Araştırma Makalesi
BibTex RIS Kaynak Göster

Nem Kontrollü Bir Kamarada Depolanan Baklanın (Vicia faba L.) Sorpsiyon İzotermlerinin Modellenmesi ve Termodinamik Özelliklerinin Belirlenmesi

Yıl 2022, , 719 - 731, 30.09.2022
https://doi.org/10.35234/fumbd.1126606

Öz

Sabit sıcaklık ve bağıl nem ortamı sağlayan bir kamarada baklanın (Vicia faba L.), nem sorpsiyon özellikleri; üç farklı sıcaklıkta (25, 35 ve 45 °C) ve bağıl nemi atomizer nemlendirici ile ayarlanarak farklı su aktivitesi değerlerinde (0.1-0.9 aw) incelenmiştir. Elde edilen deneysel verilerden baklanın sorpsiyon izoterm eğrilerinin, BET su buharı sorpsiyon izotermleri sınıflandırmasına göre Tip III (J şekilli) özelliğe sahip olduğu bulunmuştur. Belirli bir su aktivitesinde sıcaklığın artması ile denge nem içeriği değerlerinde azalma gözlenmiştir. Baklanın sorpsiyon izotermleri tüm su aktivitesi aralığında histeresis etki göstermiştir. Sorpsiyon verilerinin matematik modellere uygunluklarının belirlenmesi amacıyla 12 farklı izoterm modeli (GAB, BET, Henderson, Oswin, Peleg, Smith, Caurie, Halsey, Ferro-Fontan, Kuhn, Chung-Pfost ve White-Eiring) kullanılmıştır. En iyi uyumu; adsorpsiyon izotermleri için Peleg modelinin, desorpsiyon izotermleri için ise Chung-Pfost modelinin gösterdiği belirlenmiştir. Sorpsiyon izosterik ısısı, sorpsiyon entropisi, yüzey potansiyeli, net integral entalpi ve net integral entropi gibi enerji gereksiniminin anlaşılmasını sağlayan termodinamik fonksiyonlar sorpsiyon izoterm verileri kullanılarak belirlenmiştir. Sorpsiyon izosterik ısısı ve net integral entalpi nem içeriğindeki artış ile azalmış ve saf suyun buharlaşma gizli ısısı değerine yaklaşmıştır.

