Araştırma Makalesi
BibTex RIS Kaynak Göster

Simulation of the Collapse Mechanism of a Minaret under the Effect of Strong Wind

Yıl 2024, Cilt: 3 Sayı: 3, 292 - 312, 31.10.2024
https://doi.org/10.62520/fujece.1460766

Öz

In this study, the collapse mechanism of a destroyed minaret under strong wind influence was simulated to understand such structural interactions and identify potential risky regions. Wind profiles were defined according to Eurocode and Turkish Standards and were used in Computational Fluid Dynamics analyses. The pressure and suction stresses obtained with these wind analyses were applied on the minaret’s surface with Abaqus and the nonlinear finite element analyses were performed. As a result of the numerical analyses, displacements, stresses, plastic strains, and damages were obtained and results were comparatively presented. The results obtained with both standards are quite close and top displacements exceed the limit value specified in the Italian Building Code and Eurocode 8. Besides, many mesh elements in the minaret’s transition segment were damaged with tension stresses in nonlinear finite element analyses. Finally, the minaret’s failure behaviour was successfully simulated with the used methods.

Kaynakça

  • K. R. C. Reddy, O. R. Jaiswal, and P. N. Godbole, "Wind and earthquake analysis of tall RC chimneys," Int. J. Earth Sci. Eng., vol. 4, no. 6, pp. 508–511, 2011.
  • Z. Karaca and E. Türkeli, "Determination and comparison of wind loads for industrial reinforced concrete chimneys," Struct. Des. Tall Spec. Build., vol. 21, no. 2, pp. 133–154, 2012.
  • Eurocode-1, "Actions on Structures/General Actions, Part 1-4: Wind Actions," CEN/TC 250, Management Centre, Brussels, 2005.
  • S. M. Spence and M. Gioffrè, "Large scale reliability-based design optimization of wind excited tall buildings," Probabilistic Eng. Mech., vol. 28, pp. 206–215, 2012.
  • E. Bernardini, S. M. Spence, and A. Kareem, "A probabilistic approach for the full response estimation of tall buildings with 3D modes using the HFFB," Struct. Saf., vol. 44, pp. 91–101, 2013.
  • D. T. Resio, J. L. Irish, J. J. Westerink, and N. J. Powell, "The effect of uncertainty on estimates of hurricane surge hazards," Nat. Hazards, vol. 66, no. 3, pp. 1443–1459, 2013.
  • L. Caracoglia, "A stochastic model for examining along-wind loading uncertainty and intervention costs due to wind-induced damage on tall buildings," Eng. Struct., vol. 78, pp. 121–132, 2014.
  • A. Suryawanshi and D. Ghosh, "Wind speed prediction using spatio-temporal covariance," Nat. Hazards, vol. 75, no. 2, pp. 1435–1449, 2015.
  • Q. S. Li, Y. Q. Xiao, J. Y. Fu, and Z. N. Li, "Full-scale measurements of wind effects on the Jin Mao building," J. Wind Eng. Ind. Aerodyn., vol. 95, no. 6, pp. 445–466, 2007.
  • R. Merrick and G. Bitsuamlak, "Shape effects on the wind-induced response of high-rise buildings," J. Wind Eng., vol. 6, no. 2, pp. 1–18, 2009.
  • A. M. Aly, A. Zasso, and F. Resta, "Tall buildings under multidirectional winds: response prediction and reduction," Wind Tunn. Exp. Fluid Dyn. Res., p. 301, 2011.
  • Z. Yang, P. Sarkar, and H. Hu, "An experimental study of a high-rise building model in tornado-like winds," J. Fluids Struct., vol. 27, no. 4, pp. 471–486, 2011.
  • K. M. Heiza and M. A. Tayel, "Comparative study of the effects of wind and earthquake loads on high-rise buildings," Concr. Res. Lett., vol. 3, no. 1, pp. 386–405, 2012.
  • D. K. Kwon and A. Kareem, "Comparative study of major international wind codes and standards for wind effects on tall buildings," Eng. Struct., vol. 51, pp. 23–35, 2013.
  • Z. Ouyang and S. M. Spence, "Performance-based wind-induced structural and envelope damage assessment of engineered buildings through nonlinear dynamic analysis," J. Wind Eng. Ind. Aerodyn., vol. 208, p. 104452, 2021.
  • H. Nohutcu, A. Demir, E. Ercan, E. Hokelekli, and G. Altintas, "Investigation of a historic masonry structure by numerical and operational modal analyses," Struct. Des. Tall Spec. Build., vol. 24, no. 13, pp. 821–834, 2015.
  • A. Demir, H. Nohutcu, E. Ercan, E. Hokelekli, and G. Altintas, "Effect of model calibration on seismic behaviour of a historical mosque," Struct. Eng. Mech., vol. 60, no. 5, pp. 749–760, 2016.
  • H. Sezen, R. Acar, A. Dogangun, and R. Livaoglu, "Dynamic analysis and seismic performance of reinforced concrete minarets," Eng. Struct., vol. 30, no. 8, pp. 2253–2264, 2008.
  • A. Doğangün, R. Acar, R. Livaoğlu, and Ö. İ. Tuluk, "Performance of masonry minarets against earthquakes and winds in Turkey," in Proceedings of the 1st International Conference on Restoration of Heritage Masonry Structures, April, 2006, pp. 24–27.
  • E. M. Higazy, "Vulnerability of historical minarets; investigation of their seismic assessment & retrofitting," Emir. J. Eng. Res., vol. 9, no. 2, pp. 59–64, 2004.
  • A. G. El-Attar, A. M. Saleh, and A. H. Zaghw, "Conservation of a slender historical Mamluk-style minaret by passive control techniques," Struct. Control Health Monit. Off. J. Int. Assoc. Struct. Control Monit. Eur. Assoc. Control Struct., vol. 12, no. 2, pp. 157–177, 2005.
