Voice". IEEE Access, 8, 84532-84540, 2020.
  • [17] L. E. Peterson, "K-nearest neighbor," Scholarpedia, vol. 4, no. 2, p. 1883, 2009.
  • [18] Maillo J, Ramírez S, Triguero I, Herrera F. "kNN-IS: An Iterative Spark-based design of the k-Nearest Neighbors classifier for big data". Knowledge-Based Systems, 117, 3-15, 2017.
  • [19] Carrington AM. et al. "Deep ROC analysis and AUC as balanced average accuracy, for improved classifier selection, audit and explanation". IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(1), 329-341, 2022.
  • [20] Powers DM. "Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation". arXiv preprint arXiv:2010.16061, 2020.

Ayrıntılar

Birincil Dil İngilizce
Konular Bilgisayar Yazılımı
Bölüm Research Articles
Yazarlar

Arif Metehan YILDIZ Bu kişi benim
Bir kuruma bağlı değildir
0000-0002-9512-6620
Türkiye


Mehmet Veysel GUN Bu kişi benim
FIRAT ÜNİVERSİTESİ
0000-0002-9512-6620
Türkiye


Kubra YILDIRIM Bu kişi benim
FIRAT ÜNİVERSİTESİ
0000-0002-4738-2777
Türkiye


Tugce KELES Bu kişi benim
FIRAT ÜNİVERSİTESİ
0000-0003-0131-2826
Türkiye


Sengul DOGAN Bu kişi benim
FIRAT ÜNİVERSİTESİ
0000-0001-9677-5684
Türkiye


Turker TUNCER Bu kişi benim
FIRAT ÜNİVERSİTESİ
0000-0002-5126-6445
Türkiye


U. Rajendra ACHARYA Bu kişi benim
University of Southern Queensland
0000-0003-2689-8552
Australia

Yayımlanma Tarihi 14 Haziran 2023
Kabul Tarihi 22 Mart 2023
Yayınlandığı Sayı Yıl 2023 Cilt: 2 Sayı: 2

Kaynak Göster

Bibtex @araştırma makalesi { fujece1317563, journal = {Firat University Journal of Experimental and Computational Engineering}, eissn = {2822-2881}, address = {Fırat Üniversitesi Mühendislik Fakültesi Deneysel ve Hesaplamalı Mühendislik Dergisi Yayın Koordinatörlüğü 23119 Elazığ/TÜRKİYE}, publisher = {Fırat Üniversitesi}, year = {2023}, volume = {2}, number = {2}, pages = {46 - 54}, doi = {10.5505/fujece.2023.03521}, title = {SKLBP14: A new textural environmental sound classification model based on a squarekernelled local binary pattern}, key = {cite}, author = {Yıldız, Arif Metehan and Gun, Mehmet Veysel and Yıldırım, Kubra and Keles, Tugce and Dogan, Sengul and Tuncer, Turker and Acharya, U. Rajendra} }
APA Yıldız, A. M. , Gun, M. V. , Yıldırım, K. , Keles, T. , Dogan, S. , Tuncer, T. & Acharya, U. R. (2023). SKLBP14: A new textural environmental sound classification model based on a squarekernelled local binary pattern . Firat University Journal of Experimental and Computational Engineering , 2 (2) , 46-54 . DOI: 10.5505/fujece.2023.03521
MLA Yıldız, A. M. , Gun, M. V. , Yıldırım, K. , Keles, T. , Dogan, S. , Tuncer, T. , Acharya, U. R. "SKLBP14: A new textural environmental sound classification model based on a squarekernelled local binary pattern" . Firat University Journal of Experimental and Computational Engineering 2 (2023 ): 46-54 <https://dergipark.org.tr/tr/pub/fujece/issue/78053/1317563>
Chicago Yıldız, A. M. , Gun, M. V. , Yıldırım, K. , Keles, T. , Dogan, S. , Tuncer, T. , Acharya, U. R. "SKLBP14: A new textural environmental sound classification model based on a squarekernelled local binary pattern". Firat University Journal of Experimental and Computational Engineering 2 (2023 ): 46-54
RIS TY - JOUR T1 - SKLBP14: Kare çekirdekli yerel ikili modele dayalı yeni bir dokusal çevresel ses sınıflandırma modeli AU - Arif MetehanYıldız, Mehmet VeyselGun, KubraYıldırım, TugceKeles, SengulDogan, TurkerTuncer, U. RajendraAcharya Y1 - 2023 PY - 2023 N1 - doi: 10.5505/fujece.2023.03521 DO - 10.5505/fujece.2023.03521 T2 - Firat University Journal of Experimental and Computational Engineering JF - Journal JO - JOR SP - 46 EP - 54 VL - 2 IS - 2 SN - -2822-2881 M3 - doi: 10.5505/fujece.2023.03521 UR - https://doi.org/10.5505/fujece.2023.03521 Y2 - 2023 ER -
EndNote %0 Firat University Journal of Experimental and Computational Engineering SKLBP14: A new textural environmental sound classification model based on a squarekernelled local binary pattern %A Arif Metehan Yıldız , Mehmet Veysel Gun , Kubra Yıldırım , Tugce Keles , Sengul Dogan , Turker Tuncer , U. Rajendra Acharya %T SKLBP14: A new textural environmental sound classification model based on a squarekernelled local binary pattern %D 2023 %J Firat University Journal of Experimental and Computational Engineering %P -2822-2881 %V 2 %N 2 %R doi: 10.5505/fujece.2023.03521 %U 10.5505/fujece.2023.03521
ISNAD Yıldız, Arif Metehan , Gun, Mehmet Veysel , Yıldırım, Kubra , Keles, Tugce , Dogan, Sengul , Tuncer, Turker , Acharya, U. Rajendra . "SKLBP14: A new textural environmental sound classification model based on a squarekernelled local binary pattern". Firat University Journal of Experimental and Computational Engineering 2 / 2 (Haziran 2023): 46-54 . https://doi.org/10.5505/fujece.2023.03521
AMA Yıldız A. M. , Gun M. V. , Yıldırım K. , Keles T. , Dogan S. , Tuncer T. , Acharya U. R. SKLBP14: A new textural environmental sound classification model based on a squarekernelled local binary pattern. FUJECE. 2023; 2(2): 46-54.
Vancouver Yıldız A. M. , Gun M. V. , Yıldırım K. , Keles T. , Dogan S. , Tuncer T. , Acharya U. R. SKLBP14: A new textural environmental sound classification model based on a squarekernelled local binary pattern. Firat University Journal of Experimental and Computational Engineering. 2023; 2(2): 46-54.
IEEE A. M. Yıldız , M. V. Gun , K. Yıldırım , T. Keles , S. Dogan , T. Tuncer ve U. R. Acharya , "SKLBP14: A new textural environmental sound classification model based on a squarekernelled local binary pattern", Firat University Journal of Experimental and Computational Engineering, c. 2, sayı. 2, ss. 46-54, Haz. 2023, doi:10.5505/fujece.2023.03521