Araştırma Makalesi
BibTex RIS Kaynak Göster

Elektrikli Araç Teknolojisinde Kullanılan Kurşun Asit ve Li-iyon Bataryaların Galvanostatik Test Sonuçlarının Karşılaştırılması

Yıl 2023, , 691 - 697, 01.09.2023
https://doi.org/10.35234/fumbd.1306028

Öz

Yenilenebilir enerji kaynaklarının sürekliliğini sağlamak ve içten yanmalı motorlar yerine elektrikli araçların kullanılması çevre ve yaşam kalitesini direk etkilemektedir. Farklı metaller katkılanarak geliştirilmesi amaçlanan bataryalar üzerinde çalışmalar hala sürmektedir. Yüksek performans sergileyen ve uzun hizmet ömrü sunabilen bataryalar günümüzde her alanda talep edilmektedir. Bu çalışmada Li-iyon bataryalar ve kurşun-asit aküler hakkında genel bilgilendirme sunulması hedeflenmiştir. Pillerin elektrokimyasal davranışlarının analizi galvanostatik yöntem kullanılarak (100 çevrimde; sabit akım altında) gerçekleştirilmiştir. Hazır üretim olan pillerin; kapasite-döngü sayıları ile şarj-deşarj eğrileri incelendiğinde; Li-iyon türü batarya grubunda yer alan pilin (Sony VTC5) daha yüksek kapasite sergileyerek daha uzun hizmet ömrü sunacağını göstermiştir.