  • A. Dogangun, R. Acar, H. Sezen, and R. Livaoglu, "Investigation of dynamic response of masonry minaret structures," Bull. Earthq. Eng., vol. 6, no. 3, pp. 505–517, 2008.
  • A. Bayraktar, A. C. Altunişik, B. Sevim, and T. Türker, "Seismic response of a historical masonry minaret using a finite element model updated with operational modal testing," J. Vib. Control, vol. 17, no. 1, pp. 129–149, 2011.
  • F. Portioli et al., "Seismic retrofitting of Mustafa Pasha Mosque in Skopje: finite element analysis," J. Earthq. Eng., vol. 15, no. 4, pp. 620–639, 2011.
  • Y. Calayır, E. Sayın, and B. Yön, "Performance of structures in the rural area during the March 8, 2010 Elazığ-Kovancılar earthquake," Nat. Hazards, vol. 61, no. 2, pp. 703–717, 2012.
  • A. Bayraktar, A. C. Altunişik, and M. Muvafik, "Damages of minarets during Erciş and Edremit earthquakes, 2011 in Turkey," 2014.
  • M. Muvafik, "Field investigation and seismic analysis of a historical brick masonry minaret damaged during the Van Earthquakes in 2011," Earthq. Struct., vol. 6, no. 5, pp. 457–472, 2014.
  • H. Nohutcu, E. Hokelekli, E. Ercan, A. Demir, and G. Altintas, "Collapse mechanism estimation of a historical slender minaret," Struct. Eng. Mech., vol. 64, no. 5, pp. 653–660, 2017.
  • H. Nohutcu, "Seismic Failure Pattern Prediction in a Historical Masonry Minaret under Different Earthquakes," Adv. Civ. Eng., vol. 2019, 2019.
  • A. Bayraktar and E. Hökelekli, "Influences of earthquake input models on nonlinear seismic performances of minaret-foundation-soil interaction systems," Soil Dyn. Earthq. Eng., vol. 139, p. 106368, 2020.
  • T. Y. Altiok and A. Demir, "Collapse mechanism estimation of a historical masonry minaret considered soil-structure interaction," Earthq. Struct., vol. 21, no. 2, pp. 161–172, 2021.
  • A. Demir and T. Y. Altıok, "Numerical assessment of a slender structure damaged during October 30, 2020, İzmir earthquake in Turkey," Bull. Earthq. Eng., pp. 1–26, 2021.
  • T. Y. Altıok and A. Demir, "Seismic damage assessment of a historical masonry minaret considering soil-structure interaction," J. Struct. Eng. Appl. Mech., vol. 4, no. 3, pp. 196–212, Sep. 2021.
  • E. Ercan, B. Arisoy, E. Hökelekli, and A. Nuhoğlu, "Estimation of seismic damage propagation in a historical masonry minaret," Sigma J. Eng. Nat. Sci. Ve Fen Bilim. Derg., vol. 35, no. 4, 2017.
  • A. Bayraktar and E. Hökelekli, "Influences of earthquake input models on nonlinear seismic performances of minaret-foundation-soil interaction systems," Soil Dyn. Earthq. Eng., vol. 139, p. 106368, 2020.
  • B. R. Hughes and S. A. A. Abdul Ghani, "A numerical investigation into the effect of windvent dampers on operating conditions," Build. Environ., vol. 44, no. 2, pp. 237–248, Feb. 2009.
  • S. Liu, C. M. Mak, and J. Niu, "Numerical evaluation of louver configuration and ventilation strategies for the windcatcher system," Build. Environ., vol. 46, no. 8, pp. 1600–1616, Aug. 2011.
  • H. Montazeri, "Experimental and numerical study on natural ventilation performance of various multi-opening wind catchers," Build. Environ., vol. 46, no. 2, pp. 370–378, Feb. 2011.
  • B. R. Hughes, J. K. Calautit, and S. A. Ghani, "The development of commercial wind towers for natural ventilation: A review," Appl. Energy, vol. 92, pp. 606–627, Apr. 2012.
  • O. Saadatian, L. C. Haw, K. Sopian, and M. Y. Sulaiman, "Review of windcatcher technologies," Renew. Sustain. Energy Rev., vol. 16, no. 3, pp. 1477–1495, Apr. 2012.
  • B. M. Jones and R. Kirby, "Quantifying the performance of a top–down natural ventilation Windcatcher," Build. Environ., vol. 44, no. 9, pp. 1925–1934, Sep. 2009.
  • A. A. Elmualim, "Effect of damper and heat source on wind catcher natural ventilation performance," Energy Build., vol. 38, no. 8, pp. 939–948, Aug. 2006.
  • Y. Su, S. B. Riffat, Y.-L. Lin, and N. Khan, "Experimental and CFD study of ventilation flow rate of a Monodraught™ windcatcher," Energy Build., vol. 40, no. 6, pp. 1110–1116, Jan. 2008.
  • A. Ural, A. Dogangun, and S. Meraki, "Response evaluation of historical crooked minaret under wind and earthquake loadings," Wind Struct., vol. 17, no. 3, pp. 345–359, 2013.
  • A. Ural and F. K. Firat, "Evaluation of masonry minarets collapsed by a strong wind under uncertainty," Nat. Hazards, vol. 76, no. 2, pp. 999–1018, Mar. 2015.
  • R. Reşatoğlu, T. Mirata, and L. Karaker, "Earthquake and wind load effects on existing RC minarets in north Cyprus," Int. J. Eng. Technol., vol. 7, no. 4, pp. 3074–3085, 2018.
  • M. A. Adam, T. S. El-Salakawy, M. A. Salama, and A. A. Mohamed, "Assessment of structural condition of a historic masonry minaret in Egypt," Case Stud. Constr. Mater., vol. 13, p. e00409, Dec. 2020.
  • E. Türkeli, "Dynamic Seismic and Wind Response of Masonry Minarets," Period. Polytech. Civ. Eng., vol. 64, no. 2, pp. 353–369, 2020.
