Grafik Tablet Kullanılarak Makine Öğrenmesi Yardımı ile El Yazısından Cinsiyet Tespiti
Yıl 2020,
, 243 - 252, 03.03.2020
Berna Arı
,
İlknur Ucuz
,
Ali Arı
,
Filiz Özdemir
,
Abdulkadir Sengur
Öz
Günlük hayatın bir rutini olan el yazısı; ruh hali, kişilik özellikleri ve var olan bazı hastalıklar hakkında ipuçları vermektedir. Bunun yanında adli tıp, tıp ve arkeoloji gibi birçok disiplin el yazısını kendi alanlarına yönelik çalışmalarda sıkça kullanmaktadırlar. Örneğin adli tıp; bazı vakaların aydınlatılmasında el yazısından yaş aralığı ve hangi elin kullanıldığı gibi bilgilere ulaşabilmektedir. Bu çalışmada, el yazısından cinsiyet tespiti yapan bir sistem önerilmiştir. Önerilen sistem el yazısından, el yazısını karakterize edecek bir dizi öznitelik çıkarıp bu öznitelikleri makine öğrenmesi teknikleri kullanarak cinsiyete göre sınıflandırmıştır. El yazılarının kaydedildiği tabletle hem kalemin tablete temas halindeki durumunda hem de harfler ve kelimeler arası geçişte kalemin havada izlediği eğri hareketlerinden öznitelik çıkarılmıştır. Bu öznitelikler sırası ile kalem hızı, ivmesi, yazarken oluşan sarsıntı hareketleri, eğim açısı, yazıdaki kavislenmeler, kalemin havada kalma oranı, kalemin yaptığı basınç değeri ve kalemin yükseklik açısıdır. Sınıflandırıcı olarak da Karar Ağaçları (KA), Naive Bayes (NB), Destek Vektör Makineler (DVM) ve k-en Yakın Komşu (k-EYK) yaklaşımları kullanılmıştır. Deneysel çalışmalarda kullanılan veri setinde toplam 410 örnek mevcut olup, deneysel çalışmaların başarımları doğruluk kriteri ile değerlendirilmiştir. Elde edilen sonuçlara göre en iyi başarımın DVM ile elde edildiği ve doğruluk değerinin de %85,1 olduğu görülmüştür.
Kaynakça
- [1] Topaloglu, M., & Ekmekci, S. (2017). Gender detection and identifying one's handwriting with handwriting analysis. Expert Systems with Applications, 79, 236-243.
- [2] Langmaid, R. A., Papadopoulos, N., Johnson, B. P., Phillips, J. G., & Rinehart, N. J. (2014). Handwriting in children with ADHD. Journal of attention disorders, 18(6), 504-510.
- [3] Gattal, A., Djeddi, C., Siddiqi, I., & Chibani, Y. (2018). Gender classification from offline multi-script handwriting images using oriented basic image features (oBIFs). Expert Systems with Applications, 99, 155-167.
- [4] Burr, V. (2002). Judging gender from samples of adult handwriting: Accuracy and use of cues. The Journal of social psychology, 142(6), 691-700.
- [5] Hartley, J. (1991). Sex differences in handwriting: A comment on Spear. British educational research journal, 17(2), 141-145.
- [6] Dorfberger, S., Adi-Japha, E., & Karni, A. (2009). Sex differences in motor performance and motor learning in children and adolescents: an increasing male advantage in motor learning and consolidation phase gains. Behavioural brain research, 198(1), 165-171.
- [7] Prasad, S., Singh, V. K., & Sapre, A. (2010). Handwriting analysis based on segmentation method for prediction of human personality using support vector machine. International Journal of Computer Applications, 8(12), 25-29.
- [8] Moetesum, M., Siddiqi, I., Djeddi, C., Hannad, Y., & Al-Maadeed, S. (2018, August). Data Driven Feature Extraction for Gender Classification using Multi-script Handwritten Texts. In 2018 16th International Conference on Frontiers in Handwriting Recognition (ICFHR) (pp. 564-569). IEEE.
- [9] Moetesum, M., Siddiqi, I., Djeddi, C., Hannad, Y., & Al-Maadeed, S. (2018, August). Data Driven Feature Extraction for Gender Classification using Multi-script Handwritten Texts. In 2018 16th International Conference on Frontiers in Handwriting Recognition (ICFHR) (pp. 564-569). IEEE.
- [10] Morera, Á., Sánchez, Á., Vélez, J. F., & Moreno, A. B. (2018). Gender and handedness prediction from offline handwriting using convolutional neural networks. Complexity, 2018.
- [11] Ahmed, M., Rasool, A. G., Afzal, H., & Siddiqi, I. (2017). Improving handwriting based gender classification using ensemble classifiers. Expert Systems with Applications, 85, 158-168
- [12] Guerbai, Y., Chibani, Y., & Hadjadji, B. (2017). Handwriting gender recognition system based on the one-class support vector machines. In 2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA) (pp. 1-5). IEEE.
