Araştırma Makalesi
BibTex RIS Kaynak Göster

Silan Ajanları ile Modifiye Edilmiş Montmorillonit Katkılı Polimerik Kompozit Filmlerin Üretilmesi ve Karakterizasyonu

Yıl 2024, , 695 - 704, 30.09.2024
https://doi.org/10.35234/fumbd.1418011

Öz

Bu çalışmada, dolgu maddesi olarak kullanılan montmorillonit (MMT), iki farklı silan ajanı ((3- aminopropil)trietoksisilan (APTES) ve (3-glisidoksipropil)trimetoksisilan (GPTMS)) ile modifiye edilmiş, organik faz ile ara yüzey etkileşiminin arttırılması ve polimer matrisi içerisinde homojen bir şekilde dağılması sağlanmıştır. Polimer matris olarak ise biyobozunur ve biyouyumlu özelliklere sahip sentetik polimerlerden polikaprolakton (PCL) ve biyouyumlu ve hidrofilik özelliğe sahip polivinilpirolidon (PVP) birlikte kullanılmış ve çözelti döküm yöntemiyle biyomalzemeler üretilmiştir. Kemik doku mühendisliğine yönelik doku iskelesi olarak kullanımı ön görülen biyomalzemelerin morfolojik, fizikokimyasal ve mekanik özellikleri, atomik kuvvet mikroskobu (AFM), Fourier transform kızılötesi spektroskopisi (FT-IR), X-ışını difraktometresi (XRD), temas açısı analizi, su absorplama kapasitesi analizi ve mekanik analiz ile karakterize edilmiştir. AFM sonuçları, PCL/PVP polimer matrisinin 0,507 µm olan pürüzlülük değerinin modifiye edilmemiş MMT’nin eklenmesiyle 0,171 µm ve MMT-APTES eklenmesiyle ise 0,160 µm değerine düştüğünü göstermiştir. Pürüzlülük oranı en yüksek GPTMS ile modifiye edilmiş MMT katkılı biyomalzemelerde 0,530 µm olarak bulunmuştur. Temas açı değerleri ve su absorplama kapasiteleri karşılaştırıldığında, 68,4° ve 59,7° temas açı değerleri bulunan APTES ve GPTMS ile modifiye edilmiş MMT katkılı biyomalzemelerin, MMT katılmamış biyomalzemeden daha hidrofilik olduğu ve su absorplama kapasitesinin MMT katılmamış polimer matristen ve modifiye edilmemiş biyomalzemeden %125 ve %144 olarak daha yüksek olduğu görülmüştür. Sonuç olarak, ön değerlendirme niteliğindeki bu çalışmamız ile APTES ile modifiye edilmiş MMT katkılı PCL/PVP biyomalzemelerinin kemik doku hasarlarının tedavisinde doku iskelesi olarak kullanılabileceği ön görülmektedir.

Destekleyen Kurum

Bu çalışma, TÜBİTAK 2209-A Üniversite Öğrencileri Araştırma Projeleri Destekleme Programı tarafından 1919B012214355 numaralı proje kapsamında desteklenmiştir.