  • M. Pouraminian, "Multi-hazard reliability assessment of historical brick minarets," J. Build. Pathol. Rehabil., vol. 7, no. 1, p. 10, Dec. 2021.
  • A. H. Al-Zuhairi, A. R. Ahmed, and S. R. Al-Zaidee, "Numerical Analysis of Historical Masonry Minaret Subjected to Wind Load," in Geotechnical Engineering and Sustainable Construction, M. O. Karkush and D. Choudhury, Eds., Singapore: Springer, 2022, pp. 545–555.
  • H. H. Awad and M. Desouki, "Integrating physical experiments with computational fluid dynamics to transform mosque minarets into efficient solar chimneys," Sci. Rep., vol. 14, no. 1, p. 9721, Apr. 2024.
  • Turkish Standard Institute, Turkish Standard, TS498: The Calculation Values of Loads used in Designing Structural Elements, Ankara, Turkey, 1997.
  • Dlubal Software, RWIND-Simulation Generation of WindInduced Loads on General Models: User Manual, October 2020. Available at: https://www.dlubal.com/en/downloads-and-information/documents/online-manuals/rwindsimulation-1/01/01.
  • Dassault Systemes Simulia Corp., Abaqus v10, Providence, Rhode Island, USA, 2010.
  • NTV Haber, http://arsiv.ntv.com.tr/news/120847.asp (accessed 29/10/2021).
  • Hürriyet, http://www.hurriyetim.com.tr/haber/ (accessed 27/02/2002).
  • Milliyet, "http://www.milliyet.com.tr/2003/02/09/guncel/gun15.html" (accessed 09/02/2003).
  • Hürriyet, "http://www.hurriyetim.com.tr/haber/0" (accessed 24/07/2005).
  • Haberler.com, "https://www.haberler.com/22-yillik-caminin-minaresi-yikildi-haberi/" (accessed 22/09/2019).
  • Cumhuriyet, "http://www.cumhuriyet.com.tr" (accessed 10/04/2015).
  • Haberler.com,"https://www.haberler.com/ordu-da-57-metrelik-minare-siddetli-ruzgarda-8074105-haberi/" (accessed 22/09/2019).
  • Ajans Niğde, (2021). “http://www.ajansnigde.com/nigdede-cami-minaresi-yikildi_d89720.html” (erişim tarihi: 29/11/2021).
  • Ankara Masası, (2021). “https://www.ankaramasasi.com/haber/1053206/aydinda-siddetli-ruzgar-minareyi-yikti-o-anlar-kamerada” (erişim tarihi: 29/11/2021).
  • Türkiye Building Seismic Code-2018, Ankara, Türkiye.
  • J. Lubliner, J. Oliver, S. Oller, and Ejij. Onate, ‘A plastic-damage model for concrete’, Int. J. Solids Struct., vol. 25, no. 3, pp. 299–326, 1989.
  • J. Lee and G. L. Fenves, ‘Plastic-damage model for cyclic loading of concrete structures’, J. Eng. Mech., vol. 124, no. 8, pp. 892–900, 1998.
  • M. Resta, A. Fiore, and P. Monaco, ‘Non-linear finite element analysis of masonry towers by adopting the damage plasticity constitutive model’, Adv. Struct. Eng., vol. 16, no. 5, pp. 791–803, 2013.
  • M. Valente and G. Milani, ‘Non-linear dynamic and static analyses on eight historical masonry towers in the North-East of Italy’, Eng. Struct., vol. 114, pp. 241–270, 2016.
  • M. Valente and G. Milani, ‘Damage assessment and collapse investigation of three historical masonry palaces under seismic actions’, Eng. Fail. Anal., vol. 98, pp. 10–37, 2019.
  • E. Hökelekli and A. Al-Helwani, ‘Effect of soil properties on the seismic damage assessment of historical masonry minaret–soil interaction systems’, Struct. Des. Tall Spec. Build., vol. 29, no. 2, p. e1694, 2020.
  • E. Hökelekli, A. Demir, E. Ercan, H. Nohutçu, and A. Karabulut, ‘Seismic Assessment in a Historical Masonry Minaret by Linear and Non-linear Seismic Analyses’, Period. Polytech. Civ. Eng., vol. 64, no. 2, pp. 438–448, 2020.
  • T. Y. Altıok and A. Demir, ‘Collapse mechanism estimation of a historical masonry minaret considered soil-structure interaction’, Earthq. Struct., vol. 21, no. 2, pp. 161–172, 2021.
  • R. Nayal and H. A. Rasheed, ‘Tension stiffening model for concrete beams reinforced with steel and FRP bars’, J. Mater. Civ. Eng., vol. 18, no. 6, pp. 831–841, 2006.
  • B. Wahalathantri, D. Thambiratnam, T. Chan, and S. Fawzia, ‘A material model for flexural crack simulation in reinforced concrete elements using ABAQUS’, in Proceedings of the first international conference on engineering, designing and developing the built environment for sustainable wellbeing, Queensland University of Technology, 2011, pp. 260–264.
  • R. I. Gilbert and R. F. Warner, ‘Tension stiffening in reinforced concrete slabs’, J. Struct. Div., vol. 104, no. 12, pp. 1885–1900, 1978.
  • A. S. Genikomsou and M. A. Polak, ‘Finite element analysis of punching shear of concrete slabs using damaged plasticity model in ABAQUS’, Eng. Struct., vol. 98, pp. 38–48, 2015.
  • Italian Public Works Council. (2019). “Guidelines for Application of Italian Building Code; Istituto Poligrafico e Zecca dello Stato”, Roma, Italy.
  • Eurocode 8. (2005). “Design of Structures for Earthquake Resistance—Part 3: Assessment and Retrofitting of Buildings”. CEN: Brussels, Belgium.
  • A. Demir and T. Y. Altıok, ‘Numerical assessment of a slender structure damaged during October 30, 2020, İzmir earthquake in Turkey’, Bull. Earthq. Eng., vol. 19, no. 14, pp. 5871–5896, 2021.
  • T. Y. Altıok and A. Demir, ‘Seismic damage assessment of a historical masonry minaret considering soil-structure interaction’, J. Struct. Eng. Appl. Mech., vol. 4, no. 3, pp. 196–212, Sep. 2021.

