Araştırma Makalesi
BibTex RIS Kaynak Göster

The Cyclical Approach in Chemical Reduction Methods Using Hummers and Ascorbic Acid

Yıl 2024, , 641 - 650, 30.09.2024
https://doi.org/10.35234/fumbd.1393163

Öz

Graphene oxide synthesized from graphite by the Hummers method and then reduced graphene oxide synthesized from graphene oxide by the chemical reduction method have many uses. In this study, the cyclic approach was used to synthesize graphene oxide and reduced graphene oxide. With this goal, the first cycle will be completed by synthesizing graphene oxide from graphite using the Hummers method and then reducing graphene oxide using ascorbic acid in the chemical reduction method. The cyclic approach aimed to use the reduced graphene oxide synthesized from the first cycle in the Hummers method instead of graphite in the second cycle. Four different graphene oxide and reduced graphene oxide samples were obtained by the loop process. Graphene oxide and reduced graphene oxide samples belonging to each synthesized cycle were characterized by FTIR, RAMAN, BET, ZETA-SIZER, and SEM-EDS analyses, and graphene oxide and reduced graphene oxide samples were characterized by a cyclic approach. With the cyclic approach, it was found that the defective regions in the structure increased with the increase of oxidation degrees in graphene oxide samples, and the faulty areas of the structure decreased with the decrease of oxidation degrees in reduced graphene oxide samples.

Proje Numarası

MF081123B33

Kaynakça

  • Zhu K, Wen C, Aljarb AA, Xue F, Xu X, Tung V,Zhang X, Alshareef H N, Lanza M. The development of integrated circuits based on two-dimensional materials. Nat Electron 2021;4:775–785.
  • Bai, Y, Xu, T, & Zhang, X. Graphene-based biosensors for detection of biomarkers. Micromachines, 2020; 11(1):60-79.
  • Su H, Hu YH. Recent advances in graphene-based materials for fuel cell applications. Energy Sci Eng 2021;9:958–983.
  • Jia Y, Zhang J, Kong D, Zhang C, Han D, Han J, et al. Practical Graphene Technologies for Electrochemical Energy Storage. Adv Funct. Mater. 2022;32:1–17.
  • Chen Z, Narita A, Müllen K. Graphene Nanoribbons: On-Surface Synthesis and Integration into Electronic Devices Adv Mater 2020;32:1–26.
  • Song S, Shen H, Wang Y, Chu X, Xie J, Zhou N, Shen J. Biomedical application of graphene: From drug delivery, tumor therapy, to theranostics. Colloids Surfaces B Biointerfaces. 2020;185:110596.
  • Madenli Ö, Deveci Eu, Gönen Ç. Ağır Metal Gideriminde Grafen Uygulamaları Adsorpsiyon Teknolojisi. Fırat Üniversitesi Mühendislik Bilim Dergisi 2021;33:151–9.
  • Bhol P, Yadav S, Altaee A, Saxena M, Misra PK, Samal AK. Graphene-Based Membranes for Water and Wastewater Treatment: A Review. ACS Appl Nano Mater 2021;4:3274–93.
  • Al-Gaashani, R, Najjar, A, Zakaria, Y, Mansour, S, & Atieh, M. A. XPS and structural studies of high quality graphene oxide and reduced graphene oxide prepared by different chemical oxidation methods. Ceramics International, 2019;45(11), 14439-14448.
  • Hummers WS, Offeman RE. Preparation of Graphitic Oxide. J Am Chem Soc 1958;80:1339.
  • Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, et al. Improved synthesis of graphene oxide. ACS Nano 2010;4:4806–14.
  • Wang, JB, Ren, Z, Hou, Y, Yan, XL, Liu, P Z, Zhang, H, & Guo, J J.A review of graphene synthesisatlow temperatures by CVD methods. New Carbon Materials, 2020;35(3):193-208.
  • Korucu, H. Evaluation of the performance on reduced graphene oxide synthesized using ascorbic acid and sodium borohydride: Experimental designs‐based multi‐response optimization application. Journal of Molecular Structure, 2022;1268: 133715.
  • Palomba, M, Carotenuto, G, & Longo, A. A brief review: the use of L-ascorbic acid as a green reducing agent of graphene oxide. Materials,2022; 15(18):6456.
  • Trikkaliotis, D G, Christoforidis, A K, Mitropoulos, A C, & Kyzas, G Z. Graphene oxide synthesis, properties and characterization techniques: a comprehensive review. ChemEngineering, 2021; 5(3):64.
  • Wu, J B, Lin, M L, Cong, X, Liu, HN, & Tan, P H. Raman spectroscopy of graphene-based materials and its applications in related devices. Chemical Society Reviews, 2018;47(5), 1822-1873.
  • Chen, X, Qu, Z, Liu, Z, & Ren, G. Mechanism of oxidization of graphite to graphene oxide by the hummers method. ACS omega, 2022;7(27), 23503-23510.