Proje Numarası

1919B012214355

Kaynakça

  • Khan Y, Yaszemski MJ, Mikos AG, Laurencin CT. Tissue engineering of bone: material and matrix considerations. J Bone Jt Surg 2008; 90: 36-42.
  • Porter JR, Ruckh TT, Popat KC. Bone tissue engineering: a review in bone biomimetics and drug delivery strategies. Biotechnol Prog 2009; 25(6): 1539-1560.
  • Langer R, Tirrell DA. Designing materials for biology and medicine (Review). Nature 2004; 428(6982): 487-492.
  • Eskitoros-Togay ŞM, Bulbul YE, Tort S, Korkmaz Demirtaş F, Acartürk F, Dilsiz N. Fabrication of doxycycline-loaded electrospun PCL/PEO membranes for a potential drug delivery system. Int J Pharm 2019; 565: 83–94.
  • Eskitoros-Togay ŞM, Bulbul YE, Dilsiz N. Controlled release of doxycycline within core/shell poly (ε-caprolactone)/poly(ethylene oxide) fibers via coaxial electrospinning. J Appl Polym Sci 2020; e49273: 1-12.
  • Ghorbani F, Sahranavard M, Zamanian A. Immobilization of gelatin on the oxygen plasma-modified surface of polycaprolactone scaffolds with tunable pore structure for skin tissue engineering. J Polym Res 2020; 27: 1-12.
  • Ning W, Shang P, Wu J, Shi X, Liu S. Novel amphiphilic, biodegradable, biocompatible, thermo-responsive ABA triblock copolymers based on PCL and PEG analogues via a combination of ROP and RAFT: Synthesis, characterization, and sustained drug release from self-assembled micelles. Polym 2018; 10(2): 214.
  • Mishra R, Varshney R, Das N, Sircar D, Roy P. Synthesis and characterization of gelatin-PVP polymer composite scaffold for potential application in bone tissue engineering. Eur Polym J 2019; 119: 155-168.
  • Sruthi R, Balagangadharan K, Selvamurugan N. Polycaprolactone/polyvinylpyrrolidone coaxial electrospun fibers containing veratric acid-loaded chitosan nanoparticles for bone regeneration. Colloids Surf B Biointerfaces 2020; 193: 111110.
  • Sadeghi-Avalshahr AR, Nokhasteh S, Molavi AM, Mohammad-Pour N, Sadeghi M. Tailored PCL scaffolds as skin substitutes using sacrificial PVP fibers and collagen/chitosan blends. Int J Mol Sci 2020; 21(7): 2311.
  • Mittal V. Nanocomposites with biodegradable polymers: synthesis, properties, and future perspectives. Oxford Scholarship Online, 2011.
  • Mkhabela V, Rat SS. Biodegradation and bioresorption of poly(ɛ-caprolactone) nanocomposite scaffolds. Int J Biol Macromol 2015; 79: 186-192.
  • Donmez F, Kandemir AC, Can HK. Biocompatible nanocomposite production via nanoclays with diverse morphology. Int J Polym Anal Charact 2022; 27(3): 158-179.
  • Khatoon N, Chu MQ, Zhou CH. Nanoclay-based drug delivery systems and their therapeutic potentials. J Mater Chem B 2020; 2020: 1-19.
  • Jayrajsinh S, Shankar G, Agrawal YK, Bakre L. Montmorillonite nanoclay as a multifaceted drug-delivery carrier: A review. J Drug Deliv Sci Technol 2017; 39: 200–209.
  • Bertuoli PT, Piazza, D, Scienza, LC, Zattera, AJ. Preparation and characterization of montmorillonite modified with 3-aminopropyltriethoxysilane. Appl Clay Sci 2014; 87: 46-51.
  • Peña-Parás L, Sánchez-Fernández JA, Vidaltamayo R. Nanoclays for biomedical applications, in handbook of ecomaterials. Springer International Publishing, 2019.
  • Li DY, Li P, Xu Y, Guo WM, Li MQ, Chen MG, Wang HY, Lin HM. Progress in montmorillonite functionalized artificial bone scaffolds: intercalation and interlocking, nanoenhancement, and controlled drug release. J Nanomater 2022; 2022(1): 1-20.
  • Aguzzi C, Cerezo P, Viseras C, Caramella C. Use of clays as drug delivery systems: possibilities and limitations. Appl Clay Sci 2007; 36(1-3): 22-36.
  • Demir AK, Elçin AE, Elçin YM. Strontium-modified chitosan/montmorillonite composites as bone tissue engineering scaffold. Mat Sci Eng-C 2018; 89: 8-14.
  • Zulfiqar S, Kausar A, Rizwan M, Sarwar MI. Probing the role of surface treated montmorillonite on the properties of semi-aromatic polyamide/clay nanocomposites. Appl Surf Sci 2008; 255: 2080–2086.
  • Su L, He H, Zhu J, Yuan P. Locking effect: A novel insight in the silylation of montmorillonite surfaces. Mater Chem Phys 2012; 136 (2–3): 292-295.
  • Wypych F. Chemical modification of clay surfaces. In: Wypych F, Satyanarayana KG (eds) Clay surfaces: fundamentals and applications, Elsevier, Amsterdam, 2004, pp. 1–56.
  • Xie Y, Hill CAS, Xiao Z, Militz H, Mai C. Silane coupling agents used for natural fiber/polymer composites: A review. Compos – A 2010; 41: 806–819.
