Araştırma Makalesi
BibTex RIS Kaynak Göster

Plazma Transferli Ark Kaynak Yöntemiyle Hardox 400 Çelik Malzemenin Yüzeyinin Farklı Oranlardaki FeCrC Tozuyla Alaşımlandırılması

Yıl 2018, Cilt: 30 Sayı: 1, 233 - 242, 01.03.2018

Öz

Bu çalışmada, aşınmaya
dayanıklı olan Hardox 400 çelik malzemenin yüzeyi B4C, TiC, SiC tozlarını
sabit olmak koşuluyla, FeCrC tozlarının farklı kombinasyonları kullanılarak
plazma transferli ark (PTA) kaynak yöntemiyle alaşımlandırılmıştır. PTA kaynak
ile yapılan kaplama işleminde FeCrC tozunun Hardox 400 çelik üzerine etkisi
araştırılmıştır. Kaplama tabakası; mikroserlik, optik mikroskop (OM), taramalı
elektron mikroskobu (SEM), X-ışın difraktogramı (XRD) ve X ışını enerji dağılım
spektrometresinden (EDS) faydalanılarak incelenmiştir. Optik mikroskop,
mikroyapı incelemeleri ve mikrosertlik değerleri neticesinde, kaplama tabakası
ile alt tabakanın birbirlerine metalurjik olarak bağlandığı, FeCrC’nin
varlığında sertlik değerlerinde gözle görülür bir artış meydana geldiği ve aynı
zamanda yapıda MC (metal karbür) ve Me-B (metal borür) fazları oluştuğu tespit
edilmiştir.