Hummers ve Askorbik Asit ile Kimyasal İndirgenme Metotlarında Döngüsel Yaklaşım

Yıl 2024, , 641 - 650, 30.09.2024
https://doi.org/10.35234/fumbd.1393163

Öz

Grafitten, Hummers metodu ile sentezlenen grafen oksidin ve sonrasında grafen oksitten kimyasal indirgenme metodu ile sentezlenen indirgenmiş grafen oksidin, pek çok kullanım alanlarına sahiptir. Bu çalışmada döngüsel yaklaşım ile grafen oksit ve indirgenmiş grafen oksit sentezlenmesi hedeflenmiştir. Bu hedef ile grafitten, Hummers yöntemi ile grafen oksit ve ardından kimyasal indirgenme metodunda askorbik asit kullanılarak indirgenmiş grafen oksit sentezlenerek birinci döngü tamamlanacaktır. Birinci döngüden sentezlenen indirgenmiş grafen oksit ikinci döngüde grafit yerine Hummers yönteminde kullanılarak döngüsel yaklaşım hedeflenmiştir. Döngü prosesi ile dört farklı grafen oksit ve indirgenmiş grafen oksit örnekleri elde edilmiştir. Sentezlenen her bir döngüye ait grafen oksit ve indirgenmiş grafen oksit örneklerinde, FTIR, RAMAN, BET, ZETA-SİZER ve SEM-EDS analizleri ile döngüsel yaklaşımda grafen oksit ve indirgenmiş grafen oksit örneklerinin karakterizasyonu gerçekleştirilmiştir. Döngüsel yaklaşım ile grafen oksit örneklerinde oksidasyon derecelerinin artması ile yapıdaki kusurlu bölgelerinin artığı, indirgenmiş grafen oksit örneklerinde ise oksidasyon derecelerinin azalması ile yapıdaki kusurlu bölgelerinin azaldığı tespit edilmiştir.

Etik Beyan

Bu çalışmanın, özgün bir çalışma olduğunu; çalışmanın hazırlık, veri toplama, analiz ve bilgilerin sunumu olmak üzere tüm aşamalarından bilimsel etik ilke ve kurallarına uygun davrandığımı; bu çalışma kapsamında elde edilmeyen tüm veri ve bilgiler için kaynak gösterdiğimi ve bu kaynaklara kaynakçada yer verdiğimi; kullanılan verilerde herhangi bir değişiklik yapmadığımı, çalışmanın Committee on Publication Ethics (COPE)' in tüm şartlarını ve koşullarını kabul ederek etik görev ve sorumluluklara riayet ettiğimi beyan ederim

Destekleyen Kurum

Çankırı Karatekin Universitesi

Proje Numarası

MF081123B33

Teşekkür

Bu araştırma Çankırı Karatekin Üniversitesi tarafından finanse edilen Bilimsel Araştırma Projesi (MF081123B33) desteği ile gerçekleştirilmiştir. Yazarlar Çankırı Karatekin Üniversitesi Bilimsel Araştırma Proje Yönetim Birimi'ne (ÇAKÜ-BAP) teşekkür eder.

Kaynakça

  • Zhu K, Wen C, Aljarb AA, Xue F, Xu X, Tung V,Zhang X, Alshareef H N, Lanza M. The development of integrated circuits based on two-dimensional materials. Nat Electron 2021;4:775–785.
  • Bai, Y, Xu, T, & Zhang, X. Graphene-based biosensors for detection of biomarkers. Micromachines, 2020; 11(1):60-79.
  • Su H, Hu YH. Recent advances in graphene-based materials for fuel cell applications. Energy Sci Eng 2021;9:958–983.
  • Jia Y, Zhang J, Kong D, Zhang C, Han D, Han J, et al. Practical Graphene Technologies for Electrochemical Energy Storage. Adv Funct. Mater. 2022;32:1–17.
  • Chen Z, Narita A, Müllen K. Graphene Nanoribbons: On-Surface Synthesis and Integration into Electronic Devices Adv Mater 2020;32:1–26.
  • Song S, Shen H, Wang Y, Chu X, Xie J, Zhou N, Shen J. Biomedical application of graphene: From drug delivery, tumor therapy, to theranostics. Colloids Surfaces B Biointerfaces. 2020;185:110596.
  • Madenli Ö, Deveci Eu, Gönen Ç. Ağır Metal Gideriminde Grafen Uygulamaları Adsorpsiyon Teknolojisi. Fırat Üniversitesi Mühendislik Bilim Dergisi 2021;33:151–9.
  • Bhol P, Yadav S, Altaee A, Saxena M, Misra PK, Samal AK. Graphene-Based Membranes for Water and Wastewater Treatment: A Review. ACS Appl Nano Mater 2021;4:3274–93.
  • Al-Gaashani, R, Najjar, A, Zakaria, Y, Mansour, S, & Atieh, M. A. XPS and structural studies of high quality graphene oxide and reduced graphene oxide prepared by different chemical oxidation methods. Ceramics International, 2019;45(11), 14439-14448.
  • Hummers WS, Offeman RE. Preparation of Graphitic Oxide. J Am Chem Soc 1958;80:1339.
  • Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, et al. Improved synthesis of graphene oxide. ACS Nano 2010;4:4806–14.
  • Wang, JB, Ren, Z, Hou, Y, Yan, XL, Liu, P Z, Zhang, H, & Guo, J J.A review of graphene synthesisatlow temperatures by CVD methods. New Carbon Materials, 2020;35(3):193-208.
  • Korucu, H. Evaluation of the performance on reduced graphene oxide synthesized using ascorbic acid and sodium borohydride: Experimental designs‐based multi‐response optimization application. Journal of Molecular Structure, 2022;1268: 133715.
  • Palomba, M, Carotenuto, G, & Longo, A. A brief review: the use of L-ascorbic acid as a green reducing agent of graphene oxide. Materials,2022; 15(18):6456.
  • Trikkaliotis, D G, Christoforidis, A K, Mitropoulos, A C, & Kyzas, G Z. Graphene oxide synthesis, properties and characterization techniques: a comprehensive review. ChemEngineering, 2021; 5(3):64.
  • Wu, J B, Lin, M L, Cong, X, Liu, HN, & Tan, P H. Raman spectroscopy of graphene-based materials and its applications in related devices. Chemical Society Reviews, 2018;47(5), 1822-1873.
  • Chen, X, Qu, Z, Liu, Z, & Ren, G. Mechanism of oxidization of graphite to graphene oxide by the hummers method. ACS omega, 2022;7(27), 23503-23510.
Toplam 17 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Çevresel ve Sürdürülebilir Süreçler, Kimyasal Reaksiyon, Malzeme Bilimi ve Teknolojileri, Toz ve Parçacık Teknolojisi
Bölüm MBD
Yazarlar

