Araştırma Makalesi
BibTex RIS Kaynak Göster

Düşük Karbonlu Çeliğin Korozyon Davranışına Hekzametilen Tetra Amin’in Etkisi

Yıl 2017, Cilt: 29 Sayı: 2, 147 - 153, 01.10.2017

Öz




Bu çalışmada
düşük karbonlu çeliğin (DKÇ) asidik ortamındaki korozyon davranışına
hekzametilen tetra âmin’in (HMTA) inhibitör etkisi araştırılmıştır.
Elektrokimyasal teknikler ve kuantum kimyasal hesaplamalar uygulanmıştır. Elde
edilen sonuçlara göre; HMTA’nın inhibisyon etkinliği artan HMTA derişimi ile
artış göstermiştir. 10 mM HMTA içeren 0,1 M HCl çözeltisinde inhibisyon
etkinliği %93,6 olarak tespit edilmiştir. Yüksek inhibisyon etkinliği, teorik
olarak belirlenen yüksek HOMO (en yüksek enerjili dolu moleküler orbital
enerjisi) enerjisi (-6,203 eV) ve düşük LUMO (en düşük enerjili boş moleküler
orbital enerjisi)  enerjisi (-0,346 eV) ile ilişkilendirilmiştir. HMTA’in
yumuşak çelik yüzeyine adsorpsiyonunun Langmuir adsorpsiyon izotermine uyduğu
tespit edilmiştir. HTMA’in inhibisyon etkinliği, inhibitör moleküllerinin metal
yüzeyine adsorplanarak koruyucu bir film oluşturması ile açıklanabilir.




Kaynakça

  • 1. Karthikaiselvi R. ve Subhashini S., (2014). Study of adsorption properties and inhibition of mild steel corrosion in hydrochloric acid media by water soluble composite poly (vinyl alcohol-o-methoxy aniline). Journal of the Association of Arab Universities for Basic and Applied Sciences, 16, 74-82.
  • 2. Tuken T , Demir F., Kıcır N., Sığırcık G., Erbil M., (2012). Inhibition effect of 1-ethyl-3-methylimidazolium dicyanamide against steel corrosion. Corrosion Science, 59,110–118.
  • 3. R. Solmaz, G. Kardaş, M. Çulha, B. Yazıcı, M. Erbil, (2008). Investigation of adsorption and inhibitive effect of 2-mercaptothiazoline on corrosion of mild steel in hydrochloric acid media. Electrochim Acta, 53, 5941–5952,
  • 4. Kosari A, Moayed MH, Davoodi A, Parvizi R, Momeni M, Eshghi H, Moradi H. (2014). Electrochemical and quantum chemical assessment of two organic compounds from pyridine derivatives as corrosion inhibitors for mild steel in HCl solution under stagnant condition and hydrodynamic flow. Corrosion Science, 78, 138-150.
  • 5. Ansari K, Quraishi MA, Singh A. (2015). Corrosion inhibition of mild steel in hydrochloric acid by some pyridine derivatives: An experimental and quantum chemical study. Journal of Industrial and Engineering Chemistry, 25, 89–98.
  • 6. Tebbji K, Ouddac H, Hammouti B, Benkaddour M, Kodadi M, Ramdani A. (2005). Inhibition effect of two organic compounds pyridine–pyrazole type in acidic corrosion of steel. Colloids and Surfaces A, 259, 143–149.
  • 7. Mourya P, Sing P, Rastogi R, Singh M. (2016). Inhibition of mild steel corrosion by 1,4,6-trimethyl-2-oxo-1,2-dihydropyridine-3-carbonitrile and synergistic effect of halide ion in 0.5 M H2SO4. Applied Surface Science, 380, 141–150.
  • 8. Bouklah M, Attayibat A, Hammouti B, Ramdani A, Radi S, Benkaddour M. (2005). Pyridine–pyrazole compound as inhibitor for steel in 1 M HCl. Applied Surface Science, 240, 341–348.
  • 9. Bockris JO, Reddy AKN, (2000). Gamboa AM. Modern electrochemistry Fundamentals of electrodics. 2nd ed. New York, USA, Plenum.
  • 10. Scendo M, Trela J. (2013). Adenine as an Effective Corrosion Inhibitor for Stainless Steel in Chloride Solution. International Journal of Electrochemical Science, 8, 9201–9221.
  • 11. Deng S, Li X, Xie X. (2014). Hydroxymethyl urea and 1,3-bis(hydroxymethyl) urea as corrosion inhibitors for steel in HCl solution. Corrosion Science, 80, 276–289.
  • 12. Khamis A, Saleh MM, Awad MI, El-Anadouti BE. (2013). Enhancing the inhibition action of cationic surfactant with sodium halides for mild steel in 0.5 M H2SO4. Corrosion Science, 74, 83–91.
  • 13. Li X, Deng S, Fu H, Xie X. (2014). Synergistic inhibition effects of bamboo leaf extract/major components and iodide ion on the corrosion of steel in H3PO4 solution. Corrosion Science, 78, 29–42.
  • 14. Yadav M, Sinha RR, Kumar S, Bahadur I, Ebenso EE. (2015). Synthesis and application of new acetohydrazide derivatives as a corrosion inhibition of mild steel in acidic medium: Insight from electrochemical and theoretical studies. Journal of Molecular Liquids, 208, 322–332.
  • 15. Zhanga D, Tanga Y, Qia S, Donga D, Cang H, Lu G. (2016). The inhibition performance of long-chain alkyl-substituted benzimidazole derivatives for corrosion of mild steel in HCl. Corrosion Science, 102, 517-522.
  • 16. Yüce A, Telli E, Doğru Mert B, Kardaş G, Yazıcı B. (2016). Experimental and quantum chemical studies on corrosion inhibition effect of 5,5 diphenyl 2-thiohydantoin on mild steel in HCl solution. Journal of Molecular Liquids 218, 384-392.
  • 17. Yıldız R., Doğan T., Dehri İ., (2014). Evaluation of Corrosion Inhibition of Mild Steel in 0.1 M HCl by 4-Amino-3-Hydroxynaphthalene-1-Sulphonic Acid. Corrosion Science, 85, 215-221.
  • 18. Yıldız R., Döner A., Doğan T., Dehri İ., (2014). Experimental studies of 2-pyridinecarbonitrile as corrosion inhibitör for mild steel in hydrochloric acid solution. Corrosion Science 82, 125–132,
  • 19. Yıldız R. (2015). An electrochemical and theoretical evaluation of 4,6-diamino-2-pyrimidinethiol as a corrosion inhibitor for mild steel in HCl solutions. Corrosion Science, 90, 544-553.
  • 20. Martinez S. (2002). Inhibitory mechanism of mimosa tannin using molecular. Mater Chem. Physic. 77, 97-102.
Yıl 2017, Cilt: 29 Sayı: 2, 147 - 153, 01.10.2017

