Araştırma Makalesi
BibTex RIS Kaynak Göster

Hatunköy (Hazar Gölü’nün Doğusu, Elazığ) Civarindaki Denizel Sedimanter ve Volkanosedimanter Kayaçların Jeokimyasal Özellikleri

Yıl 2018, Cilt: 30 Sayı: 2, 49 - 61, 19.09.2018

Öz

Bu çalışmada Elazığ İli’nin yaklaşık 30 km
güneydoğusunda Hatunköy civarında Hazar Grubu ve Maden Grubu’na ait örneklerin
jeokimyasal özellikleri çalışılmıştır. Hatunköy’e ait Maden Grubu ve Hazar
Grubu örneklerinin major oksit elementleri, iz elementler, nadir toprak
elementleri (NTE) önemli oranda benzerlik sunmaktadır.  Log (SiO2/Al2O3)’
e karşı log (Fe2O3/K2O) oranına göre her iki
grupta örneklerin  çoğunluğu Fe’ ce
zengin  şeyl   özelliğini götermektedir. Örneklerin Th,
Cs, Zr, Ba, Rb, Hf, Nb, U, Th
içerikleri Arkean sonrası kıtasal karaterli felsik özelliği temsil eden
Avustralya Şeylleri’ne (PAAS) göre daha düşük,
Sc, Ni, V ve Co değerleri  daha yüksektir. La
/ Sc ve Th / Co oranları iki grubunun benzer, çoğunlukla asidik ve bazik kaya
türleri arasında ortaç bileşimde olduğunu göstermektedir. Hf elementine karşı
La/Th diyagramında, her iki grup örneğin benzerliği ve andezitik adayayı
alanına düştüğünü görülmektedir. La/Sc,
Ti/Zr oranları örneklerin okyanus adayayı ortamında depolanmış kayaçlardan
türediğini göstermektedir. Si’ a karşı Na/K
diyagramında örnekler okyanusal adayayı alanına düşmektedir.