Destekleyen Kurum

İnönü Üniversitesi Bilimsel Araştırma Projeleri Yönetim Birimi

Proje Numarası

FYL-2022-2852

Kaynakça

  • Tang W, Liu L, Tian S, Li L, Yue Y, Wu Y, Guan S, and Zhu K. Nano-LiCoO2 as cathode material of large capacity and high rate capability for aqueous rechargeable lithium batteries, Electrochemistry Communications 2010; 12: 1524-1526.
  • Catenacci M, Fiorese G, Verdolini E, and Bosetti V. Going electric: Expert survey on the future of battery technologies for electric vehicles, in Innovation under Uncertainty, Edward Elgar Publishing 2015; 6:110-138.
  • Brodd R. What are Batteries, Fuel Cells, and Supercapacitors, Chemical Reviews 2005; 105: 1021.
  • Turan D, and Yönetken A. Enerji depolama sistemlerinin araştırılması ve analizi, Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 2016; 16: 113-121.
  • Nor J.K. Art of charging electric vehicle batteries. In Proceedings of Wescon'93. IEEE 1993; San Francisco, CA, USA:293.
  • Xiao Q, Li B, Dai F, Yang L, and Cai M. Application of lithium ion battery for vehicle electrification, Electrochemical Energy: Advanced Materials and Technologies 2015;1-29.
  • Özcan Ö.F, Karadağ T, Altuğ M, and Özgüven Ö. Elektrikli Araçlarda Kullanılan Pil Kimyasallarının Özellikleri ve Üstün Yönlerinin Kıyaslanması Üzerine Bir Derleme Çalışması, Gazi University Journal of Science Part A: Engineering and Innovation 2021;8: 276-298.
  • Lukic S.M, Cao J, Bansal R.C, Rodriguez F, and Emadi A. Energy storage systems for automotive applications, IEEE Transactions on industrial electronics 2008;55: 2258-2267.
  • Muratoğlu Y. and Alkaya A. Elektrikli Araç Teknolojisi ve Pil Yönetim Sistemi-İnceleme, Elektrik Mühendisliği 2016;458: 10-14.
  • Chan C. An overview of electric vehicle technology, Proceedings of the IEEE 1993;8: 1202-1213.
  • Etacheri V, Marom R, Elazari R, Salitra G, and Aurbach D. Challenges in the development of advanced Li-ion batteries: a review, Energy & Environmental Science 2011; 4: 3243-3262.
  • Demir U. and Akuner M. Design and optimization of in-wheel asynchronous motor for electric vehicle, Journal of the Faculty of Engineering and Architecture of Gazi University 2018; 33: 1517-1530.
  • Güneş D, Tekdemir İ.G, Karaarslan M.Ş, and Alboyacı B. Assessment of the impact of electric vehicle charge station loads on reliability indices, Journal of the Faculty of Engineering and Architecture of Gazi University 2018; 33: 1073-1084.
  • Soloveichik G.L. Battery technologies for large-scale stationary energy storage, Annual review of chemical and biomolecular engineering 2011; 2: 503-527.
  • Daniel C. and Besenhard J.O. Handbook of battery materials, John Wiley & Sons 2012.
  • Palizban O. and Kauhaniemi K. Energy storage systems in modern grids—Matrix of technologies and applications, Journal of Energy Storage 2016; 6: 248-259.
  • Luo X, Wang J, Dooner M, and Clarke J. Overview of current development in electrical energy storage technologies and the application potential in power system operation, Applied energy 2015; 137: 511-536.
  • Tan X, Li Q, and Wang H. Advances and trends of energy storage technology in microgrid, International Journal of Electrical Power & Energy Systems 2013; 44: 179-191.
  • Chen H, Cong T, Yang W, Tan C, Li Y, and Ding Y. Progress in electrical energy storage system: A critical review 2009; 19: 291-312.
  • Ibrahim H, Ilinca A, and Perron J. Energy storage systems—Characteristics and comparisons, Renewable and sustainable energy reviews 2008;12:1221-1250.
  • Hall P.J. and Bain E.J. Energy-storage technologies and electricity generation, Energy policy 2008; 36: 4352-4355.
  • Moseley P.T. and Garche J. Electrochemical energy storage for renewable sources and grid balancing, Newnes 2014.
  • Pavlov D. Lead-acid batteries: science and technology, Elsevier 2011.
  • Yoshino A. The birth of the lithium‐ion battery, Angewandte Chemie International Edition 2012; 51: 5798-5800.
  • Lin D, Liu Y, and Cui Y. Reviving the lithium metal anode for high-energy batteries, Nature nanotechnology 2017; 12: 194-206.
  • Vidyanandan K. Batteries for electric vehicles, Power Management Institute 2019.
  • Tarascon J.M. and Armand M. Issues and challenges facing rechargeable lithium batteries, natüre 2001; 414: 359-367.
  • Vikström H, Davidsson S, and Höök M. Lithium availability and future production outlooks, Applied energy 2013; 110: 252-266.
  • Kruse R.E. and Huls T.A. Development of the federal urban driving Schedule 1973.
  • Traub L.W. Calculation of constant power lithium battery discharge curves, Batteries 2016; 2: 17.
  • Kılıç, R. Farklı elektrokimyasal yöntemlerle sentezlenen poli (1-5, diaminonaftalin) filmlerinin süperkapasitör özelliklerinin incelemesi, Ph.D. thesis, ESOGÜ, Fen Bilimleri Enstitüsü 2014.
  • Amanov A, Cho I.S, Kim D.E, and Pyun Y.S. Fretting wear and friction reduction of CP titanium and Ti–6Al–4V alloy by ultrasonic nanocrystalline surface modification, Surface and Coatings Technology 2012; 207: 135-142.
  • Vest H. Fundamentals of the Recycling of Lead-Acid Batteries, Gate Information Service 2002;6: 1-2.
  • Canis B. Battery manufacturing for hybrid and electric vehicles: Policy issues, Congressional Research Service Washington, DC, USA 2013.
  • Moseley P.T, Rand D.A, and Peters K. Enhancing the performance of lead–acid batteries with carbon–In pursuit of an understanding, Journal of Power Sources 2015; 295: 268-274.
  • Cano Z.P, Banham D, Ye S, Hintennach A, Lu J, Fowler M, and Chen Z. Batteries and fuel cells for emerging electric vehicle markets, Nature Energy 2018; 3: 279-289.
  • Hadjipaschalis I, Poullikkas A, and Efthimiou V. Overview of current and future energy storage technologies for electric power applications, Renewable and sustainable energy reviews 2009; 13: 1513-1522.
  • Duffner F, Mauler L, Wentker M, Leker J, and Winter M. Large-scale automotive battery cell manufacturing: Analyzing strategic and operational effects on manufacturing costs, International Journal of Production Economics 2021; 232: 107982.
  • Gençten M, Kurşun asit akülerin performanslarının artırılması, Ph.D. thesis, Anadolu University (Turkey) 2016.