Kuvvetli Rüzgar Etkisindeki Minarenin Göçme Mekanizmasının Simülasyonu

Yıl 2024, Cilt: 3 Sayı: 3, 292 - 312, 31.10.2024
https://doi.org/10.62520/fujece.1460766

Öz

Bu çalışmada, kuvvetli rüzgar etkisi altında göçen bir minarenin göçme mekanizması simüle edilerek, bu tür yapısal etkileşimlerin anlaşılması ve potansiyel riskli bölgelerin tespiti hedeflenmiştir. Rüzgar profilleri Eurocode ve Türk Standartları'na göre tanımlanmış ve Hesaplamalı Akışkanlar Dinamiği analizlerinde kullanılmıştır. Analizlerden elde edilen basınç ve emme gerilmeleri, Abaqus/Cae programında ilgili minare yüzeyine uygulanmış ve doğrusal olmayan sonlu eleman analizleri gerçekleştirilmiştir. Nümerik analizler sonucunda yer değiştirmeler, gerilmeler, plastik şekil değiştirmeler ve hasarlar elde edilmiş ve sonuçlar karşılaştırmalı olarak sunulmuştur. Her iki standartla elde edilen sonuçlar oldukça yakın olup, tepe yer değiştirmeleri İtalyan Yapı Kodu ve Eurocode 8'de belirtilen limit değerlerini aşmaktadır. Ayrıca, minarenin geçiş segmentindeki birçok ağ elemanı doğrusal olmayan sonlu eleman analizlerinde çekme gerilmeleri nedeniyle hasar görmüştür. Son olarak, minarenin göçme davranışı kullanılan yöntemlerle başarıyla simüle edilmiştir.