Kaynakça

  • [1] Lasekan OO, Lasekan WO. Moisture sorption and the degree of starch polymer degradation on flours of popped and malted sorghum (sorghum bicolor). Journal of Cereal Science 2000; 31(1): 55-61.
  • [2] Jung J, Wang W, McGorrin RJ, Zhao Y. Moisture adsorption isotherm and storability of hazelnut inshells and kernels produced in Oregon, USA. Journal of Food Science 2018; 83(2): 340-348.
  • [3] Sun DW, Woods J L. Deep bed simulation of the cooling of stored grain with ambient air: a test bed for ventilation control strategies. Journal of Stored Products Research 1998; 33: 299-312.
  • [4] Arogba SS. Effect of temperature on the moisture sorption isotherm of a biscuit containing processed mango (Mangifera indica) kernel flour. Journal of Food Engineering 2001; 48: 121-125.
  • [5] Aguirre-Loredo RY, Rodriguez-Hernandez AI, Velazquez G. Modelling the effect of temperature on the water sorption isotherms of chitosan films. Food Science and Technology 2017; 37(1): 112-118.
  • [6] Yang Z, Zhu E, and Zhu Z. Water desorption isotherm and drying characteristics of green soybean. Journal of Stored Products Research 2015; 60: 25–30.
  • [7] Nascimento A, Cavalcanti‐Mata ME, Martins Duarte ME, Pasquali M, Lisboa HM. Construction of a design space for goat milk powder production using moisture sorption isotherms. Journal of Food Process Engineering 2019; 42(6): e13228.
  • [8] Al-Muhtaseb AH, McMinn WAM, Magee TRA. Water sorption isotherms of starch powders Part 1: mathematical description of experimental data. Journal of Food Engineering 2004a; 61: 297-307.
  • [9] Sandoval AJ, Guilarte D, Barreiro JA, Lucci E, Müller AJ. Determination of moisture sorption characteristics of oat flour by static and dynamic techniques with and without thymol as an antimicrobial agent. Food Biophysics 2011; 6(3): 424–432.
  • [10] Zhang L, Sun DW, Zhang Z. Methods for measuring water activity (aw) of foods and its applications to moisture sorption isotherm studies. Critical Reviews in Food Science and Nutrition 2017; 57(5): 1052-1058.
  • [11] Al-Muhtaseb AH, McMinn WAM, Magee TRA. Moisture sorption characteristics of food products a review. Food and Bioproducts Processing 2002; 80(2): 118-128.
  • [12] Peleg M. Models of sigmoid equilibrium moisture sorption isotherms with and without the monolayer hypothesis. Food Engineering Reviews 2020; 12: 1–13.
  • [13] Oliveira GHH, Correa PC, Santos ES, Treto PC, Diniz MDMS. Evaluation of thermodynamic properties using GAB model to describe the desorption process of cocoa beans. International Journal of Food Science and Technology 2011; 46: 2077-2084.
  • [14] Yazdani M, Sazandehchi P, Azizi M, Ghobadi P. Moisture sorption isotherms and isosteric heat for pistachio. European Food Research and Technology 2006; 223: 577–584.
  • [15] Menkov ND. Moisture sorption isotherms of broad bean seeds at different temperatures. Food/Nahrung 2000; 44(6): 443-446.
  • [16] Garvín A, Augusto PED, Ibarz R, Ibarz A. Kinetic and thermodynamic compensation study of the hydration of faba beans (Vicia faba L.). Food Research International 2019; 119: 390-397.
  • [17] Alpizar-Reyes E, Castaño J, Carrillo-Navas H, Alvarez-Ramírez J, Gallardo-Rivera R, Pérez-Alonso C, Guadarrama-Lezama AY. Thermodynamic sorption analysis and glass transition temperature of faba bean (Vicia faba L.) protein. Journal of Food Science Technology 2018; 55: 935–943.
  • [18] AOAC. Official methods of analysis. DC: Association of Official Analytical Chemists Inc. 1980; Washington.
  • [19] Arslan N, Toğrul H. Modelling of water sorption isotherms of macaroni stored in a chamber under controlled humidity and thermodynamic approach. Journal of Food Engineering 2005; 69: 133-145.
  • [20] Statistica for Windows 5.0. Computer program manual. Tulsa: StatSoft Inc. 1995.
  • [21] McMinn WAM, Magee TRA. Thermodynamic properties of moisture sorption of potato. Journal of Food Engineering 2003; 60: 157-165.
  • [22] Van den Berg C, Bruin S. Water activity and its estimation in food systems: theoretical aspects. In:Water activity: Influences on Food Quality. Rockland LB, Stewart GF, (eds.). Academic Press, New York, 1981: pp. 1-61.
  • [23] Brunauer S, Emmett PH, Teller E. Adsorption of gases in multimolecular layers. Journal of the American Chemical Society 1938; 60: 309-319.
  • [24] Henderson SM. A basic concept of equilibrium moisture. Agricultural Engineering 1952; 33: 9-32.
  • [25] Oswin CR. The kinetics of package life III. The isotherm, Journal of Chemical Industry 1946; 65: 419-421.
