Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2018, Cilt: 30 Sayı: 3, 153 - 159, 20.09.2018

Öz

Kaynakça

  • 1. Felman, A., Everything you need to know about heart disease. Medical News Today, 2018. 2. Staff, M.C., Heart disease. Mayo Clinic. 3. Shao, Y.E., C.-D. Hou, and C.-C. Chiu, Hybrid intelligent modeling schemes for heart disease classification. Applied Soft Computing, 2014. 14: p. 47-52. 4. Priyanka, N. and P. RaviKumar. Usage of data mining techniques in predicting the heart diseases—Naïve Bayes & decision tree. in Circuit, Power and Computing Technologies (ICCPCT), 2017 International Conference on. 2017. IEEE. 5. Yekkala, I., S. Dixit, and M. Jabbar. Prediction of heart disease using ensemble learning and Particle Swarm Optimization. in Smart Technologies For Smart Nation (SmartTechCon), 2017 International Conference On. 2017. IEEE. 6. Amin, S.U., K. Agarwal, and R. Beg. Genetic neural network based data mining in prediction of heart disease using risk factors. in Information & Communication Technologies (ICT), 2013 IEEE Conference on. 2013. IEEE. 7. Shah, C. and A.G. Jivani. Comparison of data mining classification algorithms for breast cancer prediction. in Computing, Communications and Networking Technologies (ICCCNT), 2013 Fourth International Conference on. 2013. IEEE. 8. Fedorovici, L.-O. and F. Dragan. A comparison between a neural network and a SVM and Zernike moments based blob recognition modules. in Applied Computational Intelligence and Informatics (SACI), 2011 6th IEEE International Symposium on. 2011. IEEE. 9. Yu, W.M., T. Du, and K.B. Lim. Comparison of the support vector machine and relevant vector machine in regression and classification problems. in Control, Automation, Robotics and Vision Conference, 2004. ICARCV 2004 8th. 2004. IEEE. 10. McCallum, A. and K. Nigam. A comparison of event models for naive bayes text classification. in AAAI-98 workshop on learning for text categorization. 1998. Citeseer. 11. Patil, T.R. and S. Sherekar, Performance analysis of Naive Bayes and J48 classification algorithm for data classification. International journal of computer science and applications, 2013. 6(2): p. 256-261. 12. Revathi, S. and A. Malathi, Comparison between J48 And Random Forest Decision Tree Algorithms To Detect Probe Attack. 13. Esmaily, H., et al., A Comparison between Decision Tree and Random Forest in Determining the Risk Factors Associated with Type 2 Diabetes. Journal of research in health sciences, 2018. 18(2). 14. Randhawa, K., et al., Credit card fraud detection using AdaBoost and majority voting. IEEE ACCESS, 2018. 6: p. 14277-14284. 15. Budhani, S.K., C. Jha, and A. Ahmad, Comparative Study of Meta Classification Algorithm: Bagging, AdaboostM1 and Stacking with Concept Drift based Synthetic Dataset Hyperplane1 and Hyperplane2. International Journal of Engineering Science, 2018. 15927. 16. Colombet, I., et al. Models to predict cardiovascular risk: comparison of CART, multilayer perceptron and logistic regression. in Proceedings of the AMIA Symposium. 2000. American Medical Informatics Association. 17. Mirjalili, S., Evolutionary Multi-layer Perceptron, in Evolutionary Algorithms and Neural Networks. 2019, Springer. p. 87-104. 18. Ben-David, A., Comparison of classification accuracy using Cohen’s Weighted Kappa. Expert Systems with Applications, 2008. 34(2): p. 825-832.

Sınıflandırıcıların Kalp Hastalığı Verileri Üzerine Performans Karşılaştırması

Yıl 2018, Cilt: 30 Sayı: 3, 153 - 159, 20.09.2018

Öz

Bu çalışmada kalp hastalığı verileri kullanılarak
bazı sınıflandırıcıların avantajları, dezavantajları göz önünde bulundurularak
performans karşılastırmaları yapılmıştır. Araştırmada kullanılan algoritmalar şunlardır:
Destek Vektör Makinesi (DVM), Naïve Bayes, J48, Random Forest, Adaboost, Logistic
Regresyon, Tek Katmanlı Perceptron, Çok Katmanlı Perceptron, Bagging karar
Ağaçları. Burada sonuçların karşılaştırılması için veri setindeki kayıt sayısı,
doğruluk ortalaması,  doğru olarak sınıflandırılmış
örnekler, yanlış olarak sınıflandırılmış örnekler, kappa istatistiği, ortalama
mutlak hata, ortalama kare hata, kök ortalama kare hata, göreceli mutlak hata,
kök nispi kare hata gibi ölçütleri kullanıldı. Elde edilen sonuçlara göre en
yüksek başarım DVM algoritması sonucunda bulunmuştur.