Kaynakça

  • 1. Erdem, E. (1987). Petrological investigation of magmatic rocks around Elazıg Kartaldere-Gölardı (NE of Hazar Lake). Master Thesis, Firat Univ., 1-72. 2. Kaya, A. (1993). Gezin-Maden (Elazığ) çevresinde jeolojik araştırmalar. Yüksek Lisans Tezi, F.Ü. Fen Bilimleri Enstitüsü, Elazığ. Çelik, H. (2003). Mastar Dağı (Elazığ GD' su) çevresinin stratigrafik ve tektonik özellikleri. Doktora Tezi, Fırat Üniversitesi Fen Bilimleri Enstitüsü. 3. Akkoca, D.B., Kürüm S., Huff, D. (2013). W. W. Geochemistry of volcanogenic clayey marine sediments from the Hazar-Maden Basib (Eastern Turkey), Geologica Carpathca, 64 (6):467-482. 4. Bingöl, A.F. (1988). Petrographical and petrological features of the intrusive rocks of Yüksekova Complex in the Elazığ region (Eastern Taurus-Turkey). Journal of Fırat University, 3(2):1-17. 5. Yazgan ve Chessex, (1991). Geology and tectonic evolution of the Southeastern Taurides in the Region of Malatya. Turkish Association of Petroleum Geologists, 3:1-42. 6. Hempton, M. (1984). “Results of detailed mapping near lake Hazar Eastern Taurus mountains” in Tekeli, O. and Göncüoğlu, M.C. (eds) Geology of the Taurus Belt, Proceedings of International Symposium. Mineral research and Exploration Institute of Turkey (MTA), Ankara, 223-228. 7. Robertson A. H. F. (2002). Overview of the genesis and emplacement of Mesozoic ophiolites in the Eastern Mediterranean Tethyan region. Lithos, 65: 1–67. 8. Rigo de Righi, M. ve Cortesini, A. (1964). Gravity tectonics in foothills structure belt of southeast Turkey, Am. Assoc. Petroleum Geologists Bull, 48(12): 1911-1937. 9. Yazgan, E. (1984). “Geodynamics Evolution of the Eastern Taurus Region” in Tekeli, O. and Göncüoğlu, M.C. (eds.), Geology of the Taurus Belt; International Symposıum Proceedings, 199-208, Mineral research and Exploration Institute of Turkey (MTA), Ankara. 10. MTA 1/500 000 Maden Tetkik ve Arama Genel Müdürülüğü, 2002, 1:500000 ölçekli Türkiye Jeoloji Haritaları, Diyarbakır Paftası, MTA Genel Müdürülüğü, Ankara. 11. Yiğitbaş, E., Yılmaz, Y. (1996). New evidence and solution to the Maden complex controversy of the the Southeast Anatolian orogenic belt (Turkey). International Geology Review, 38(9): 818-831. 12. Erdoğan, B. (1982). Ergani-Maden Yöresindeki Güneydoğu Anadolu Ofiyolit kuşağının jeolojisi ve volkanik kayaçları. Türkiye Jeoloji Kurumu Bülteni, 25: 49-50. 13. Tanyıldızı, Ö. (2014). Elazığ Güneyi Yemişlik-Dereboynu köyleri arasındaki magmatik kayaçların petrografik ve jeokimyasal özellikleri, Yüksek Lisans Tezi, Fırat Üniversitesi Fenbilimleri Enstitüsü, 81s. 14. Ertürk, M.A. and Beyarslan, M. (2015). Geochemical and Geotectonical Features of maden Complex (Eastern Taurus-Turkey), 4th Annual International Conference on Geological and earth Sciences, sayfa 62. 15. Ma, L., Jin, L. ve Brantley S.L. (2011). Geochemical behaviors of different element groups during shale weathering at the Susquehanna/Shale Hills Critical Zone Observatory. Applied Geochemistry, 26: 89-93. 16. Herron, M. (1988). Geochemical classification of terrigenous sands and shales from core or log data. Journal of Sedimentary Research, 58:820-829. 17. Taylor, S.R., McLennan, S.M. (1985). The Continental Crust; Its composition and evolution; an examination of the geochemical record preserved in sedimentary rocks. Blackwell, UK,328 p. 18. Winchester, J.A. and P.A. Floyd, (1977). Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology, 20: 325-343. 19. Hayashi, K.I., Fujisawa, H., Holland, H.D., Ohmoto, H. (1997). Geochemistry of ~1.9 Ga sedimentary rocks from northeastern Labrador, Canada. Geochimica et Cosmochimica Acta, 61: 4115-4137. 20. Yıldız, A., Kuşcu, M., (2006). Başören (Kütahya) bentonit yataklarının jeokimyasal özellikleri, Kibited,, 1(1): 27-41. 21. Fanti, F. (2009). Bentonite chemical features as proxy of late Cretaceous provenance changes: A case study from the Western Interior Basin of Canada, Sedimentary Geology, 217:112–127. 