  • Vuppaladadium SSR, Agarwal T, Kulanthaivel S, Mohanty B, Barik CS, Maiti TK, Banerjee I. Silanization improves biocompatibility of graphene oxide. Mater Sci Eng-C 2020; 110: 110647.
  • Verma D, Okhawilai M, Senthilkumar N, Subramani K, Incharoensakdi A, Raja GG, Uyama H. Augmentin loaded functionalized halloysite nanotubes: A sustainable emerging nanocarriers for biomedical applications. Environ Res 2024; 242: 117811.
  • He H, Duchet J, Galy J, Gerard JF. Grafting of swelling clay materials with 3-aminopropyltriethoxysilane. J Colloid Interface Sci 2005; 288: 171–176.
  • He W, Yao Y, He M, Kai Z, Long L, Zhang M, Qin S, Yu J. Influence of Reaction Conditions on the grafting pattern of 3-Glycidoxypropyl trimethoxysilane on montmorillonite. Bull Korean Chem Soc 2013; 34(1): 112-116.
  • Shen W, He H, Zhu J, Yuan P, Frost RL. Grafting of montmorillonite with different functional silanes via two different reaction systems. J Colloid Interface Sci 2007; 313: 268–273.
  • Bulbul YE, Okur M, Demirtaş Korkmaz F, Dilsiz N. Development of PCL PEO electrospun fibrous membranes blended with silane-modified halloysite nanotube as a curcumin release system. Appl Clay Sci 2020; 186: 105430–105444.
  • Olad A, Hang HBK, Mirmohseni A, Azhar FF. Graphene oxide and montmorillonite enriched natural polymeric scaffold for bone tissue engineering. Ceram Int 2019; 45(12): 15609-15619.
  • Asgari M, Sundararaj U. Silane functionalization of sodium montmorillonite nanoclay: The effect of dispersing media on intercalation and chemical grafting. Appl Clay Sci 2018; 153: 228-238.
  • Saputra OA, Pujiasih S, Rizki VN, Nurhayati B, Pramono E, Purnawan C. Silylated-montmorillonite as co-adsorbent of chitosan composites for methylene blue dye removal in aqueous solution. Commun Sci Technol 2020; 5(1): 45-52.
  • Su L, Tao Q, He H, Zhu J, Yuan P, Zhu R. Silylation of montmorillonite surfaces: Dependence on solvent nature. J Colloid Interface Sci 2013; 391(0):16–20.
  • Raji M, Mekhzoum MEM, Rodrigue D, Bouhfid R. Effect of silane functionalization on properties of polypropylene/clay nanocomposites. Compos B Eng 2018; 146: 106-115.
  • Atmaja L, Purwanto M, Salleh MT. Mohamed MA, Jaafar J, Ismail AF, Santoso M, Widiastuti N. GPTMS-Montmorillonite-filled biopolymer chitosan membrane with improved compatibility, physicochemical, and thermal stability properties ochemical and thermal stability properties. Mal J Fund Appl Sci 2019; 15: 492–497.
  • Hua Q, Jing B, He M, Sun P, Zhao Q, Su S, Hu G, Pinh D ve diğerleri. Preparation of modified montmorillonite/graphene oxide composites to enhance the anticorrosive performance of epoxy coatings. J Coat Technol Res 2023; 20: 1111–1119.
  • Qaiss A, Bouhfid R, Essabir H. Characterization and use of coir, almond, apricot, argan, shells, and wood as reinforcement in the polymeric matrix in order to valorize these products. Agri Biomass Based Potent Mater 2015; 305-339.
  • Eskitoros-Togay ŞM, Bulbul YE, Dilsiz N. Combination of nano-hydroxyapatite and curcumin in a biopolymer blend matrix: Characteristics and drug release performance of fibrous composite material systems. Int J Pharm 2020; 590: 119933-119941.
  • Liu C, Wong H, Yeung K, Tjong S. Novel Electrospun Polylactic Acid Nanocomposite Fiber Mats with Hybrid Graphene Oxide and Nanohydroxyapatite Reinforcements Having Enhanced Biocompatibility. Polymers (Basel) 2016; 8: 287-296.
  • Tyagi B, Chudasama CD, Jasra RV. Determination of structural modification in acid activated montmorillonite clay by FT-IR spectroscopy. Spectrochim Acta - A: Mol Biomol Spectrosco 2012, 64(2): 273-278.
  • Ghosh SK, Das TK, Ganguly S, Nath K, Paul S, Ganguly D, Das NC. Silane functionalization of sodium montmorillonite and halloysite (HNT) nanoclays by ‘grafting to’ method to improve physico-mechanical and barrier properties of LLDPE/clay nanocomposites. Polym Bull 2023; 80(4): 4307-4335.
  • de Moraes Segundo JDP, de Moraes MOS, de Brito Sores AL, dos Santos GG, Silva RN, dos Santos Almeida R, Brito WR, d’Avila MA. Production and characterization of caffeic acid-loaded microfibrous polycaprolactone mats obtained by electrospinning technology. Int J Adv Eng Res Sci 2021; 8(3): 17-25.
  • Zheng Y, Zaoui A. Wetting and nanodroplet contact angle of the clay 2:1 surface: The case of Na-montmorillonite (001). Appl Surf Sci 2017; 396: 717-722.