Kaynakça

  • 1. Felman, A., Everything you need to know about heart disease. Medical News Today, 2018. 2. Staff, M.C., Heart disease. Mayo Clinic. 3. Shao, Y.E., C.-D. Hou, and C.-C. Chiu, Hybrid intelligent modeling schemes for heart disease classification. Applied Soft Computing, 2014. 14: p. 47-52. 4. Priyanka, N. and P. RaviKumar. Usage of data mining techniques in predicting the heart diseases—Naïve Bayes & decision tree. in Circuit, Power and Computing Technologies (ICCPCT), 2017 International Conference on. 2017. IEEE. 5. Yekkala, I., S. Dixit, and M. Jabbar. Prediction of heart disease using ensemble learning and Particle Swarm Optimization. in Smart Technologies For Smart Nation (SmartTechCon), 2017 International Conference On. 2017. IEEE. 6. Amin, S.U., K. Agarwal, and R. Beg. Genetic neural network based data mining in prediction of heart disease using risk factors. in Information & Communication Technologies (ICT), 2013 IEEE Conference on. 2013. IEEE. 7. Shah, C. and A.G. Jivani. Comparison of data mining classification algorithms for breast cancer prediction. in Computing, Communications and Networking Technologies (ICCCNT), 2013 Fourth International Conference on. 2013. IEEE. 8. Fedorovici, L.-O. and F. Dragan. A comparison between a neural network and a SVM and Zernike moments based blob recognition modules. in Applied Computational Intelligence and Informatics (SACI), 2011 6th IEEE International Symposium on. 2011. IEEE. 9. Yu, W.M., T. Du, and K.B. Lim. Comparison of the support vector machine and relevant vector machine in regression and classification problems. in Control, Automation, Robotics and Vision Conference, 2004. ICARCV 2004 8th. 2004. IEEE. 10. McCallum, A. and K. Nigam. A comparison of event models for naive bayes text classification. in AAAI-98 workshop on learning for text categorization. 1998. Citeseer. 11. Patil, T.R. and S. Sherekar, Performance analysis of Naive Bayes and J48 classification algorithm for data classification. International journal of computer science and applications, 2013. 6(2): p. 256-261. 12. Revathi, S. and A. Malathi, Comparison between J48 And Random Forest Decision Tree Algorithms To Detect Probe Attack. 13. Esmaily, H., et al., A Comparison between Decision Tree and Random Forest in Determining the Risk Factors Associated with Type 2 Diabetes. Journal of research in health sciences, 2018. 18(2). 14. Randhawa, K., et al., Credit card fraud detection using AdaBoost and majority voting. IEEE ACCESS, 2018. 6: p. 14277-14284. 15. Budhani, S.K., C. Jha, and A. Ahmad, Comparative Study of Meta Classification Algorithm: Bagging, AdaboostM1 and Stacking with Concept Drift based Synthetic Dataset Hyperplane1 and Hyperplane2. International Journal of Engineering Science, 2018. 15927. 16. Colombet, I., et al. Models to predict cardiovascular risk: comparison of CART, multilayer perceptron and logistic regression. in Proceedings of the AMIA Symposium. 2000. American Medical Informatics Association. 17. Mirjalili, S., Evolutionary Multi-layer Perceptron, in Evolutionary Algorithms and Neural Networks. 2019, Springer. p. 87-104. 18. Ben-David, A., Comparison of classification accuracy using Cohen’s Weighted Kappa. Expert Systems with Applications, 2008. 34(2): p. 825-832.
Toplam 1 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm MBD
Yazarlar

Özlem Özmen Bu kişi benim

Ahmad Khdr Bu kişi benim

Engin Avcı Bu kişi benim

Yayımlanma Tarihi 20 Eylül 2018
Gönderilme Tarihi 23 Mart 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 30 Sayı: 3

Kaynak Göster

APA Özmen, Ö., Khdr, A., & Avcı, E. (2018). Sınıflandırıcıların Kalp Hastalığı Verileri Üzerine Performans Karşılaştırması. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 30(3), 153-159.
AMA Özmen Ö, Khdr A, Avcı E. Sınıflandırıcıların Kalp Hastalığı Verileri Üzerine Performans Karşılaştırması. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. Eylül 2018;30(3):153-159.
Chicago Özmen, Özlem, Ahmad Khdr, ve Engin Avcı. “Sınıflandırıcıların Kalp Hastalığı Verileri Üzerine Performans Karşılaştırması”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 30, sy. 3 (Eylül 2018): 153-59.
EndNote Özmen Ö, Khdr A, Avcı E (01 Eylül 2018) Sınıflandırıcıların Kalp Hastalığı Verileri Üzerine Performans Karşılaştırması. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 30 3 153–159.
IEEE Ö. Özmen, A. Khdr, ve E. Avcı, “Sınıflandırıcıların Kalp Hastalığı Verileri Üzerine Performans Karşılaştırması”, Fırat Üniversitesi Mühendislik Bilimleri Dergisi, c. 30, sy. 3, ss. 153–159, 2018.
ISNAD Özmen, Özlem vd. “Sınıflandırıcıların Kalp Hastalığı Verileri Üzerine Performans Karşılaştırması”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 30/3 (Eylül 2018), 153-159.
JAMA Özmen Ö, Khdr A, Avcı E. Sınıflandırıcıların Kalp Hastalığı Verileri Üzerine Performans Karşılaştırması. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2018;30:153–159.
MLA Özmen, Özlem vd. “Sınıflandırıcıların Kalp Hastalığı Verileri Üzerine Performans Karşılaştırması”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, c. 30, sy. 3, 2018, ss. 153-9.
Vancouver Özmen Ö, Khdr A, Avcı E. Sınıflandırıcıların Kalp Hastalığı Verileri Üzerine Performans Karşılaştırması. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2018;30(3):153-9.