22. Özdamar, Ş., Ece, Ö.İ., Uz, B., (2014). Element mobility during the formation of the Uzunisa-Ordu bentonite, NE Turkey, and potential applications, Clay Minerals, 49(5): 609-633. 23. Salomon, W. ve Forstner, U. ( 1984). Metals in the hydrocycle, Springer Verlag, Berlin-Heidelberg, 349 pp. 24. Ali, S., Stattegger, K., Garbe-Schönberg, D., Frank, M., Kraft, S., Kuhn, W. (2014). the provenance of cretaceous to quaternary sediments in the Tarfaya basin The provenance of Cretaceous to Quaternary sediments in the Tarfaya basin, SW Morocco: Evidence from trace element geochemistry and radiogenic Nd–Sr isotopes, Journal of African Earth Sciences, 90: 64-76. 25. Bhatia, M.R., Taylor, S.R. (1981). Trace-element geochemistry and sedimentary provinces: a study from the Tasman geosyncline, Australia. Chemical Geology, 33:115–125. 26. Saydam Eker, Ç., Korkmaz S. (2011). Mineralogy and whole Rock geochemistry of Late Cretaceous sandstones from the Eastern Pontides (Ne Turkey). Neues Jahrbuch Fur Mıneralogıe-Abhandlungen, 188: 235-256. 27. Saydam Eker, Ç. (2012). Petrography and geochemistry of Eocene sandstones from Eastern Pontides (NE Turkey): Implications for source area weathering, provenance and tectonic setting. Geochemistry International, 50( 8):683–701. 28. Yalçın, H., Bozkaya, Ö. (1995a). Sepiolite-palygorskite from the Hekimhan region (Turkey). Clays and Clay Minerals, 43(6): 705-717. 29. Yalçın, H., Bozkaya, Ö. (1995b). Kangal-Çetinkaya alt baseni (Sivas baseni) gölsel paligorskitlerinin mineralojisi ve jeokimyası. VII. Ulusal Kil Sempozyumu, MTA, Ankara, 27-30. 30. Bozkaya, O., Yalçın, H., Kozlu, H. (2011). Clay mineralogy of the Paleozoic–Lower Mesozoic sedimentary sequence from the northern part of the Arabian Platform, Hazro (Diyarbakır), Southeast Anatolia”. Geologica Carpathica, 62: 489-500. 31. Cullers, R.L. (2000). The geochemistry of shales, siltstones and sandstones of Pennsylvanian-Permian age, Colorado, USA: Implications for provenance and metamorphic studies. Lithos, 51: 181–203. 32. Roser B.P, Korsch R.J. (1988). Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data. Chemical Geology, 67: 119-139. 33. Floyd, P.A., Leveridge, B.E., (1987). Tectonic environment of the Devonian Gramscatho basin south Cornwall: framework mode and geochemical evidence from turbiditic sandstones. Journal of the Geological Society. London 144: 531-542 34. Bhatia M. R., Crook K. A. W. (1986). Trace element characteristics of graywackes and tectonic setting of sedimentary basins. Contrib. Mineral.Petrol, 92: 181–193. 35. Mohamed, F.H., Hassanen, M.A. (1996). Geochemical evolution of arc-related mafic plutonism in the Umm Naggat district, Eastern Desert of Egypt. Journal of African Earth Science, 22(3): 269-283. 36. Dönmez, C. (2006). Geology, petrography and geochemistry of the Elazığ magmatics outcroping between Soğanlı-Uyandık (Elazığ)], Çukurova Üniversitesi, Yüksek Lisans Tezi. .Ç.Ü. Fen Bilimleri Enstitüsü, Adana. 37. Miladowsky, A.E., Zalasiewicz, J.A. (1991). Redistribution of rare-earth elements during diagenesis of turbidite/hemipelagite mudrock sequences of Llandovery age from central Wales. Geological Society Special Publication, 57: 101-124. 38. Coppin, F., Berger, G., Bauer, A., Castet, S., Loubet, M. (2002). Sorption of lanthanides on smectite and kaolinite. Chemical Geology, 182: 57-68. 39. Sun, S.S. and McDonough, W.F. (1989). “Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes” in: Saunders, A.D., Norry, M.J., Eds., Magmatism in the Ocean Basins, Geological Society, London, Special Publications, 42: 313-345. 40. Cullers, R. L. and Graf, J. (1983). Rare earth elements in igneous rocks of the continental crust: intermediate and silicic rocks, Kore petrogenesis. Rare-Earth Geochemistry, Elsevier, Amsterdam, 275–312pp.
Yıl 2018, Cilt: 30 Sayı: 2, 49 - 61, 19.09.2018

