Araştırma Makalesi
BibTex RIS Kaynak Göster

LabVIEW'de Kombinatoryal Arı Algoritması Araç Setinin Geliştirilmesi

Yıl 2022, , 531 - 540, 30.09.2022
https://doi.org/10.35234/fumbd.1077522

Öz

Bu çalışmada kombinatoryal problemler için LabVIEW'de geliştirilen Arı Algoritması (AA) Optimizasyon Araç Seti sunulmaktadır. LabVIEW, ölçüm ve kontrol uygulamalarında kullanılan, oldukça verimli bir geliştirme ortamıdır. Bu çalışma ise LabVIEW'un kombinatoryal optimizasyon bölümüne katkıda bulunmak amacıyla hazırlanmıştır. Bal arılarının polen bulma stratejisinden esinlenerek geliştirilen AA'nın tüm bölümleri, LabVIEW'de adım adım kodlanmıştır. Araç seti ile gezgin satıcı problemi üzerinde deneysel çalışmalar gerçekleştirilmiştir. Deneyler sonucunda 100 şehirlik problemlerde binde 3 ve daha küçük değerlerde, 150-200 şehirlik problemlerde ise %1.41'den daha küçük değerlerde sonuçlar elde edilmiştir. Ayrıca farklı optimizasyon algoritmaları ile gerçekleştirilen karşılaştırmalarda da daha iyi sonuçlar alındığı görülmüştür.

Destekleyen Kurum

Roketsan A. Ş.

Teşekkür

Roketsan A. Ş.

Kaynakça

  • [1] Osaba E, Yang X, Ser JD. Traveling salesman problem: a perspective review of recent research and new results with bio-inspired metaheuristics. Nature-Inspired Computation and Swarm Intelligence Algorithms, Theory and Applications 2020, 135-164.
  • [2] Karaboga D, Gorkemli B. Solving Traveling Salesman Problem by Using Combinatorial Artificial Bee Colony Algorithms. International Journal on Artificial Intelligence Tools 2019, 28(1). 1950004 (28 pages).
  • [3] Chen SM, Chien CY. Parallelized genetic ant colony systems for solving the traveling salesman problem. Expert Systems with Applications 2011, 38: 3873–3883.
  • [4] Hamzadayi A, Baykasoglu A, Akpinar S. Solving combinatorial optimization problems with single seekers society algorithm. Knowledge-Based Systems 2020, 201–202.
  • [5] Pham DT, Castellani M. The Bees Algorithm: Modelling Foraging Behaviour to Solve Continuous Optimization Problems. Proceedings of the Institution of Mechanical Engineers, Part C, Journal of Mechanical Engineering Science 2009, 223(12): 2919-2938.
  • [6] Packianather MS, Yuce B, Mastrocinque E, Fruggiero F, Pham DT, Lambiase A. Novel Genetic Bees Algorithm applied to single machine scheduling problem. World Automation Congress (WAC) 2014, 1-6.
  • [7] Ang MC, Pham DT, Ng KW. Application of the Bees Algorithm with TRIZ-inspired operators for PCB assembly planning. Proceedings of 5 th Virtual International Conference on Intelligent Production Machines and Systems 2009, 454-459.
  • [8] Alzaqebah M, Jawarneh S, Sarim HM, Abdullah S. Bees Algorithm for Vehicle Routing Problems with Time Windows. International Journal of Machine Learning and Computing 2018, 8(3): 236-240.
  • [9] Yuce B, Mastrocinque E, Lambiase A, Packianather MS, Pham DT. A multi-objective supply chain optimisation using enhanced Bees Algorithm with adaptive neighbourhood search and site abandonment strategy. Swarm and Evolutionary Computation Volume 2014, 18: 71-82.
  • [10] Ismail AH, Hartono N, Zeybek S, Pham DT. Using the Bees Algorithm to solve combinatorial optimisation problems for TSPLIB. IOP Conf. Series: Materials Science and Engineering 2020, 847: 012027.
  • [11] Koc E. Bees algorithm: theory, improvements and applications. Ph.D. thesis, Faculty of Engineering, Cardiff University, UK, 2010.
  • [12] Zeybek S, Ismail AH, Hartono N, Caterino M, Jiang K. An Improved Vantage Point Bees Algorithm to Solve Combinatorial Optimization Problems from TSPLIB. In Macromolecular Symposia 2021, 396(1): 2000299.
  • [13] Colak I, Bulbul HI, Sagiroglu S, Sahin M. Modeling a permanent magnet synchronous generator used in wind turbine and the realization of voltage control on the model with artificial neural networks. IEEE International Conference on Renewable Energy Research and Applications (ICRERA) 2012, 1-6.
  • [14] Aria M. Educational simulator for teaching of particle swarm optimization in labview. TELEKONTRAN 2013, 1(1): 1-15.
  • [15] Thakur KS, Kumar V, Rana KPS, Mishra P, Kumar J, Nair SS. Development of bat algorithm toolkit in labview. International Conference on Computing, Communication and Automation (ICCCA) 2015, Greater Noida, India, pp. 5-10.
  • [16] Gupta S, Kumar V, Rana KPS, Mishra P, Kumar J. Development of ant lion optimizer toolkit in labview. 1st International Conference on Innovation and Challenges in Cyber Security (ICICCS) 2016, Greater Noida, India, 2016, pp. 251-256.
  • [17] Gupta S, Rana KPS, Kumar V, Mishra P, Kumar J, Nair SS. Development of a grey wolf optimizer toolkit in labview. 1st International conference on futuristic trend in computational analysis and knowledge management (ABLAZE) 2015, Greater Noida, India, 2015, pp. 107-113.
  • [18] Baronti L, Castellani M, Pham DT. An analysis of the search mechanisms of the bees algorithm. Swarm and Evolutionary Computation 2020, 59: 100746.
  • [19] Şahin M. Improvement of the Bees Algorithm for Solving the Traveling Salesman Problems. Bilişim Teknolojileri Dergisi 2022, 15(1), 65-74.
  • [20] MP-TESTDATA. The TSPLIB Symmetric Traveling Salesman Problem Instances. Retrieved from http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsp/index.html . Accessed January 5, 2022.
  • [21] Castellani M, Otri S, Pham DT. Printed circuit board assembly time minimisation using a novel Bees Algorithm. Computers & Industrial Engineering 2019, 133: 186–194.
  • [22] Lambiase A, Iannone R, Miranda S, Lambiase A. Pham DT. Bees algorithm for effective supply chains configuration. International Journal of Engineering Business Management 2016, Volume 8: 1–9.
  • [23] Demiral MF. Analysis of a Hybrid Whale Optimization Algorithm for Traveling Salesman Problem. Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi 2021, 12(Ek (Suppl.) 1), 469-476.
  • [24] Şahin Y. Sezgisel Ve Metasezgisel Yöntemlerin Gezgin Satıcı Problemi Çözüm Performanslarının Kıyaslanması. Bolu Abant İzzet Baysal Üniversitesi Sosyal Bilimler Enstitüsü Dergisi 2019, 19(4), 911-932.
Toplam 24 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm MBD
Yazarlar