  • [26] Peleg M. Assessment of a semi-empirical four parameter general model for sigmoid moisture sorption isotherms. J. Food Process Engineering 1993; 16: 21-37.
  • [27] Smith SE. The sorption of water vapour by proteins and high polymers. Journal of the American Chemical Society 1947; 69: 646-651.
  • [28] Caurie M. New model equation for predicting safe storage moisture levels for optimum stability of dehydrated foods. Journal of Food Technology 1970; 5: 301-307.
  • [29] Halsey G. Physical adsorption on non-uniform surfaces. The Journal of Chemical Physics 1948; 16: 931-937.
  • [30] Ferro-Fontan C, Chirife J, Sancho E, Iglesias HA. Analysis of a model for water sorption phenomena in foods. Journal of Food Science 1982; 47: 1590-1594.
  • [31] Kuhn I. A generalized potential theory of adsorption: I. The derivation of a general equation for adsorption isotherms. Journal of Colloid and Interface Science 1967; 23: 563-571.
  • [32] Chung DS, Pfost HB. Adsorption and desorption of water vapour by cereal grains and their products. Part II: development of the general isotherm equation, Transactions of the American Society of Agricultural Engineers 1967; 10: 552-555.
  • [33] Castillo E, Ruiz TE, Stuart R, Galindo J, Hernandez JL, Diaz H. Effect of the protein-energetic supplementation on the performance of male bovines grazing natural pastures associated with a mixture of creeping legumes. Cuban Journal of Agricultural Science 2003; 37(2): 143-147.
  • [34] Siripatrawan U, Jantawat P. Determination of Moisture Sorption Isotherms of Jasmine Rice Crackers Using BET and GAB Models. Food Science and Technology International 2006; 12(6): 459-465.
  • [35] Viganó J, Azuara E, Telis VRN, Beristain CI, Jiménez M, Telis-Romero J. Role of enthalpy and entropy in moisture sorption behavior of pineapple pulp powder produced by different drying methods. Thermochimica Acta 2012; 528: 63-71.
  • [36] Iglesias HA, Chirife J. Isosteric heats of water vapour sorption in dehydrated foods. Part 1. Analysis of differential heat curve. LWT-Food Sci.Technol. 1976; 9: 116-122.
  • [37] Dent RW. A multilayer theory for gas sorption. Part 1: Sorption of a single gas. Textile Research Journal 1977; 47: 145-152.
  • [38] Fakhfakh R, Mihoubi D, Kechaou N. Moisture sorption isotherms and thermodynamic properties of bovine leather. Heat Mass Transfer 2018; 54: 1163–1176.
  • [39] Rizvi RRH, Benado AL. Thermodynamic analysis of drying foods. Food Technology 1983; 2: 471-502.
  • [40] Mazza G, LeMaguer M. Water sorption properties of yellow globe onion (Allium cepa L.). Canadian Institute of Food Science and Technology Journal 1978; 11: 189–193
  • [41] Palipane KB, Driscoll RH. Moisture sorption characteristics of inshell macadamia nuts. Journal of Food Engineering 1992; 18: 63-76.
  • [42] Benado AL, Rizvi SSH. Thermodynamic properties of water in rice as calculated from reversible and irreversible isotherms. Journal of Food Science 1985; 50: 101-105.
  • [43] Rizvi SSH. Thermodynamic properties of foods in dehydratation. In: Engineering properties of foods (2nd. ed.). Rao AM, Rizvi SSH (Eds.). Marcel Dekker, New York, 1995: pp. 239-307.
  • [44] Al-Muhtaseb AH, McMinn WAM ve Magee TRA. Water sorption isotherms of starch powders Part 2: Thermodynamic characteristics. Journal of Food Engineering 2004b; 62: 135-142.
  • [45] Haque MA, Shimizu N, Kimura T, Bala BK. Net Isosteric Heats of Adsorption and Desorption for Different Forms of Hybrid Rice, International Journal of Food Properties 2007; 10(1): 25-37.
  • [46] Lahsasni S, Kouhila M, Mahrouz M. Adsorption–Desorption Isotherms and Heat of Sorption of Prickly Pear Fruit (Opuntia ficus indica). Energy Conversion and Management 2004; 45(2): 249–261.
  • [47] Fasina O, Ajibola O, Tyler R.Thermodynamics of moisture sorption in winged bean seed and gari. Journal of Food Process Engineering 1999; 22: 405-418.
  • [48] Kaya K, Kahyaoglu T. Moisture sorption and thermodynamic properties of safflower petals and tarragon. Journal of Food Engineering 2007; 78: 413-421.
  • [49] Moreira R, Chenlo F, Torres MD, Vallejo N. Thermodynamic analysis of experimental sorption isotherms of loquat and quince fruits. Journal of Food Engineering 2008; 88(4): 514-521.
  • [50] Aviara NA, Ajibola OO, Dairo UO. (2002). Thermodynamics of moisture sorption in sesame seed. Biosystems Engineering 2002; 83(4): 423-431.
  • [51] Aviara NA, Ajibola OO, Oni SA. (2004). Sorption equilibrium and thermodynamic characteristics of soya bean. Biosystems Engineering 2004; 87(2): 179-190.
Toplam 51 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm MBD
Yazarlar