Öz

Kaynakça

  • 1. Karthikaiselvi R. ve Subhashini S., (2014). Study of adsorption properties and inhibition of mild steel corrosion in hydrochloric acid media by water soluble composite poly (vinyl alcohol-o-methoxy aniline). Journal of the Association of Arab Universities for Basic and Applied Sciences, 16, 74-82.
  • 2. Tuken T , Demir F., Kıcır N., Sığırcık G., Erbil M., (2012). Inhibition effect of 1-ethyl-3-methylimidazolium dicyanamide against steel corrosion. Corrosion Science, 59,110–118.
  • 3. R. Solmaz, G. Kardaş, M. Çulha, B. Yazıcı, M. Erbil, (2008). Investigation of adsorption and inhibitive effect of 2-mercaptothiazoline on corrosion of mild steel in hydrochloric acid media. Electrochim Acta, 53, 5941–5952,
  • 4. Kosari A, Moayed MH, Davoodi A, Parvizi R, Momeni M, Eshghi H, Moradi H. (2014). Electrochemical and quantum chemical assessment of two organic compounds from pyridine derivatives as corrosion inhibitors for mild steel in HCl solution under stagnant condition and hydrodynamic flow. Corrosion Science, 78, 138-150.
  • 5. Ansari K, Quraishi MA, Singh A. (2015). Corrosion inhibition of mild steel in hydrochloric acid by some pyridine derivatives: An experimental and quantum chemical study. Journal of Industrial and Engineering Chemistry, 25, 89–98.
  • 6. Tebbji K, Ouddac H, Hammouti B, Benkaddour M, Kodadi M, Ramdani A. (2005). Inhibition effect of two organic compounds pyridine–pyrazole type in acidic corrosion of steel. Colloids and Surfaces A, 259, 143–149.
  • 7. Mourya P, Sing P, Rastogi R, Singh M. (2016). Inhibition of mild steel corrosion by 1,4,6-trimethyl-2-oxo-1,2-dihydropyridine-3-carbonitrile and synergistic effect of halide ion in 0.5 M H2SO4. Applied Surface Science, 380, 141–150.
  • 8. Bouklah M, Attayibat A, Hammouti B, Ramdani A, Radi S, Benkaddour M. (2005). Pyridine–pyrazole compound as inhibitor for steel in 1 M HCl. Applied Surface Science, 240, 341–348.
  • 9. Bockris JO, Reddy AKN, (2000). Gamboa AM. Modern electrochemistry Fundamentals of electrodics. 2nd ed. New York, USA, Plenum.
  • 10. Scendo M, Trela J. (2013). Adenine as an Effective Corrosion Inhibitor for Stainless Steel in Chloride Solution. International Journal of Electrochemical Science, 8, 9201–9221.
  • 11. Deng S, Li X, Xie X. (2014). Hydroxymethyl urea and 1,3-bis(hydroxymethyl) urea as corrosion inhibitors for steel in HCl solution. Corrosion Science, 80, 276–289.
  • 12. Khamis A, Saleh MM, Awad MI, El-Anadouti BE. (2013). Enhancing the inhibition action of cationic surfactant with sodium halides for mild steel in 0.5 M H2SO4. Corrosion Science, 74, 83–91.
  • 13. Li X, Deng S, Fu H, Xie X. (2014). Synergistic inhibition effects of bamboo leaf extract/major components and iodide ion on the corrosion of steel in H3PO4 solution. Corrosion Science, 78, 29–42.
  • 14. Yadav M, Sinha RR, Kumar S, Bahadur I, Ebenso EE. (2015). Synthesis and application of new acetohydrazide derivatives as a corrosion inhibition of mild steel in acidic medium: Insight from electrochemical and theoretical studies. Journal of Molecular Liquids, 208, 322–332.