Kaynakça

  • K. R. C. Reddy, O. R. Jaiswal, and P. N. Godbole, "Wind and earthquake analysis of tall RC chimneys," Int. J. Earth Sci. Eng., vol. 4, no. 6, pp. 508–511, 2011.
  • Z. Karaca and E. Türkeli, "Determination and comparison of wind loads for industrial reinforced concrete chimneys," Struct. Des. Tall Spec. Build., vol. 21, no. 2, pp. 133–154, 2012.
  • Eurocode-1, "Actions on Structures/General Actions, Part 1-4: Wind Actions," CEN/TC 250, Management Centre, Brussels, 2005.
  • S. M. Spence and M. Gioffrè, "Large scale reliability-based design optimization of wind excited tall buildings," Probabilistic Eng. Mech., vol. 28, pp. 206–215, 2012.
  • E. Bernardini, S. M. Spence, and A. Kareem, "A probabilistic approach for the full response estimation of tall buildings with 3D modes using the HFFB," Struct. Saf., vol. 44, pp. 91–101, 2013.
  • D. T. Resio, J. L. Irish, J. J. Westerink, and N. J. Powell, "The effect of uncertainty on estimates of hurricane surge hazards," Nat. Hazards, vol. 66, no. 3, pp. 1443–1459, 2013.
  • L. Caracoglia, "A stochastic model for examining along-wind loading uncertainty and intervention costs due to wind-induced damage on tall buildings," Eng. Struct., vol. 78, pp. 121–132, 2014.
  • A. Suryawanshi and D. Ghosh, "Wind speed prediction using spatio-temporal covariance," Nat. Hazards, vol. 75, no. 2, pp. 1435–1449, 2015.
  • Q. S. Li, Y. Q. Xiao, J. Y. Fu, and Z. N. Li, "Full-scale measurements of wind effects on the Jin Mao building," J. Wind Eng. Ind. Aerodyn., vol. 95, no. 6, pp. 445–466, 2007.
  • R. Merrick and G. Bitsuamlak, "Shape effects on the wind-induced response of high-rise buildings," J. Wind Eng., vol. 6, no. 2, pp. 1–18, 2009.
  • A. M. Aly, A. Zasso, and F. Resta, "Tall buildings under multidirectional winds: response prediction and reduction," Wind Tunn. Exp. Fluid Dyn. Res., p. 301, 2011.
  • Z. Yang, P. Sarkar, and H. Hu, "An experimental study of a high-rise building model in tornado-like winds," J. Fluids Struct., vol. 27, no. 4, pp. 471–486, 2011.
  • K. M. Heiza and M. A. Tayel, "Comparative study of the effects of wind and earthquake loads on high-rise buildings," Concr. Res. Lett., vol. 3, no. 1, pp. 386–405, 2012.
  • D. K. Kwon and A. Kareem, "Comparative study of major international wind codes and standards for wind effects on tall buildings," Eng. Struct., vol. 51, pp. 23–35, 2013.
  • Z. Ouyang and S. M. Spence, "Performance-based wind-induced structural and envelope damage assessment of engineered buildings through nonlinear dynamic analysis," J. Wind Eng. Ind. Aerodyn., vol. 208, p. 104452, 2021.
  • H. Nohutcu, A. Demir, E. Ercan, E. Hokelekli, and G. Altintas, "Investigation of a historic masonry structure by numerical and operational modal analyses," Struct. Des. Tall Spec. Build., vol. 24, no. 13, pp. 821–834, 2015.
  • A. Demir, H. Nohutcu, E. Ercan, E. Hokelekli, and G. Altintas, "Effect of model calibration on seismic behaviour of a historical mosque," Struct. Eng. Mech., vol. 60, no. 5, pp. 749–760, 2016.
  • H. Sezen, R. Acar, A. Dogangun, and R. Livaoglu, "Dynamic analysis and seismic performance of reinforced concrete minarets," Eng. Struct., vol. 30, no. 8, pp. 2253–2264, 2008.
  • A. Doğangün, R. Acar, R. Livaoğlu, and Ö. İ. Tuluk, "Performance of masonry minarets against earthquakes and winds in Turkey," in Proceedings of the 1st International Conference on Restoration of Heritage Masonry Structures, April, 2006, pp. 24–27.
  • E. M. Higazy, "Vulnerability of historical minarets; investigation of their seismic assessment & retrofitting," Emir. J. Eng. Res., vol. 9, no. 2, pp. 59–64, 2004.
  • A. G. El-Attar, A. M. Saleh, and A. H. Zaghw, "Conservation of a slender historical Mamluk-style minaret by passive control techniques," Struct. Control Health Monit. Off. J. Int. Assoc. Struct. Control Monit. Eur. Assoc. Control Struct., vol. 12, no. 2, pp. 157–177, 2005.
  • A. Dogangun, R. Acar, H. Sezen, and R. Livaoglu, "Investigation of dynamic response of masonry minaret structures," Bull. Earthq. Eng., vol. 6, no. 3, pp. 505–517, 2008.
  • A. Bayraktar, A. C. Altunişik, B. Sevim, and T. Türker, "Seismic response of a historical masonry minaret using a finite element model updated with operational modal testing," J. Vib. Control, vol. 17, no. 1, pp. 129–149, 2011.
  • F. Portioli et al., "Seismic retrofitting of Mustafa Pasha Mosque in Skopje: finite element analysis," J. Earthq. Eng., vol. 15, no. 4, pp. 620–639, 2011.
  • Y. Calayır, E. Sayın, and B. Yön, "Performance of structures in the rural area during the March 8, 2010 Elazığ-Kovancılar earthquake," Nat. Hazards, vol. 61, no. 2, pp. 703–717, 2012.