Kaynakça

  • 1. Burakovski, T., Wierzchon, T. (1999). Surface engineering of metals, (Ed) Ralph B., CRC Press LLC, London press, 1: 1-52. 2. Lo, K.H., Cheng, F.T. and Man, H.C. (2003).Cavitation erosion mechanism of S31600 stainless steel laser surface-modified with unclad WC, Materials Science and Engineering A, 357: 168–180. 3. Bourithis, L., Milonas, Ath. and Papadimitriou, G.D. (2003). Plasma transferred arc surface alloying of a construction steel to produce a metal matrix composite tool steel with TiC as reinforcing particles: Surface and Coatings Technology, 165: 286–295. 4. Lu, S.P., Kwon, O.Y. and Guo, Y. (2003). Wear behavior of brazed WC/NiCrBSi(Co) composite coatings, Wear, 254: 421–428. 5. Fauchais, P.L., Heberlein J.V.R. ve Boulos, M.I. (2014). Plasma-Transferred Arc Thermal Spray Fundamentals, Thermal Spray Fundamentals, 631–673. 6.Takano, E.H., Queiroz, D.D. and D’Oliveira, A.S.C.M. (2010). Evaluation of processing parameters on PTA hardfacing surfaces, Welding İnternational, 24: 1754-2138. 7. Yaedu, A.E., D'Oliveira, A.S.C.M. (2005). Cobalt based alloy PTA hardfacing on different substrate steels, Materials Science and Technology, 21: 459-466. 8. Sigolo, E., Soyama, J., Zepon, G., Kiminami, C.S., Botta, W.J. and Bolfarini, C. (2005). Wear resistant coatings of boron-modified stainless steels deposited by Plasma Transferred Arc, Surface & Coatings Technology, 302: 255-264. 9. Xibao, W., Hua, L. (1998). Metal powder thermal behaviour during the plasma transferred-arc surfacing process, Surface and Coatings Technology, 106: 156-161. 10. Bourithis, L., Papadimitriou, G.D. (2009). The effect of microstructure and wear conditions on the wear resistance of steel metal matrix composites fabricated with PTA alloying technique, Wear, 266: 1155-1164. 11. Xibao, W., Chunguo, L., Xiaomin, P., Libo, S. and Hong, Z. (2006).The powder's thermal behavior on the surface of the melting pool during PTA powder surfacing, Surface and Coatings Technology, 201: 2648-2654. 12. Krishna, B.V., Misra, V.N., Mukherjee, P.S. and Sharma, P. (2002). Microstructure and properties of flame sprayed tungsten carbide coatings, International Journal of Refractory Metals and Hard Materials, 20: 355-374. 13. Liu, X.B., Gu, Y.J. (2006). Plasma jet clad γ/Cr7C3 composite coating on steel, Materials Letters, 60: 577-580. 14. Skarvelis, P., Papadimitriou, G.D. Plasma transferred arc composite coatings with self lubricating properties. (2009). Based on Fe and Ti sulfides Microstructure and tribological behavior, Surface and Coatings Technology, 203: 1384-1394. 15. Bourithis, E., Tazedakis, A. and Papadimitriou, G. (2002). A study on the surface treatment of “Calmax” tool steel by a plasma transferred arc (PTA) process: Journal of Materials Processing Technology, 128: 169-177. 16. Huang, Z., Hou, Q. and Wang, P. (2008). Microstructure and properties of Cr3C2-modified nickel-based alloy coating deposited by plasma transferred arc process, Surface and Coatings Technology, 202: 2993-2999. 17. Liu, Y.F., Xia, Z.Y., Han, J.M., Zhang, G.L. and Yang, S.Z. (2006). Microstructure and wear behavior of (Cr,Fe)7C3 reinforced composite coating produced by plasma transferred arc weld-surfacing process, Surface and Coatings Technology, 201: 863-867. 18. Pandey, K.P., Ranjit, S. (2016). Experimental Investigation of Surface Properties of Hardox 400 Hardfaced with WC, International Journal of Engineering Research & Technology, 5(5): 622-626. 19. Xibao, W., Xiaofeng, W. and Zhongquan, S. (2005). The composite Fe–Ti–B–C Coatings by PTA powder surfacing process, Surface and Coatings Technology, 192: 257-262. 20. Yao, M.X., Wu, J.B.C., Xu, W. and Liu, R. (2005). Metallographic study and wear resistance of a high-C wrought Co-based alloy Stellite 706K, Materials Science and Engineering A, 407: 291-298. 21. Tabur, M. (2008).Examınatıon Of The Abrasıve Wear Behavıour Of Boron Carbıde Coated AISI 8620 And Hardox 400 Steels. MSc Thesis, Gazi Unıversıty. 173-176. 22. Zhang, L., Sun, D., Yu, H. and Li, H. (2007). Caracteristic of Fe-based Alloy Coating Producud By Plasma Caldding Precess, Materials Science and Engineering A, 457: 319-324. 23. Liu, Y.F., Han, J.M., Li, R.H., Li, W.J., Xu, X.Y., Wang. J.H. and Yang, S.Z. (2006). Microstructure and dry-sliding wear resistance of PTA clad (Cr, Fe)7C3/γ-Fe ceramal composite coating, Applied Surface Science, 252: 7539-7544. 24. Gür, A. K., Kaya, S. (2017), “Abrasive wear resistance optimization of three different carbide coatings by the Taguchi method”, Materials Testing, 59(5): 450-455. 25. Konovalov, S., Kormyshev, V., Gromov, V. and Ivanov, Yu. (2016). Metallographic Examination of Forming Improved Mechanical Properties via Surfacing of Steel Hardox 450 with Flux Cored Wire, Materials Science Forum, 870: 159-162. 26. Mindivan, H. (2013). Effects of Combined Diffusion Treatments on the Wear Behaviour of Hardox 400 Steel, Procedia Engineering, 68: 710-715. 27. Yildiz, T., Gür, A.K. (2011). Microstructural characteristic of N2 shielding gas in coating FeCrC composite to the surface of AISI 1030 steel with PTA method, Archives of Metallurgy and Materials, 56(3): 723-729. 28. Gürgenç, T., Özel, C. (2016). Investigation of Microstructure and Mechanical Properties of FeCrC, FeB and FeW Alloys Coated AISI 1020 Steel Using PTA Method, Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 28(2): 221-232. 29. Yılmaz, O., Ozenbaş, M. and Korkut M.H. (2002). Microstructural Characteristics of Gas Tungsten Arc Synthesised Fe-Cr-Si-C Coating, Material Science and Technology, 18: 1209-1216. 30. Liu ,Y.F., Xia, Z.Y., Han, J.M., Zhang, G.L. and Yang, S.Z. (2006). Microstructure and wear behavior of (Cr,Fe)7C3 Reinforced Composite Coating Produced by Plasma Transferred Arc Weld-Surfacing Process, Surface and Coating Technology, 201: 863–867. 31. Gür, A.K. (2013). Investigating the wear behaviour of FeCrC/B4C powder alloys coating produced by plasma transferred arc weld surfacing using the Taguchi method, Materials Testing. 55: 462-467. 32. Gür, A.K, Ozay, C., Orhan, A., Buytoz, S., Çalıgülü, U and Yigitturk, N. (2014). Wear Properties of Fe-Cr-C and B4C Powder Coating on AISI 316 Stainless Steel Analyzed by the Taguchi Method, Materials Testing, 56: 393-398. 33. Gür, A.K., Yildiz, T. (2008). The Effect at Wear Behavior Of Coating Layer of Proportion Gases N2, Technological Applied Sciences, 3(4): 627-635.
Toplam 1 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm MBD
Yazarlar