Öz

Kaynakça

  • 1. Erdem, E. (1987). Petrological investigation of magmatic rocks around Elazıg Kartaldere-Gölardı (NE of Hazar Lake). Master Thesis, Firat Univ., 1-72. 2. Kaya, A. (1993). Gezin-Maden (Elazığ) çevresinde jeolojik araştırmalar. Yüksek Lisans Tezi, F.Ü. Fen Bilimleri Enstitüsü, Elazığ. Çelik, H. (2003). Mastar Dağı (Elazığ GD' su) çevresinin stratigrafik ve tektonik özellikleri. Doktora Tezi, Fırat Üniversitesi Fen Bilimleri Enstitüsü. 3. Akkoca, D.B., Kürüm S., Huff, D. (2013). W. W. Geochemistry of volcanogenic clayey marine sediments from the Hazar-Maden Basib (Eastern Turkey), Geologica Carpathca, 64 (6):467-482. 4. Bingöl, A.F. (1988). Petrographical and petrological features of the intrusive rocks of Yüksekova Complex in the Elazığ region (Eastern Taurus-Turkey). Journal of Fırat University, 3(2):1-17. 5. Yazgan ve Chessex, (1991). Geology and tectonic evolution of the Southeastern Taurides in the Region of Malatya. Turkish Association of Petroleum Geologists, 3:1-42. 6. Hempton, M. (1984). “Results of detailed mapping near lake Hazar Eastern Taurus mountains” in Tekeli, O. and Göncüoğlu, M.C. (eds) Geology of the Taurus Belt, Proceedings of International Symposium. Mineral research and Exploration Institute of Turkey (MTA), Ankara, 223-228. 7. Robertson A. H. F. (2002). Overview of the genesis and emplacement of Mesozoic ophiolites in the Eastern Mediterranean Tethyan region. Lithos, 65: 1–67. 8. Rigo de Righi, M. ve Cortesini, A. (1964). Gravity tectonics in foothills structure belt of southeast Turkey, Am. Assoc. Petroleum Geologists Bull, 48(12): 1911-1937. 9. Yazgan, E. (1984). “Geodynamics Evolution of the Eastern Taurus Region” in Tekeli, O. and Göncüoğlu, M.C. (eds.), Geology of the Taurus Belt; International Symposıum Proceedings, 199-208, Mineral research and Exploration Institute of Turkey (MTA), Ankara. 10. MTA 1/500 000 Maden Tetkik ve Arama Genel Müdürülüğü, 2002, 1:500000 ölçekli Türkiye Jeoloji Haritaları, Diyarbakır Paftası, MTA Genel Müdürülüğü, Ankara. 11. Yiğitbaş, E., Yılmaz, Y. (1996). New evidence and solution to the Maden complex controversy of the the Southeast Anatolian orogenic belt (Turkey). International Geology Review, 38(9): 818-831. 12. Erdoğan, B. (1982). Ergani-Maden Yöresindeki Güneydoğu Anadolu Ofiyolit kuşağının jeolojisi ve volkanik kayaçları. Türkiye Jeoloji Kurumu Bülteni, 25: 49-50. 13. Tanyıldızı, Ö. (2014). Elazığ Güneyi Yemişlik-Dereboynu köyleri arasındaki magmatik kayaçların petrografik ve jeokimyasal özellikleri, Yüksek Lisans Tezi, Fırat Üniversitesi Fenbilimleri Enstitüsü, 81s. 14. Ertürk, M.A. and Beyarslan, M. (2015). Geochemical and Geotectonical Features of maden Complex (Eastern Taurus-Turkey), 4th Annual International Conference on Geological and earth Sciences, sayfa 62. 15. Ma, L., Jin, L. ve Brantley S.L. (2011). Geochemical behaviors of different element groups during shale weathering at the Susquehanna/Shale Hills Critical Zone Observatory. Applied Geochemistry, 26: 89-93. 16. Herron, M. (1988). Geochemical classification of terrigenous sands and shales from core or log data. Journal of Sedimentary Research, 58:820-829. 17. Taylor, S.R., McLennan, S.M. (1985). The Continental Crust; Its composition and evolution; an examination of the geochemical record preserved in sedimentary rocks. Blackwell, UK,328 p. 18. Winchester, J.A. and P.A. Floyd, (1977). Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology, 20: 325-343. 19. Hayashi, K.I., Fujisawa, H., Holland, H.D., Ohmoto, H. (1997). Geochemistry of ~1.9 Ga sedimentary rocks from northeastern Labrador, Canada. Geochimica et Cosmochimica Acta, 61: 4115-4137. 20. Yıldız, A., Kuşcu, M., (2006). Başören (Kütahya) bentonit yataklarının jeokimyasal özellikleri, Kibited,, 1(1): 27-41. 21. Fanti, F. (2009). Bentonite chemical features as proxy of late Cretaceous provenance changes: A case study from the Western Interior Basin of Canada, Sedimentary Geology, 217:112–127. 