  • A. Bayraktar, A. C. Altunişik, and M. Muvafik, "Damages of minarets during Erciş and Edremit earthquakes, 2011 in Turkey," 2014.
  • M. Muvafik, "Field investigation and seismic analysis of a historical brick masonry minaret damaged during the Van Earthquakes in 2011," Earthq. Struct., vol. 6, no. 5, pp. 457–472, 2014.
  • H. Nohutcu, E. Hokelekli, E. Ercan, A. Demir, and G. Altintas, "Collapse mechanism estimation of a historical slender minaret," Struct. Eng. Mech., vol. 64, no. 5, pp. 653–660, 2017.
  • H. Nohutcu, "Seismic Failure Pattern Prediction in a Historical Masonry Minaret under Different Earthquakes," Adv. Civ. Eng., vol. 2019, 2019.
  • A. Bayraktar and E. Hökelekli, "Influences of earthquake input models on nonlinear seismic performances of minaret-foundation-soil interaction systems," Soil Dyn. Earthq. Eng., vol. 139, p. 106368, 2020.
  • T. Y. Altiok and A. Demir, "Collapse mechanism estimation of a historical masonry minaret considered soil-structure interaction," Earthq. Struct., vol. 21, no. 2, pp. 161–172, 2021.
  • A. Demir and T. Y. Altıok, "Numerical assessment of a slender structure damaged during October 30, 2020, İzmir earthquake in Turkey," Bull. Earthq. Eng., pp. 1–26, 2021.
  • T. Y. Altıok and A. Demir, "Seismic damage assessment of a historical masonry minaret considering soil-structure interaction," J. Struct. Eng. Appl. Mech., vol. 4, no. 3, pp. 196–212, Sep. 2021.
  • E. Ercan, B. Arisoy, E. Hökelekli, and A. Nuhoğlu, "Estimation of seismic damage propagation in a historical masonry minaret," Sigma J. Eng. Nat. Sci. Ve Fen Bilim. Derg., vol. 35, no. 4, 2017.
  • A. Bayraktar and E. Hökelekli, "Influences of earthquake input models on nonlinear seismic performances of minaret-foundation-soil interaction systems," Soil Dyn. Earthq. Eng., vol. 139, p. 106368, 2020.
  • B. R. Hughes and S. A. A. Abdul Ghani, "A numerical investigation into the effect of windvent dampers on operating conditions," Build. Environ., vol. 44, no. 2, pp. 237–248, Feb. 2009.
  • S. Liu, C. M. Mak, and J. Niu, "Numerical evaluation of louver configuration and ventilation strategies for the windcatcher system," Build. Environ., vol. 46, no. 8, pp. 1600–1616, Aug. 2011.
  • H. Montazeri, "Experimental and numerical study on natural ventilation performance of various multi-opening wind catchers," Build. Environ., vol. 46, no. 2, pp. 370–378, Feb. 2011.
  • B. R. Hughes, J. K. Calautit, and S. A. Ghani, "The development of commercial wind towers for natural ventilation: A review," Appl. Energy, vol. 92, pp. 606–627, Apr. 2012.
  • O. Saadatian, L. C. Haw, K. Sopian, and M. Y. Sulaiman, "Review of windcatcher technologies," Renew. Sustain. Energy Rev., vol. 16, no. 3, pp. 1477–1495, Apr. 2012.
  • B. M. Jones and R. Kirby, "Quantifying the performance of a top–down natural ventilation Windcatcher," Build. Environ., vol. 44, no. 9, pp. 1925–1934, Sep. 2009.
  • A. A. Elmualim, "Effect of damper and heat source on wind catcher natural ventilation performance," Energy Build., vol. 38, no. 8, pp. 939–948, Aug. 2006.
  • Y. Su, S. B. Riffat, Y.-L. Lin, and N. Khan, "Experimental and CFD study of ventilation flow rate of a Monodraught™ windcatcher," Energy Build., vol. 40, no. 6, pp. 1110–1116, Jan. 2008.
  • A. Ural, A. Dogangun, and S. Meraki, "Response evaluation of historical crooked minaret under wind and earthquake loadings," Wind Struct., vol. 17, no. 3, pp. 345–359, 2013.
  • A. Ural and F. K. Firat, "Evaluation of masonry minarets collapsed by a strong wind under uncertainty," Nat. Hazards, vol. 76, no. 2, pp. 999–1018, Mar. 2015.
  • R. Reşatoğlu, T. Mirata, and L. Karaker, "Earthquake and wind load effects on existing RC minarets in north Cyprus," Int. J. Eng. Technol., vol. 7, no. 4, pp. 3074–3085, 2018.
  • M. A. Adam, T. S. El-Salakawy, M. A. Salama, and A. A. Mohamed, "Assessment of structural condition of a historic masonry minaret in Egypt," Case Stud. Constr. Mater., vol. 13, p. e00409, Dec. 2020.
  • E. Türkeli, "Dynamic Seismic and Wind Response of Masonry Minarets," Period. Polytech. Civ. Eng., vol. 64, no. 2, pp. 353–369, 2020.
  • M. Pouraminian, "Multi-hazard reliability assessment of historical brick minarets," J. Build. Pathol. Rehabil., vol. 7, no. 1, p. 10, Dec. 2021.
  • A. H. Al-Zuhairi, A. R. Ahmed, and S. R. Al-Zaidee, "Numerical Analysis of Historical Masonry Minaret Subjected to Wind Load," in Geotechnical Engineering and Sustainable Construction, M. O. Karkush and D. Choudhury, Eds., Singapore: Springer, 2022, pp. 545–555.
  • H. H. Awad and M. Desouki, "Integrating physical experiments with computational fluid dynamics to transform mosque minarets into efficient solar chimneys," Sci. Rep., vol. 14, no. 1, p. 9721, Apr. 2024.