Fabrication and Characterization of Montmorillonite Doped Polymeric Composite Films Modified with Silane Agents

Yıl 2024, , 695 - 704, 30.09.2024
https://doi.org/10.35234/fumbd.1418011

Öz

In this study, montmorillonite (MMT), used as filler, was modified with two different silane agents ((3- aminopropyl)triethoxysilane (APTES) and (3-glycidoxypropyl)trimethoxysilane (GPTMS)) to increase the interfacial interaction with the organic phase and ensure homogeneous distribution in the polymer matrix. As polymer matrix, polycaprolactone (PCL), a synthetic polymer with biodegradable and biocompatible properties, and polyvinylpyrrolidone (PVP), a biocompatible and hydrophilic polymer, were used together and biomaterials were produced by solution casting method. The morphological, physicochemical and mechanical properties of the biomaterials proposed for use as scaffolds for bone tissue engineering were characterized by atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffractometry (XRD), contact angle analysis, water absorption capacity analysis and mechanical analysis. AFM results showed that the roughness of the PCL/PVP polymer matrix decreased from 0.507 µm to 0.171 µm with the addition of unmodified MMT and to 0.160 µm with the addition of MMT-APTES. The highest roughness ratio was found to be 0.530 µm in GPTMS-modified MMT doped biomaterials. When contact angle values and water absorption capacities were compared, it was observed that APTES and GPTMS-modified MMT doped biomaterials with contact angles of 68.4° and 59.7° were more hydrophilic than the biomaterial without MMT and the water absorption capacity was 125% and 144% higher than the polymer matrix without MMT and the unmodified biomaterial. In conclusion, this preliminary study suggests that APTES-modified MMT doped PCL/PVP biomaterials can be used as tissue scaffolds in the treatment of bone tissue damage.