  • 15. Zhanga D, Tanga Y, Qia S, Donga D, Cang H, Lu G. (2016). The inhibition performance of long-chain alkyl-substituted benzimidazole derivatives for corrosion of mild steel in HCl. Corrosion Science, 102, 517-522.
  • 16. Yüce A, Telli E, Doğru Mert B, Kardaş G, Yazıcı B. (2016). Experimental and quantum chemical studies on corrosion inhibition effect of 5,5 diphenyl 2-thiohydantoin on mild steel in HCl solution. Journal of Molecular Liquids 218, 384-392.
  • 17. Yıldız R., Doğan T., Dehri İ., (2014). Evaluation of Corrosion Inhibition of Mild Steel in 0.1 M HCl by 4-Amino-3-Hydroxynaphthalene-1-Sulphonic Acid. Corrosion Science, 85, 215-221.
  • 18. Yıldız R., Döner A., Doğan T., Dehri İ., (2014). Experimental studies of 2-pyridinecarbonitrile as corrosion inhibitör for mild steel in hydrochloric acid solution. Corrosion Science 82, 125–132,
  • 19. Yıldız R. (2015). An electrochemical and theoretical evaluation of 4,6-diamino-2-pyrimidinethiol as a corrosion inhibitor for mild steel in HCl solutions. Corrosion Science, 90, 544-553.
  • 20. Martinez S. (2002). Inhibitory mechanism of mimosa tannin using molecular. Mater Chem. Physic. 77, 97-102.
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Bölüm MBD
Yazarlar

Reşit Yıldız Bu kişi benim

Yayımlanma Tarihi 1 Ekim 2017
Gönderilme Tarihi 23 Eylül 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 29 Sayı: 2

Kaynak Göster

APA Yıldız, R. (2017). Düşük Karbonlu Çeliğin Korozyon Davranışına Hekzametilen Tetra Amin’in Etkisi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 29(2), 147-153.
AMA Yıldız R. Düşük Karbonlu Çeliğin Korozyon Davranışına Hekzametilen Tetra Amin’in Etkisi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. Ekim 2017;29(2):147-153.
Chicago Yıldız, Reşit. “Düşük Karbonlu Çeliğin Korozyon Davranışına Hekzametilen Tetra Amin’in Etkisi”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 29, sy. 2 (Ekim 2017): 147-53.
EndNote Yıldız R (01 Ekim 2017) Düşük Karbonlu Çeliğin Korozyon Davranışına Hekzametilen Tetra Amin’in Etkisi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 29 2 147–153.
IEEE R. Yıldız, “Düşük Karbonlu Çeliğin Korozyon Davranışına Hekzametilen Tetra Amin’in Etkisi”, Fırat Üniversitesi Mühendislik Bilimleri Dergisi, c. 29, sy. 2, ss. 147–153, 2017.
ISNAD Yıldız, Reşit. “Düşük Karbonlu Çeliğin Korozyon Davranışına Hekzametilen Tetra Amin’in Etkisi”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 29/2 (Ekim 2017), 147-153.
JAMA Yıldız R. Düşük Karbonlu Çeliğin Korozyon Davranışına Hekzametilen Tetra Amin’in Etkisi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2017;29:147–153.
MLA Yıldız, Reşit. “Düşük Karbonlu Çeliğin Korozyon Davranışına Hekzametilen Tetra Amin’in Etkisi”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, c. 29, sy. 2, 2017, ss. 147-53.
Vancouver Yıldız R. Düşük Karbonlu Çeliğin Korozyon Davranışına Hekzametilen Tetra Amin’in Etkisi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2017;29(2):147-53.