  • Turkish Standard Institute, Turkish Standard, TS498: The Calculation Values of Loads used in Designing Structural Elements, Ankara, Turkey, 1997.
  • Dlubal Software, RWIND-Simulation Generation of WindInduced Loads on General Models: User Manual, October 2020. Available at: https://www.dlubal.com/en/downloads-and-information/documents/online-manuals/rwindsimulation-1/01/01.
  • Dassault Systemes Simulia Corp., Abaqus v10, Providence, Rhode Island, USA, 2010.
  • NTV Haber, http://arsiv.ntv.com.tr/news/120847.asp (accessed 29/10/2021).
  • Hürriyet, http://www.hurriyetim.com.tr/haber/ (accessed 27/02/2002).
  • Milliyet, "http://www.milliyet.com.tr/2003/02/09/guncel/gun15.html" (accessed 09/02/2003).
  • Hürriyet, "http://www.hurriyetim.com.tr/haber/0" (accessed 24/07/2005).
  • Haberler.com, "https://www.haberler.com/22-yillik-caminin-minaresi-yikildi-haberi/" (accessed 22/09/2019).
  • Cumhuriyet, "http://www.cumhuriyet.com.tr" (accessed 10/04/2015).
  • Haberler.com,"https://www.haberler.com/ordu-da-57-metrelik-minare-siddetli-ruzgarda-8074105-haberi/" (accessed 22/09/2019).
  • Ajans Niğde, (2021). “http://www.ajansnigde.com/nigdede-cami-minaresi-yikildi_d89720.html” (erişim tarihi: 29/11/2021).
  • Ankara Masası, (2021). “https://www.ankaramasasi.com/haber/1053206/aydinda-siddetli-ruzgar-minareyi-yikti-o-anlar-kamerada” (erişim tarihi: 29/11/2021).
  • Türkiye Building Seismic Code-2018, Ankara, Türkiye.
  • J. Lubliner, J. Oliver, S. Oller, and Ejij. Onate, ‘A plastic-damage model for concrete’, Int. J. Solids Struct., vol. 25, no. 3, pp. 299–326, 1989.
  • J. Lee and G. L. Fenves, ‘Plastic-damage model for cyclic loading of concrete structures’, J. Eng. Mech., vol. 124, no. 8, pp. 892–900, 1998.
  • M. Resta, A. Fiore, and P. Monaco, ‘Non-linear finite element analysis of masonry towers by adopting the damage plasticity constitutive model’, Adv. Struct. Eng., vol. 16, no. 5, pp. 791–803, 2013.
  • M. Valente and G. Milani, ‘Non-linear dynamic and static analyses on eight historical masonry towers in the North-East of Italy’, Eng. Struct., vol. 114, pp. 241–270, 2016.
  • M. Valente and G. Milani, ‘Damage assessment and collapse investigation of three historical masonry palaces under seismic actions’, Eng. Fail. Anal., vol. 98, pp. 10–37, 2019.
  • E. Hökelekli and A. Al-Helwani, ‘Effect of soil properties on the seismic damage assessment of historical masonry minaret–soil interaction systems’, Struct. Des. Tall Spec. Build., vol. 29, no. 2, p. e1694, 2020.
  • E. Hökelekli, A. Demir, E. Ercan, H. Nohutçu, and A. Karabulut, ‘Seismic Assessment in a Historical Masonry Minaret by Linear and Non-linear Seismic Analyses’, Period. Polytech. Civ. Eng., vol. 64, no. 2, pp. 438–448, 2020.
  • T. Y. Altıok and A. Demir, ‘Collapse mechanism estimation of a historical masonry minaret considered soil-structure interaction’, Earthq. Struct., vol. 21, no. 2, pp. 161–172, 2021.
  • R. Nayal and H. A. Rasheed, ‘Tension stiffening model for concrete beams reinforced with steel and FRP bars’, J. Mater. Civ. Eng., vol. 18, no. 6, pp. 831–841, 2006.
  • B. Wahalathantri, D. Thambiratnam, T. Chan, and S. Fawzia, ‘A material model for flexural crack simulation in reinforced concrete elements using ABAQUS’, in Proceedings of the first international conference on engineering, designing and developing the built environment for sustainable wellbeing, Queensland University of Technology, 2011, pp. 260–264.
  • R. I. Gilbert and R. F. Warner, ‘Tension stiffening in reinforced concrete slabs’, J. Struct. Div., vol. 104, no. 12, pp. 1885–1900, 1978.
  • A. S. Genikomsou and M. A. Polak, ‘Finite element analysis of punching shear of concrete slabs using damaged plasticity model in ABAQUS’, Eng. Struct., vol. 98, pp. 38–48, 2015.
  • Italian Public Works Council. (2019). “Guidelines for Application of Italian Building Code; Istituto Poligrafico e Zecca dello Stato”, Roma, Italy.
  • Eurocode 8. (2005). “Design of Structures for Earthquake Resistance—Part 3: Assessment and Retrofitting of Buildings”. CEN: Brussels, Belgium.
  • A. Demir and T. Y. Altıok, ‘Numerical assessment of a slender structure damaged during October 30, 2020, İzmir earthquake in Turkey’, Bull. Earthq. Eng., vol. 19, no. 14, pp. 5871–5896, 2021.
  • T. Y. Altıok and A. Demir, ‘Seismic damage assessment of a historical masonry minaret considering soil-structure interaction’, J. Struct. Eng. Appl. Mech., vol. 4, no. 3, pp. 196–212, Sep. 2021.
Toplam 80 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular İnşaat Yapım Mühendisliği, İnşaat Mühendisliği (Diğer)
Bölüm Research Articles
Yazarlar