Proje Numarası

1919B012214355

Kaynakça

  • Khan Y, Yaszemski MJ, Mikos AG, Laurencin CT. Tissue engineering of bone: material and matrix considerations. J Bone Jt Surg 2008; 90: 36-42.
  • Porter JR, Ruckh TT, Popat KC. Bone tissue engineering: a review in bone biomimetics and drug delivery strategies. Biotechnol Prog 2009; 25(6): 1539-1560.
  • Langer R, Tirrell DA. Designing materials for biology and medicine (Review). Nature 2004; 428(6982): 487-492.
  • Eskitoros-Togay ŞM, Bulbul YE, Tort S, Korkmaz Demirtaş F, Acartürk F, Dilsiz N. Fabrication of doxycycline-loaded electrospun PCL/PEO membranes for a potential drug delivery system. Int J Pharm 2019; 565: 83–94.
  • Eskitoros-Togay ŞM, Bulbul YE, Dilsiz N. Controlled release of doxycycline within core/shell poly (ε-caprolactone)/poly(ethylene oxide) fibers via coaxial electrospinning. J Appl Polym Sci 2020; e49273: 1-12.
  • Ghorbani F, Sahranavard M, Zamanian A. Immobilization of gelatin on the oxygen plasma-modified surface of polycaprolactone scaffolds with tunable pore structure for skin tissue engineering. J Polym Res 2020; 27: 1-12.
  • Ning W, Shang P, Wu J, Shi X, Liu S. Novel amphiphilic, biodegradable, biocompatible, thermo-responsive ABA triblock copolymers based on PCL and PEG analogues via a combination of ROP and RAFT: Synthesis, characterization, and sustained drug release from self-assembled micelles. Polym 2018; 10(2): 214.
  • Mishra R, Varshney R, Das N, Sircar D, Roy P. Synthesis and characterization of gelatin-PVP polymer composite scaffold for potential application in bone tissue engineering. Eur Polym J 2019; 119: 155-168.
  • Sruthi R, Balagangadharan K, Selvamurugan N. Polycaprolactone/polyvinylpyrrolidone coaxial electrospun fibers containing veratric acid-loaded chitosan nanoparticles for bone regeneration. Colloids Surf B Biointerfaces 2020; 193: 111110.
  • Sadeghi-Avalshahr AR, Nokhasteh S, Molavi AM, Mohammad-Pour N, Sadeghi M. Tailored PCL scaffolds as skin substitutes using sacrificial PVP fibers and collagen/chitosan blends. Int J Mol Sci 2020; 21(7): 2311.
  • Mittal V. Nanocomposites with biodegradable polymers: synthesis, properties, and future perspectives. Oxford Scholarship Online, 2011.
  • Mkhabela V, Rat SS. Biodegradation and bioresorption of poly(ɛ-caprolactone) nanocomposite scaffolds. Int J Biol Macromol 2015; 79: 186-192.
  • Donmez F, Kandemir AC, Can HK. Biocompatible nanocomposite production via nanoclays with diverse morphology. Int J Polym Anal Charact 2022; 27(3): 158-179.
  • Khatoon N, Chu MQ, Zhou CH. Nanoclay-based drug delivery systems and their therapeutic potentials. J Mater Chem B 2020; 2020: 1-19.
  • Jayrajsinh S, Shankar G, Agrawal YK, Bakre L. Montmorillonite nanoclay as a multifaceted drug-delivery carrier: A review. J Drug Deliv Sci Technol 2017; 39: 200–209.
  • Bertuoli PT, Piazza, D, Scienza, LC, Zattera, AJ. Preparation and characterization of montmorillonite modified with 3-aminopropyltriethoxysilane. Appl Clay Sci 2014; 87: 46-51.
  • Peña-Parás L, Sánchez-Fernández JA, Vidaltamayo R. Nanoclays for biomedical applications, in handbook of ecomaterials. Springer International Publishing, 2019.
  • Li DY, Li P, Xu Y, Guo WM, Li MQ, Chen MG, Wang HY, Lin HM. Progress in montmorillonite functionalized artificial bone scaffolds: intercalation and interlocking, nanoenhancement, and controlled drug release. J Nanomater 2022; 2022(1): 1-20.
  • Aguzzi C, Cerezo P, Viseras C, Caramella C. Use of clays as drug delivery systems: possibilities and limitations. Appl Clay Sci 2007; 36(1-3): 22-36.
  • Demir AK, Elçin AE, Elçin YM. Strontium-modified chitosan/montmorillonite composites as bone tissue engineering scaffold. Mat Sci Eng-C 2018; 89: 8-14.
  • Zulfiqar S, Kausar A, Rizwan M, Sarwar MI. Probing the role of surface treated montmorillonite on the properties of semi-aromatic polyamide/clay nanocomposites. Appl Surf Sci 2008; 255: 2080–2086.
  • Su L, He H, Zhu J, Yuan P. Locking effect: A novel insight in the silylation of montmorillonite surfaces. Mater Chem Phys 2012; 136 (2–3): 292-295.
  • Wypych F. Chemical modification of clay surfaces. In: Wypych F, Satyanarayana KG (eds) Clay surfaces: fundamentals and applications, Elsevier, Amsterdam, 2004, pp. 1–56.
  • Xie Y, Hill CAS, Xiao Z, Militz H, Mai C. Silane coupling agents used for natural fiber/polymer composites: A review. Compos – A 2010; 41: 806–819.