Comparison of Galvanostatic Test Results of Lead Acid and Li-ion Batteries Used in Electric Vehicle Technology

Yıl 2023, , 691 - 697, 01.09.2023
https://doi.org/10.35234/fumbd.1306028

Öz

Ensuring the continuity of renewable energy sources and using electric vehicles instead of internal combustion engines directly affects the environment and quality of life. Studies on batteries that are intended to be developed by adding different metals are still in progress. Batteries with high performance and long service life are demanded in every field today. It also contains important information about the style of writing. In this study, it is aimed to provide general information about Li-ion batteries and lead-acid batteries. The analysis of the electrochemical behavior of the batteries was carried out using the galvanostatic method (100 cycles; under constant current). Fabricated batteries; When the capacity-cycle numbers and charge-discharge curves are examined; It has been shown that the battery (Sony VTC5) in the Li-ion type battery group will offer a longer service life by exhibiting a higher capacity.

Proje Numarası

FYL-2022-2852

Kaynakça

  • Tang W, Liu L, Tian S, Li L, Yue Y, Wu Y, Guan S, and Zhu K. Nano-LiCoO2 as cathode material of large capacity and high rate capability for aqueous rechargeable lithium batteries, Electrochemistry Communications 2010; 12: 1524-1526.
  • Catenacci M, Fiorese G, Verdolini E, and Bosetti V. Going electric: Expert survey on the future of battery technologies for electric vehicles, in Innovation under Uncertainty, Edward Elgar Publishing 2015; 6:110-138.
  • Brodd R. What are Batteries, Fuel Cells, and Supercapacitors, Chemical Reviews 2005; 105: 1021.
  • Turan D, and Yönetken A. Enerji depolama sistemlerinin araştırılması ve analizi, Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 2016; 16: 113-121.
  • Nor J.K. Art of charging electric vehicle batteries. In Proceedings of Wescon'93. IEEE 1993; San Francisco, CA, USA:293.
  • Xiao Q, Li B, Dai F, Yang L, and Cai M. Application of lithium ion battery for vehicle electrification, Electrochemical Energy: Advanced Materials and Technologies 2015;1-29.
  • Özcan Ö.F, Karadağ T, Altuğ M, and Özgüven Ö. Elektrikli Araçlarda Kullanılan Pil Kimyasallarının Özellikleri ve Üstün Yönlerinin Kıyaslanması Üzerine Bir Derleme Çalışması, Gazi University Journal of Science Part A: Engineering and Innovation 2021;8: 276-298.
  • Lukic S.M, Cao J, Bansal R.C, Rodriguez F, and Emadi A. Energy storage systems for automotive applications, IEEE Transactions on industrial electronics 2008;55: 2258-2267.
  • Muratoğlu Y. and Alkaya A. Elektrikli Araç Teknolojisi ve Pil Yönetim Sistemi-İnceleme, Elektrik Mühendisliği 2016;458: 10-14.
  • Chan C. An overview of electric vehicle technology, Proceedings of the IEEE 1993;8: 1202-1213.
  • Etacheri V, Marom R, Elazari R, Salitra G, and Aurbach D. Challenges in the development of advanced Li-ion batteries: a review, Energy & Environmental Science 2011; 4: 3243-3262.
  • Demir U. and Akuner M. Design and optimization of in-wheel asynchronous motor for electric vehicle, Journal of the Faculty of Engineering and Architecture of Gazi University 2018; 33: 1517-1530.
  • Güneş D, Tekdemir İ.G, Karaarslan M.Ş, and Alboyacı B. Assessment of the impact of electric vehicle charge station loads on reliability indices, Journal of the Faculty of Engineering and Architecture of Gazi University 2018; 33: 1073-1084.
  • Soloveichik G.L. Battery technologies for large-scale stationary energy storage, Annual review of chemical and biomolecular engineering 2011; 2: 503-527.