Taha Yasin Altıok 0000-0002-5237-4018

Ali Demir 0000-0001-9907-4074

Yayımlanma Tarihi 31 Ekim 2024
Gönderilme Tarihi 28 Mart 2024
Kabul Tarihi 3 Haziran 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 3 Sayı: 3

Kaynak Göster

APA Altıok, T. Y., & Demir, A. (2024). Simulation of the Collapse Mechanism of a Minaret under the Effect of Strong Wind. Firat University Journal of Experimental and Computational Engineering, 3(3), 292-312. https://doi.org/10.62520/fujece.1460766
AMA Altıok TY, Demir A. Simulation of the Collapse Mechanism of a Minaret under the Effect of Strong Wind. FUJECE. Ekim 2024;3(3):292-312. doi:10.62520/fujece.1460766
Chicago Altıok, Taha Yasin, ve Ali Demir. “Simulation of the Collapse Mechanism of a Minaret under the Effect of Strong Wind”. Firat University Journal of Experimental and Computational Engineering 3, sy. 3 (Ekim 2024): 292-312. https://doi.org/10.62520/fujece.1460766.
EndNote Altıok TY, Demir A (01 Ekim 2024) Simulation of the Collapse Mechanism of a Minaret under the Effect of Strong Wind. Firat University Journal of Experimental and Computational Engineering 3 3 292–312.
IEEE T. Y. Altıok ve A. Demir, “Simulation of the Collapse Mechanism of a Minaret under the Effect of Strong Wind”, FUJECE, c. 3, sy. 3, ss. 292–312, 2024, doi: 10.62520/fujece.1460766.
ISNAD Altıok, Taha Yasin - Demir, Ali. “Simulation of the Collapse Mechanism of a Minaret under the Effect of Strong Wind”. Firat University Journal of Experimental and Computational Engineering 3/3 (Ekim 2024), 292-312. https://doi.org/10.62520/fujece.1460766.
JAMA Altıok TY, Demir A. Simulation of the Collapse Mechanism of a Minaret under the Effect of Strong Wind. FUJECE. 2024;3:292–312.
MLA Altıok, Taha Yasin ve Ali Demir. “Simulation of the Collapse Mechanism of a Minaret under the Effect of Strong Wind”. Firat University Journal of Experimental and Computational Engineering, c. 3, sy. 3, 2024, ss. 292-1, doi:10.62520/fujece.1460766.
Vancouver Altıok TY, Demir A. Simulation of the Collapse Mechanism of a Minaret under the Effect of Strong Wind. FUJECE. 2024;3(3):292-31.