  • Vuppaladadium SSR, Agarwal T, Kulanthaivel S, Mohanty B, Barik CS, Maiti TK, Banerjee I. Silanization improves biocompatibility of graphene oxide. Mater Sci Eng-C 2020; 110: 110647.
  • Verma D, Okhawilai M, Senthilkumar N, Subramani K, Incharoensakdi A, Raja GG, Uyama H. Augmentin loaded functionalized halloysite nanotubes: A sustainable emerging nanocarriers for biomedical applications. Environ Res 2024; 242: 117811.
  • He H, Duchet J, Galy J, Gerard JF. Grafting of swelling clay materials with 3-aminopropyltriethoxysilane. J Colloid Interface Sci 2005; 288: 171–176.
  • He W, Yao Y, He M, Kai Z, Long L, Zhang M, Qin S, Yu J. Influence of Reaction Conditions on the grafting pattern of 3-Glycidoxypropyl trimethoxysilane on montmorillonite. Bull Korean Chem Soc 2013; 34(1): 112-116.
  • Shen W, He H, Zhu J, Yuan P, Frost RL. Grafting of montmorillonite with different functional silanes via two different reaction systems. J Colloid Interface Sci 2007; 313: 268–273.
  • Bulbul YE, Okur M, Demirtaş Korkmaz F, Dilsiz N. Development of PCL PEO electrospun fibrous membranes blended with silane-modified halloysite nanotube as a curcumin release system. Appl Clay Sci 2020; 186: 105430–105444.
  • Olad A, Hang HBK, Mirmohseni A, Azhar FF. Graphene oxide and montmorillonite enriched natural polymeric scaffold for bone tissue engineering. Ceram Int 2019; 45(12): 15609-15619.
  • Asgari M, Sundararaj U. Silane functionalization of sodium montmorillonite nanoclay: The effect of dispersing media on intercalation and chemical grafting. Appl Clay Sci 2018; 153: 228-238.
  • Saputra OA, Pujiasih S, Rizki VN, Nurhayati B, Pramono E, Purnawan C. Silylated-montmorillonite as co-adsorbent of chitosan composites for methylene blue dye removal in aqueous solution. Commun Sci Technol 2020; 5(1): 45-52.
  • Su L, Tao Q, He H, Zhu J, Yuan P, Zhu R. Silylation of montmorillonite surfaces: Dependence on solvent nature. J Colloid Interface Sci 2013; 391(0):16–20.
  • Raji M, Mekhzoum MEM, Rodrigue D, Bouhfid R. Effect of silane functionalization on properties of polypropylene/clay nanocomposites. Compos B Eng 2018; 146: 106-115.
  • Atmaja L, Purwanto M, Salleh MT. Mohamed MA, Jaafar J, Ismail AF, Santoso M, Widiastuti N. GPTMS-Montmorillonite-filled biopolymer chitosan membrane with improved compatibility, physicochemical, and thermal stability properties ochemical and thermal stability properties. Mal J Fund Appl Sci 2019; 15: 492–497.
  • Hua Q, Jing B, He M, Sun P, Zhao Q, Su S, Hu G, Pinh D ve diğerleri. Preparation of modified montmorillonite/graphene oxide composites to enhance the anticorrosive performance of epoxy coatings. J Coat Technol Res 2023; 20: 1111–1119.
  • Qaiss A, Bouhfid R, Essabir H. Characterization and use of coir, almond, apricot, argan, shells, and wood as reinforcement in the polymeric matrix in order to valorize these products. Agri Biomass Based Potent Mater 2015; 305-339.
  • Eskitoros-Togay ŞM, Bulbul YE, Dilsiz N. Combination of nano-hydroxyapatite and curcumin in a biopolymer blend matrix: Characteristics and drug release performance of fibrous composite material systems. Int J Pharm 2020; 590: 119933-119941.
  • Liu C, Wong H, Yeung K, Tjong S. Novel Electrospun Polylactic Acid Nanocomposite Fiber Mats with Hybrid Graphene Oxide and Nanohydroxyapatite Reinforcements Having Enhanced Biocompatibility. Polymers (Basel) 2016; 8: 287-296.
  • Tyagi B, Chudasama CD, Jasra RV. Determination of structural modification in acid activated montmorillonite clay by FT-IR spectroscopy. Spectrochim Acta - A: Mol Biomol Spectrosco 2012, 64(2): 273-278.
  • Ghosh SK, Das TK, Ganguly S, Nath K, Paul S, Ganguly D, Das NC. Silane functionalization of sodium montmorillonite and halloysite (HNT) nanoclays by ‘grafting to’ method to improve physico-mechanical and barrier properties of LLDPE/clay nanocomposites. Polym Bull 2023; 80(4): 4307-4335.
  • de Moraes Segundo JDP, de Moraes MOS, de Brito Sores AL, dos Santos GG, Silva RN, dos Santos Almeida R, Brito WR, d’Avila MA. Production and characterization of caffeic acid-loaded microfibrous polycaprolactone mats obtained by electrospinning technology. Int J Adv Eng Res Sci 2021; 8(3): 17-25.
  • Zheng Y, Zaoui A. Wetting and nanodroplet contact angle of the clay 2:1 surface: The case of Na-montmorillonite (001). Appl Surf Sci 2017; 396: 717-722.
Toplam 44 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Malzeme Bilimi ve Teknolojileri, Polimer Bilimi ve Teknolojileri, Nanoteknoloji (Diğer)
Bölüm MBD
Yazarlar