  • Daniel C. and Besenhard J.O. Handbook of battery materials, John Wiley & Sons 2012.
  • Palizban O. and Kauhaniemi K. Energy storage systems in modern grids—Matrix of technologies and applications, Journal of Energy Storage 2016; 6: 248-259.
  • Luo X, Wang J, Dooner M, and Clarke J. Overview of current development in electrical energy storage technologies and the application potential in power system operation, Applied energy 2015; 137: 511-536.
  • Tan X, Li Q, and Wang H. Advances and trends of energy storage technology in microgrid, International Journal of Electrical Power & Energy Systems 2013; 44: 179-191.
  • Chen H, Cong T, Yang W, Tan C, Li Y, and Ding Y. Progress in electrical energy storage system: A critical review 2009; 19: 291-312.
  • Ibrahim H, Ilinca A, and Perron J. Energy storage systems—Characteristics and comparisons, Renewable and sustainable energy reviews 2008;12:1221-1250.
  • Hall P.J. and Bain E.J. Energy-storage technologies and electricity generation, Energy policy 2008; 36: 4352-4355.
  • Moseley P.T. and Garche J. Electrochemical energy storage for renewable sources and grid balancing, Newnes 2014.
  • Pavlov D. Lead-acid batteries: science and technology, Elsevier 2011.
  • Yoshino A. The birth of the lithium‐ion battery, Angewandte Chemie International Edition 2012; 51: 5798-5800.
  • Lin D, Liu Y, and Cui Y. Reviving the lithium metal anode for high-energy batteries, Nature nanotechnology 2017; 12: 194-206.
  • Vidyanandan K. Batteries for electric vehicles, Power Management Institute 2019.
  • Tarascon J.M. and Armand M. Issues and challenges facing rechargeable lithium batteries, natüre 2001; 414: 359-367.
  • Vikström H, Davidsson S, and Höök M. Lithium availability and future production outlooks, Applied energy 2013; 110: 252-266.
  • Kruse R.E. and Huls T.A. Development of the federal urban driving Schedule 1973.
  • Traub L.W. Calculation of constant power lithium battery discharge curves, Batteries 2016; 2: 17.
  • Kılıç, R. Farklı elektrokimyasal yöntemlerle sentezlenen poli (1-5, diaminonaftalin) filmlerinin süperkapasitör özelliklerinin incelemesi, Ph.D. thesis, ESOGÜ, Fen Bilimleri Enstitüsü 2014.
  • Amanov A, Cho I.S, Kim D.E, and Pyun Y.S. Fretting wear and friction reduction of CP titanium and Ti–6Al–4V alloy by ultrasonic nanocrystalline surface modification, Surface and Coatings Technology 2012; 207: 135-142.
  • Vest H. Fundamentals of the Recycling of Lead-Acid Batteries, Gate Information Service 2002;6: 1-2.
  • Canis B. Battery manufacturing for hybrid and electric vehicles: Policy issues, Congressional Research Service Washington, DC, USA 2013.
  • Moseley P.T, Rand D.A, and Peters K. Enhancing the performance of lead–acid batteries with carbon–In pursuit of an understanding, Journal of Power Sources 2015; 295: 268-274.
  • Cano Z.P, Banham D, Ye S, Hintennach A, Lu J, Fowler M, and Chen Z. Batteries and fuel cells for emerging electric vehicle markets, Nature Energy 2018; 3: 279-289.
  • Hadjipaschalis I, Poullikkas A, and Efthimiou V. Overview of current and future energy storage technologies for electric power applications, Renewable and sustainable energy reviews 2009; 13: 1513-1522.
  • Duffner F, Mauler L, Wentker M, Leker J, and Winter M. Large-scale automotive battery cell manufacturing: Analyzing strategic and operational effects on manufacturing costs, International Journal of Production Economics 2021; 232: 107982.
  • Gençten M, Kurşun asit akülerin performanslarının artırılması, Ph.D. thesis, Anadolu University (Turkey) 2016.
Toplam 39 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik, Elektrik Enerjisi Depolama
Bölüm MBD
Yazarlar