Ali Kaya Gür Bu kişi benim

Muhammet Hulusi Cengiz Bu kişi benim

Tülay Yıldız Bu kişi benim

Semih Taşkaya Bu kişi benim

Yayımlanma Tarihi 1 Mart 2018
Gönderilme Tarihi 1 Ekim 2017
Yayımlandığı Sayı Yıl 2018 Cilt: 30 Sayı: 1

Kaynak Göster

APA Gür, A. K., Cengiz, M. H., Yıldız, T., Taşkaya, S. (2018). Plazma Transferli Ark Kaynak Yöntemiyle Hardox 400 Çelik Malzemenin Yüzeyinin Farklı Oranlardaki FeCrC Tozuyla Alaşımlandırılması. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 30(1), 233-242.
AMA Gür AK, Cengiz MH, Yıldız T, Taşkaya S. Plazma Transferli Ark Kaynak Yöntemiyle Hardox 400 Çelik Malzemenin Yüzeyinin Farklı Oranlardaki FeCrC Tozuyla Alaşımlandırılması. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. Mart 2018;30(1):233-242.
Chicago Gür, Ali Kaya, Muhammet Hulusi Cengiz, Tülay Yıldız, ve Semih Taşkaya. “Plazma Transferli Ark Kaynak Yöntemiyle Hardox 400 Çelik Malzemenin Yüzeyinin Farklı Oranlardaki FeCrC Tozuyla Alaşımlandırılması”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 30, sy. 1 (Mart 2018): 233-42.
EndNote Gür AK, Cengiz MH, Yıldız T, Taşkaya S (01 Mart 2018) Plazma Transferli Ark Kaynak Yöntemiyle Hardox 400 Çelik Malzemenin Yüzeyinin Farklı Oranlardaki FeCrC Tozuyla Alaşımlandırılması. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 30 1 233–242.
IEEE A. K. Gür, M. H. Cengiz, T. Yıldız, ve S. Taşkaya, “Plazma Transferli Ark Kaynak Yöntemiyle Hardox 400 Çelik Malzemenin Yüzeyinin Farklı Oranlardaki FeCrC Tozuyla Alaşımlandırılması”, Fırat Üniversitesi Mühendislik Bilimleri Dergisi, c. 30, sy. 1, ss. 233–242, 2018.
ISNAD Gür, Ali Kaya vd. “Plazma Transferli Ark Kaynak Yöntemiyle Hardox 400 Çelik Malzemenin Yüzeyinin Farklı Oranlardaki FeCrC Tozuyla Alaşımlandırılması”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 30/1 (Mart 2018), 233-242.
JAMA Gür AK, Cengiz MH, Yıldız T, Taşkaya S. Plazma Transferli Ark Kaynak Yöntemiyle Hardox 400 Çelik Malzemenin Yüzeyinin Farklı Oranlardaki FeCrC Tozuyla Alaşımlandırılması. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2018;30:233–242.
MLA Gür, Ali Kaya vd. “Plazma Transferli Ark Kaynak Yöntemiyle Hardox 400 Çelik Malzemenin Yüzeyinin Farklı Oranlardaki FeCrC Tozuyla Alaşımlandırılması”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, c. 30, sy. 1, 2018, ss. 233-42.
Vancouver Gür AK, Cengiz MH, Yıldız T, Taşkaya S. Plazma Transferli Ark Kaynak Yöntemiyle Hardox 400 Çelik Malzemenin Yüzeyinin Farklı Oranlardaki FeCrC Tozuyla Alaşımlandırılması. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2018;30(1):233-42.