22. Özdamar, Ş., Ece, Ö.İ., Uz, B., (2014). Element mobility during the formation of the Uzunisa-Ordu bentonite, NE Turkey, and potential applications, Clay Minerals, 49(5): 609-633. 23. Salomon, W. ve Forstner, U. ( 1984). Metals in the hydrocycle, Springer Verlag, Berlin-Heidelberg, 349 pp. 24. Ali, S., Stattegger, K., Garbe-Schönberg, D., Frank, M., Kraft, S., Kuhn, W. (2014). the provenance of cretaceous to quaternary sediments in the Tarfaya basin The provenance of Cretaceous to Quaternary sediments in the Tarfaya basin, SW Morocco: Evidence from trace element geochemistry and radiogenic Nd–Sr isotopes, Journal of African Earth Sciences, 90: 64-76. 25. Bhatia, M.R., Taylor, S.R. (1981). Trace-element geochemistry and sedimentary provinces: a study from the Tasman geosyncline, Australia. Chemical Geology, 33:115–125. 26. Saydam Eker, Ç., Korkmaz S. (2011). Mineralogy and whole Rock geochemistry of Late Cretaceous sandstones from the Eastern Pontides (Ne Turkey). Neues Jahrbuch Fur Mıneralogıe-Abhandlungen, 188: 235-256. 27. Saydam Eker, Ç. (2012). Petrography and geochemistry of Eocene sandstones from Eastern Pontides (NE Turkey): Implications for source area weathering, provenance and tectonic setting. Geochemistry International, 50( 8):683–701. 28. Yalçın, H., Bozkaya, Ö. (1995a). Sepiolite-palygorskite from the Hekimhan region (Turkey). Clays and Clay Minerals, 43(6): 705-717. 29. Yalçın, H., Bozkaya, Ö. (1995b). Kangal-Çetinkaya alt baseni (Sivas baseni) gölsel paligorskitlerinin mineralojisi ve jeokimyası. VII. Ulusal Kil Sempozyumu, MTA, Ankara, 27-30. 30. Bozkaya, O., Yalçın, H., Kozlu, H. (2011). Clay mineralogy of the Paleozoic–Lower Mesozoic sedimentary sequence from the northern part of the Arabian Platform, Hazro (Diyarbakır), Southeast Anatolia”. Geologica Carpathica, 62: 489-500. 31. Cullers, R.L. (2000). The geochemistry of shales, siltstones and sandstones of Pennsylvanian-Permian age, Colorado, USA: Implications for provenance and metamorphic studies. Lithos, 51: 181–203. 32. Roser B.P, Korsch R.J. (1988). Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data. Chemical Geology, 67: 119-139. 33. Floyd, P.A., Leveridge, B.E., (1987). Tectonic environment of the Devonian Gramscatho basin south Cornwall: framework mode and geochemical evidence from turbiditic sandstones. Journal of the Geological Society. London 144: 531-542 34. Bhatia M. R., Crook K. A. W. (1986). Trace element characteristics of graywackes and tectonic setting of sedimentary basins. Contrib. Mineral.Petrol, 92: 181–193. 35. Mohamed, F.H., Hassanen, M.A. (1996). Geochemical evolution of arc-related mafic plutonism in the Umm Naggat district, Eastern Desert of Egypt. Journal of African Earth Science, 22(3): 269-283. 36. Dönmez, C. (2006). Geology, petrography and geochemistry of the Elazığ magmatics outcroping between Soğanlı-Uyandık (Elazığ)], Çukurova Üniversitesi, Yüksek Lisans Tezi. .Ç.Ü. Fen Bilimleri Enstitüsü, Adana. 37. Miladowsky, A.E., Zalasiewicz, J.A. (1991). Redistribution of rare-earth elements during diagenesis of turbidite/hemipelagite mudrock sequences of Llandovery age from central Wales. Geological Society Special Publication, 57: 101-124. 38. Coppin, F., Berger, G., Bauer, A., Castet, S., Loubet, M. (2002). Sorption of lanthanides on smectite and kaolinite. Chemical Geology, 182: 57-68. 39. Sun, S.S. and McDonough, W.F. (1989). “Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes” in: Saunders, A.D., Norry, M.J., Eds., Magmatism in the Ocean Basins, Geological Society, London, Special Publications, 42: 313-345. 40. Cullers, R. L. and Graf, J. (1983). Rare earth elements in igneous rocks of the continental crust: intermediate and silicic rocks, Kore petrogenesis. Rare-Earth Geochemistry, Elsevier, Amsterdam, 275–312pp.
Toplam 1 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm MBD
Yazarlar