Esra Balci 0000-0003-0127-7602

Gürkan Gündüz 0000-0002-3067-6576

Sebahat Altundağ 0000-0002-4777-8376

Serdar Altın 0000-0002-4590-907X

Proje Numarası FYL-2022-2852
Yayımlanma Tarihi 1 Eylül 2023
Gönderilme Tarihi 29 Mayıs 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Balci, E., Gündüz, G., Altundağ, S., Altın, S. (2023). Elektrikli Araç Teknolojisinde Kullanılan Kurşun Asit ve Li-iyon Bataryaların Galvanostatik Test Sonuçlarının Karşılaştırılması. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 35(2), 691-697. https://doi.org/10.35234/fumbd.1306028
AMA Balci E, Gündüz G, Altundağ S, Altın S. Elektrikli Araç Teknolojisinde Kullanılan Kurşun Asit ve Li-iyon Bataryaların Galvanostatik Test Sonuçlarının Karşılaştırılması. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. Eylül 2023;35(2):691-697. doi:10.35234/fumbd.1306028
Chicago Balci, Esra, Gürkan Gündüz, Sebahat Altundağ, ve Serdar Altın. “Elektrikli Araç Teknolojisinde Kullanılan Kurşun Asit Ve Li-Iyon Bataryaların Galvanostatik Test Sonuçlarının Karşılaştırılması”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 35, sy. 2 (Eylül 2023): 691-97. https://doi.org/10.35234/fumbd.1306028.
EndNote Balci E, Gündüz G, Altundağ S, Altın S (01 Eylül 2023) Elektrikli Araç Teknolojisinde Kullanılan Kurşun Asit ve Li-iyon Bataryaların Galvanostatik Test Sonuçlarının Karşılaştırılması. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 35 2 691–697.
IEEE E. Balci, G. Gündüz, S. Altundağ, ve S. Altın, “Elektrikli Araç Teknolojisinde Kullanılan Kurşun Asit ve Li-iyon Bataryaların Galvanostatik Test Sonuçlarının Karşılaştırılması”, Fırat Üniversitesi Mühendislik Bilimleri Dergisi, c. 35, sy. 2, ss. 691–697, 2023, doi: 10.35234/fumbd.1306028.
ISNAD Balci, Esra vd. “Elektrikli Araç Teknolojisinde Kullanılan Kurşun Asit Ve Li-Iyon Bataryaların Galvanostatik Test Sonuçlarının Karşılaştırılması”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 35/2 (Eylül 2023), 691-697. https://doi.org/10.35234/fumbd.1306028.
JAMA Balci E, Gündüz G, Altundağ S, Altın S. Elektrikli Araç Teknolojisinde Kullanılan Kurşun Asit ve Li-iyon Bataryaların Galvanostatik Test Sonuçlarının Karşılaştırılması. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2023;35:691–697.
MLA Balci, Esra vd. “Elektrikli Araç Teknolojisinde Kullanılan Kurşun Asit Ve Li-Iyon Bataryaların Galvanostatik Test Sonuçlarının Karşılaştırılması”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, c. 35, sy. 2, 2023, ss. 691-7, doi:10.35234/fumbd.1306028.
Vancouver Balci E, Gündüz G, Altundağ S, Altın S. Elektrikli Araç Teknolojisinde Kullanılan Kurşun Asit ve Li-iyon Bataryaların Galvanostatik Test Sonuçlarının Karşılaştırılması. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2023;35(2):691-7.