Şükran Melda Eskitoros Toğay 0000-0002-7473-8417

Aleyna Yeşilyurt 0009-0007-5708-5630

Sema Çörtoğlu 0009-0002-6338-5713

Proje Numarası 1919B012214355
Yayımlanma Tarihi 30 Eylül 2024
Gönderilme Tarihi 11 Ocak 2024
Kabul Tarihi 24 Temmuz 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Eskitoros Toğay, Ş. M., Yeşilyurt, A., & Çörtoğlu, S. (2024). Silan Ajanları ile Modifiye Edilmiş Montmorillonit Katkılı Polimerik Kompozit Filmlerin Üretilmesi ve Karakterizasyonu. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 36(2), 695-704. https://doi.org/10.35234/fumbd.1418011
AMA Eskitoros Toğay ŞM, Yeşilyurt A, Çörtoğlu S. Silan Ajanları ile Modifiye Edilmiş Montmorillonit Katkılı Polimerik Kompozit Filmlerin Üretilmesi ve Karakterizasyonu. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. Eylül 2024;36(2):695-704. doi:10.35234/fumbd.1418011
Chicago Eskitoros Toğay, Şükran Melda, Aleyna Yeşilyurt, ve Sema Çörtoğlu. “Silan Ajanları Ile Modifiye Edilmiş Montmorillonit Katkılı Polimerik Kompozit Filmlerin Üretilmesi Ve Karakterizasyonu”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 36, sy. 2 (Eylül 2024): 695-704. https://doi.org/10.35234/fumbd.1418011.
EndNote Eskitoros Toğay ŞM, Yeşilyurt A, Çörtoğlu S (01 Eylül 2024) Silan Ajanları ile Modifiye Edilmiş Montmorillonit Katkılı Polimerik Kompozit Filmlerin Üretilmesi ve Karakterizasyonu. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 36 2 695–704.
IEEE Ş. M. Eskitoros Toğay, A. Yeşilyurt, ve S. Çörtoğlu, “Silan Ajanları ile Modifiye Edilmiş Montmorillonit Katkılı Polimerik Kompozit Filmlerin Üretilmesi ve Karakterizasyonu”, Fırat Üniversitesi Mühendislik Bilimleri Dergisi, c. 36, sy. 2, ss. 695–704, 2024, doi: 10.35234/fumbd.1418011.
ISNAD Eskitoros Toğay, Şükran Melda vd. “Silan Ajanları Ile Modifiye Edilmiş Montmorillonit Katkılı Polimerik Kompozit Filmlerin Üretilmesi Ve Karakterizasyonu”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 36/2 (Eylül 2024), 695-704. https://doi.org/10.35234/fumbd.1418011.
JAMA Eskitoros Toğay ŞM, Yeşilyurt A, Çörtoğlu S. Silan Ajanları ile Modifiye Edilmiş Montmorillonit Katkılı Polimerik Kompozit Filmlerin Üretilmesi ve Karakterizasyonu. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2024;36:695–704.
MLA Eskitoros Toğay, Şükran Melda vd. “Silan Ajanları Ile Modifiye Edilmiş Montmorillonit Katkılı Polimerik Kompozit Filmlerin Üretilmesi Ve Karakterizasyonu”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, c. 36, sy. 2, 2024, ss. 695-04, doi:10.35234/fumbd.1418011.
Vancouver Eskitoros Toğay ŞM, Yeşilyurt A, Çörtoğlu S. Silan Ajanları ile Modifiye Edilmiş Montmorillonit Katkılı Polimerik Kompozit Filmlerin Üretilmesi ve Karakterizasyonu. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2024;36(2):695-704.