Dicle Bal Akkoca

Burhan Daş Bu kişi benim

Yayımlanma Tarihi 19 Eylül 2018
Gönderilme Tarihi 6 Kasım 2017
Yayımlandığı Sayı Yıl 2018 Cilt: 30 Sayı: 2

Kaynak Göster

APA Bal Akkoca, D., & Daş, B. (2018). Hatunköy (Hazar Gölü’nün Doğusu, Elazığ) Civarindaki Denizel Sedimanter ve Volkanosedimanter Kayaçların Jeokimyasal Özellikleri. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 30(2), 49-61.
AMA Bal Akkoca D, Daş B. Hatunköy (Hazar Gölü’nün Doğusu, Elazığ) Civarindaki Denizel Sedimanter ve Volkanosedimanter Kayaçların Jeokimyasal Özellikleri. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. Eylül 2018;30(2):49-61.
Chicago Bal Akkoca, Dicle, ve Burhan Daş. “Hatunköy (Hazar Gölü’nün Doğusu, Elazığ) Civarindaki Denizel Sedimanter Ve Volkanosedimanter Kayaçların Jeokimyasal Özellikleri”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 30, sy. 2 (Eylül 2018): 49-61.
EndNote Bal Akkoca D, Daş B (01 Eylül 2018) Hatunköy (Hazar Gölü’nün Doğusu, Elazığ) Civarindaki Denizel Sedimanter ve Volkanosedimanter Kayaçların Jeokimyasal Özellikleri. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 30 2 49–61.
IEEE D. Bal Akkoca ve B. Daş, “Hatunköy (Hazar Gölü’nün Doğusu, Elazığ) Civarindaki Denizel Sedimanter ve Volkanosedimanter Kayaçların Jeokimyasal Özellikleri”, Fırat Üniversitesi Mühendislik Bilimleri Dergisi, c. 30, sy. 2, ss. 49–61, 2018.
ISNAD Bal Akkoca, Dicle - Daş, Burhan. “Hatunköy (Hazar Gölü’nün Doğusu, Elazığ) Civarindaki Denizel Sedimanter Ve Volkanosedimanter Kayaçların Jeokimyasal Özellikleri”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 30/2 (Eylül 2018), 49-61.
JAMA Bal Akkoca D, Daş B. Hatunköy (Hazar Gölü’nün Doğusu, Elazığ) Civarindaki Denizel Sedimanter ve Volkanosedimanter Kayaçların Jeokimyasal Özellikleri. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2018;30:49–61.
MLA Bal Akkoca, Dicle ve Burhan Daş. “Hatunköy (Hazar Gölü’nün Doğusu, Elazığ) Civarindaki Denizel Sedimanter Ve Volkanosedimanter Kayaçların Jeokimyasal Özellikleri”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, c. 30, sy. 2, 2018, ss. 49-61.
Vancouver Bal Akkoca D, Daş B. Hatunköy (Hazar Gölü’nün Doğusu, Elazığ) Civarindaki Denizel Sedimanter ve Volkanosedimanter Kayaçların Jeokimyasal Özellikleri. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2018;30(2):49-61.