Mukaddes Karataş 0000-0001-5803-6821

Nurhan Arslan 0000-0003-0051-0118

Yayımlanma Tarihi 30 Eylül 2022
Gönderilme Tarihi 6 Haziran 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Karataş, M., & Arslan, N. (2022). Nem Kontrollü Bir Kamarada Depolanan Baklanın (Vicia faba L.) Sorpsiyon İzotermlerinin Modellenmesi ve Termodinamik Özelliklerinin Belirlenmesi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 34(2), 719-731. https://doi.org/10.35234/fumbd.1126606
AMA Karataş M, Arslan N. Nem Kontrollü Bir Kamarada Depolanan Baklanın (Vicia faba L.) Sorpsiyon İzotermlerinin Modellenmesi ve Termodinamik Özelliklerinin Belirlenmesi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. Eylül 2022;34(2):719-731. doi:10.35234/fumbd.1126606
Chicago Karataş, Mukaddes, ve Nurhan Arslan. “Nem Kontrollü Bir Kamarada Depolanan Baklanın (Vicia Faba L.) Sorpsiyon İzotermlerinin Modellenmesi Ve Termodinamik Özelliklerinin Belirlenmesi”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 34, sy. 2 (Eylül 2022): 719-31. https://doi.org/10.35234/fumbd.1126606.
EndNote Karataş M, Arslan N (01 Eylül 2022) Nem Kontrollü Bir Kamarada Depolanan Baklanın (Vicia faba L.) Sorpsiyon İzotermlerinin Modellenmesi ve Termodinamik Özelliklerinin Belirlenmesi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 34 2 719–731.
IEEE M. Karataş ve N. Arslan, “Nem Kontrollü Bir Kamarada Depolanan Baklanın (Vicia faba L.) Sorpsiyon İzotermlerinin Modellenmesi ve Termodinamik Özelliklerinin Belirlenmesi”, Fırat Üniversitesi Mühendislik Bilimleri Dergisi, c. 34, sy. 2, ss. 719–731, 2022, doi: 10.35234/fumbd.1126606.
ISNAD Karataş, Mukaddes - Arslan, Nurhan. “Nem Kontrollü Bir Kamarada Depolanan Baklanın (Vicia Faba L.) Sorpsiyon İzotermlerinin Modellenmesi Ve Termodinamik Özelliklerinin Belirlenmesi”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 34/2 (Eylül 2022), 719-731. https://doi.org/10.35234/fumbd.1126606.
JAMA Karataş M, Arslan N. Nem Kontrollü Bir Kamarada Depolanan Baklanın (Vicia faba L.) Sorpsiyon İzotermlerinin Modellenmesi ve Termodinamik Özelliklerinin Belirlenmesi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2022;34:719–731.
MLA Karataş, Mukaddes ve Nurhan Arslan. “Nem Kontrollü Bir Kamarada Depolanan Baklanın (Vicia Faba L.) Sorpsiyon İzotermlerinin Modellenmesi Ve Termodinamik Özelliklerinin Belirlenmesi”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, c. 34, sy. 2, 2022, ss. 719-31, doi:10.35234/fumbd.1126606.
Vancouver Karataş M, Arslan N. Nem Kontrollü Bir Kamarada Depolanan Baklanın (Vicia faba L.) Sorpsiyon İzotermlerinin Modellenmesi ve Termodinamik Özelliklerinin Belirlenmesi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2022;34(2):719-31.