Esra Yılmaz Mertsoy 0000-0001-5217-5425

Enes Bektaş 0000-0002-8380-4519

Mohammad Ruhul Amin Bhuiyan 0000-0001-7335-4158

Haluk Korucu 0000-0001-6763-3249

Proje Numarası MF081123B33
Yayımlanma Tarihi 30 Eylül 2024
Gönderilme Tarihi 21 Kasım 2023
Kabul Tarihi 3 Eylül 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Yılmaz Mertsoy, E., Bektaş, E., Bhuiyan, M. R. A., Korucu, H. (2024). Hummers ve Askorbik Asit ile Kimyasal İndirgenme Metotlarında Döngüsel Yaklaşım. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 36(2), 641-650. https://doi.org/10.35234/fumbd.1393163
AMA Yılmaz Mertsoy E, Bektaş E, Bhuiyan MRA, Korucu H. Hummers ve Askorbik Asit ile Kimyasal İndirgenme Metotlarında Döngüsel Yaklaşım. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. Eylül 2024;36(2):641-650. doi:10.35234/fumbd.1393163
Chicago Yılmaz Mertsoy, Esra, Enes Bektaş, Mohammad Ruhul Amin Bhuiyan, ve Haluk Korucu. “Hummers Ve Askorbik Asit Ile Kimyasal İndirgenme Metotlarında Döngüsel Yaklaşım”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 36, sy. 2 (Eylül 2024): 641-50. https://doi.org/10.35234/fumbd.1393163.
EndNote Yılmaz Mertsoy E, Bektaş E, Bhuiyan MRA, Korucu H (01 Eylül 2024) Hummers ve Askorbik Asit ile Kimyasal İndirgenme Metotlarında Döngüsel Yaklaşım. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 36 2 641–650.
IEEE E. Yılmaz Mertsoy, E. Bektaş, M. R. A. Bhuiyan, ve H. Korucu, “Hummers ve Askorbik Asit ile Kimyasal İndirgenme Metotlarında Döngüsel Yaklaşım”, Fırat Üniversitesi Mühendislik Bilimleri Dergisi, c. 36, sy. 2, ss. 641–650, 2024, doi: 10.35234/fumbd.1393163.
ISNAD Yılmaz Mertsoy, Esra vd. “Hummers Ve Askorbik Asit Ile Kimyasal İndirgenme Metotlarında Döngüsel Yaklaşım”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 36/2 (Eylül 2024), 641-650. https://doi.org/10.35234/fumbd.1393163.
JAMA Yılmaz Mertsoy E, Bektaş E, Bhuiyan MRA, Korucu H. Hummers ve Askorbik Asit ile Kimyasal İndirgenme Metotlarında Döngüsel Yaklaşım. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2024;36:641–650.
MLA Yılmaz Mertsoy, Esra vd. “Hummers Ve Askorbik Asit Ile Kimyasal İndirgenme Metotlarında Döngüsel Yaklaşım”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, c. 36, sy. 2, 2024, ss. 641-50, doi:10.35234/fumbd.1393163.
Vancouver Yılmaz Mertsoy E, Bektaş E, Bhuiyan MRA, Korucu H. Hummers ve Askorbik Asit ile Kimyasal İndirgenme Metotlarında Döngüsel Yaklaşım. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2024;36(2):641-50.