Murat Şahin 0000-0002-3659-3528

Yayımlanma Tarihi 30 Eylül 2022
Gönderilme Tarihi 22 Şubat 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Şahin, M. (2022). LabVIEW’de Kombinatoryal Arı Algoritması Araç Setinin Geliştirilmesi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 34(2), 531-540. https://doi.org/10.35234/fumbd.1077522
AMA Şahin M. LabVIEW’de Kombinatoryal Arı Algoritması Araç Setinin Geliştirilmesi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. Eylül 2022;34(2):531-540. doi:10.35234/fumbd.1077522
Chicago Şahin, Murat. “LabVIEW’de Kombinatoryal Arı Algoritması Araç Setinin Geliştirilmesi”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 34, sy. 2 (Eylül 2022): 531-40. https://doi.org/10.35234/fumbd.1077522.
EndNote Şahin M (01 Eylül 2022) LabVIEW’de Kombinatoryal Arı Algoritması Araç Setinin Geliştirilmesi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 34 2 531–540.
IEEE M. Şahin, “LabVIEW’de Kombinatoryal Arı Algoritması Araç Setinin Geliştirilmesi”, Fırat Üniversitesi Mühendislik Bilimleri Dergisi, c. 34, sy. 2, ss. 531–540, 2022, doi: 10.35234/fumbd.1077522.
ISNAD Şahin, Murat. “LabVIEW’de Kombinatoryal Arı Algoritması Araç Setinin Geliştirilmesi”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 34/2 (Eylül 2022), 531-540. https://doi.org/10.35234/fumbd.1077522.
JAMA Şahin M. LabVIEW’de Kombinatoryal Arı Algoritması Araç Setinin Geliştirilmesi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2022;34:531–540.
MLA Şahin, Murat. “LabVIEW’de Kombinatoryal Arı Algoritması Araç Setinin Geliştirilmesi”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, c. 34, sy. 2, 2022, ss. 531-40, doi:10.35234/fumbd.1077522.
Vancouver Şahin M. LabVIEW’de Kombinatoryal Arı Algoritması Araç Setinin Geliştirilmesi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2022;34(2):531-40.