- [13] Akbari, Y., Nouri, K., Sadri, J., Djeddi, C., & Siddiqi, I. (2017). Wavelet-based gender detection on off-line handwritten documents using probabilistic finite state automata. Image and Vision Computing, 59, 17-30.
- [14] Al Maadeed, S., Ayouby, W., Hassaïne, A., & Aljaam, J. M. (2012, September). Quwi: An arabic and english handwriting dataset for offline writer identification. In 2012 International Conference on Frontiers in Handwriting Recognition (pp. 746-751). IEEE.
- [15] Djeddi, C., Gattal, A., Souici-Meslati, L., Siddiqi, I., Chibani, Y., & El Abed, H. (2014, September). LAMIS-MSHD: a multi-script offline handwriting database. In 2014 14th International Conference on Frontiers in Handwriting Recognition (pp. 93-97). IEEE.
- [16] Mirza, A., Moetesum, M., Siddiqi, I., & Djeddi, C. (2016, October). Gender classification from offline handwriting images using textural features. In 2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR) (pp. 395-398). IEEE.
- [17] Marzinotto, G., Rosales, J. C., El-Yacoubi, M. A., & Garcia-Salicetti, S. (2015, October). Age and gender characterization through a two layer clustering of online handwriting. In International Conference on Advanced Concepts for Intelligent Vision Systems (pp. 428-439). Springer, Cham.
- [18] Viard-Gaudin, C., Lallican, P. M., Knerr, S., & Binter, P. (1999, September). The ireste on/off (ironoff) dual handwriting database. In Proceedings of the Fifth International Conference on Document Analysis and Recognition. ICDAR'99 (Cat. No. PR00318) (pp. 455-458). IEEE.
- [19] Bharath, A., Deepu, V., & Madhvanath, S. (2005, August). An approach to identify unique styles in online handwriting recognition. In Eighth International Conference on Document Analysis and Recognition (ICDAR'05) (pp. 775-778). IEEE.
- [20] Al Maadeed, S., & Hassaine, A. (2014). Automatic prediction of age, gender, and nationality in offline handwriting. EURASIP Journal on Image and Video Processing, 2014(1), 10.
[21] Duygulu, P., Ören, T., & Çölkesen, R. (2004). El Yazısı Tanıma. Bilişim Ansiklopedisi.
- [22] Bharath, A., Deepu, V., & Madhvanath, S. (2005, August). An approach to identify unique styles in online handwriting recognition. In Eighth International Conference on Document Analysis and Recognition (ICDAR'05) (pp. 775-778). IEEE.
- [23] Matic, N., Guyon, I., Denker, J., & Vapnik, V. (1993, October). Writer-adaptation for on-line handwritten character recognition. In Proceedings of 2nd International Conference on Document Analysis and Recognition (ICDAR'93) (pp. 187-191). IEEE.
- [24] Crettez, J. P. (1995, August). A set of handwriting families: style recognition. In Proceedings of 3rd International Conference on Document Analysis and Recognition (Vol. 1, pp. 489-494). IEEE.
- [25] Rosenblum, S., Engel-Yeger, B., & Fogel, Y. (2013). Age-related changes in executive control and their relationships with activity performance in handwriting. Human movement science, 32(2), 363-376.
- [26] Safavian, S. R., & Landgrebe, D. (1991). A survey of decision tree classifier methodology. IEEE transactions on systems, man, and cybernetics, 21(3), 660-674.
- [27] Sengur, D., Turhan, M., & Karabatak, S. (2018). Prediction of The School Administrators, Who Attended An Action Learning Course, Based On Their Conflict-Handling Styles: A Data Mining Approach. International Online Journal of Educational Sciences, 10(4).
- [28] Utku, A., & Doğru, İ. A. (2017). Android kötücül yazılımlar için izin tabanlı tespit sistemi. Journal of the Faculty of Engineering and Architecture of Gazi University, 32(4), 1015-1024.
[29] Geiger, D., Verma, T., & Pearl, J. (1990). Identifying independence in Bayesian networks. Networks, 20(5), 507-534.
- [30] Jiang, L., Li, C., Wang, S., & Zhang, L. (2016). Deep feature weighting for naive Bayes and its application to text classification. Engineering Applications of Artificial Intelligence, 52, 26-39.
- [31] Schurz, G. (2019). Hume's Problem Solved: The Optimality of Meta-induction. Mit Press.
- [32] Kucuk, H., Eminoglu, I., & Balci, K. (2019). Classification of neuromuscular diseases with artificial intelligence methods. Journal of the Faculty of Engineering and Architecture of Gazi University, 34(4), 1725-1741.