Araştırma Makalesi
BibTex RIS Kaynak Göster

Ağır Metal Gideriminde Grafen Uygulamaları Adsorpsiyon Teknolojisi

Yıl 2021, Cilt: 33 Sayı: 1, 151 - 159, 15.02.2021
https://doi.org/10.35234/fumbd.767144

Öz

Dünyada artan nüfus talepleri aşırı üretim ve tüketimi doğurmuştur. Bu durum endüstriyelleşmenin hızla gelişmesine ve beraberinde endüstriyel atıksuların içeriklerinin değişmesine neden olmaktadır. Endüstriyel üretimlerde, su rezervlerinin tüketimi sonrası toksik atık su oluşmakta ve bu suların doğaya verilmesi ekosistemde ciddi bir tehdit oluşturmaktadır. Bu amaçla verimli bir şekilde atıksuların geri kazanılması veya doğayı tehdit etmeyecek şekilde arıtılarak deşarj edilmesi oldukça önemlidir. Endüstriyel atıksuların arıtılmasında araştırma aşamasında olan konulardan biri ağır metal gideriminde karbon bazlı nanomalzeme olan grafen ve türevlerinin kullanılmasıdır. Adsorpsiyon teknolojisinde grafen uygulamalarının artmasıyla birlikte ağır metal içeriği yüksek atıksularda nano yapılı adsorban üretiminin araştırmacılar tarafından umut verici olduğu bildirilmiştir. Grafen nanomalzemesinin yüksek iletkenlik ve geniş yüzey alanına sahip olması gibi çeşitli fiziksel ve kimyasal özelliklerinden dolayı farklı materyallerle işlevselleştirilerek nanokompozit ve biyo-nanokompozit adsorbanlar sentezlenmeye başlanmıştır. Bu makalede son yıllarda adsorpsiyon teknolojisindeki grafen uygulamaları incelenmiş ve literatürde yer alan nanokompozit adsorbanların adsorpsiyon kapasiteleri değerlendirilmiştir.

Kaynakça

  • Referans1 D.L. Shaffer, L.H. Arias Chavez, M. Ben-Sasson, S. Romero-Vargas Castrillón, N.Y. Yip, M. Elimelech, Desalination and reuse of high-salinity shale gas produced water: Drivers, technologies, and future directions, Environ. Sci. Technol. 47 (2013) 9569–9583. https://doi.org/10.1021/es401966e.
  • Referans2 R.K. Thines, N.M. Mubarak, S. Nizamuddin, J.N. Sahu, E.C. Abdullah, P. Ganesan, Application potential of carbon nanomaterials in water and wastewater treatment: A review, J. Taiwan Inst. Chem. Eng. 72 (2017) 116–133. https://doi.org/10.1016/j.jtice.2017.01.018.
  • Referans3 G. Eshaq, A.E. ElMetwally, Bmim[OAc]-Cu<inf>2</inf>O/g-C<inf>3</inf>N<inf>4</inf> as a multi-function catalyst for sonophotocatalytic degradation of methylene blue, Ultrason. Sonochem. 53 (2019) 99–109. https://doi.org/10.1016/j.ultsonch.2018.12.037.
  • Referans4 A. Mosbah, H. Chouchane, S. Abdelwahed, A. Redissi, M. Hamdi, S. Kouidhi, M. Neifar, A. Slaheddine Masmoudi, A. Cherif, W. Mnif, Peptides Fixing Industrial Textile Dyes: A New Biochemical Method in Wastewater Treatment, J. Chem. 2019 (2019). https://doi.org/10.1155/2019/5081807.
  • Referans5 A.M. Arogunjo, E.E. Ofuga, M.A. Afolabi, Levels of natural radionuclides in some Nigerian cereals and tubers, J. Environ. Radioact. 82 (2005) 1–6. https://doi.org/10.1016/j.jenvrad.2004.10.010.
  • Referans6. X. Wang, Y. Pei, M. Lu, X. Lu, X. Du, Highly efficient adsorption of heavy metals from wastewaters by graphene oxide-ordered mesoporous silica materials, J. Mater. Sci. 50 (2016) 2113–2121. https://doi.org/10.1007/s10853-014-8773-3.
  • Referans7 F. Fu, Q. Wang, Removal of heavy metal ions from wastewaters: A review, J. Environ. Manage. 92 (2011) 407–418. https://doi.org/10.1016/j.jenvman.2010.11.011.
  • Referans8 P. Kumar, K.H. Kim, V. Bansal, T. Lazarides, N. Kumar, Progress in the sensing techniques for heavy metal ions using nanomaterials, J. Ind. Eng. Chem. (2017). https://doi.org/10.1016/j.jiec.2017.06.010.
  • Referans9 I.A. Saleh, N. Zouari, M.A. Al-ghouti, Environmental Technology & Innovation Removal of pesticides from water and wastewater : Chemical , physical and biological treatment approaches, Environ. Technol. Innov. 19 (2020) 101026. https://doi.org/10.1016/j.eti.2020.101026.
  • Referans10 D.G.J. Larsson, C. de Pedro, N. Paxeus, Effluent from drug manufactures contains extremely high levels of pharmaceuticals, J. Hazard. Mater. 148 (2007) 751–755. https://doi.org/10.1016/j.jhazmat.2007.07.008.
  • Referans11 P. Senthil Kumar, S.J. Varjani, S. Suganya, Treatment of dye wastewater using an ultrasonic aided nanoparticle stacked activated carbon: Kinetic and isotherm modelling, Bioresour. Technol. 250 (2018) 716–722. https://doi.org/10.1016/j.biortech.2017.11.097.
  • Referans12 V. Katheresan, J. Kansedo, S.Y. Lau, Efficiency of various recent wastewater dye removal methods: A review, J. Environ. Chem. Eng. 6 (2018) 4676–4697. https://doi.org/10.1016/j.jece.2018.06.060.
  • Referans13 N. Bensalah, M.A.Q. Alfaro, C.A. Martínez-Huitle, Electrochemical treatment of synthetic wastewaters containing Alphazurine A dye, Chem. Eng. J. 149 (2009) 348–352. https://doi.org/10.1016/j.cej.2008.11.031.
  • Referans14 M. Sajid, M. Ilyas, C. Basheer, M. Tariq, M. Daud, N. Baig, F. Shehzad, Impact of nanoparticles on human and environment: review of toxicity factors, exposures, control strategies, and future prospects, Environ. Sci. Pollut. Res. 22 (2015) 4122–4143. https://doi.org/10.1007/s11356-014-3994-1.
  • Referans15 I. Ali, Z.A. Alothman, A. Alwarthan, Uptake of propranolol on ionic liquid iron nanocomposite adsorbent: Kinetic, thermodynamics and mechanism of adsorption, J. Mol. Liq. 236 (2017) 205–213. https://doi.org/10.1016/j.molliq.2017.04.028.
  • Referans16 M. Selvaraj, A. Hai, F. Banat, M.A. Haija, Application and prospects of carbon nanostructured materials in water treatment: A review, J. Water Process Eng. 33 (2020). https://doi.org/10.1016/j.jwpe.2019.100996.
  • Referans17 Q.U. Ain, M.U. Farooq, M.I. Jalees, Application of Magnetic Graphene Oxide for Water Purification: Heavy Metals Removal and Disinfection, J. Water Process Eng. 33 (2020) 101044. https://doi.org/10.1016/j.jwpe.2019.101044.
  • Referans18 I. Ali, A.A. Basheer, X.Y. Mbianda, A. Burakov, E. Galunin, I. Burakova, E. Mkrtchyan, A. Tkachev, V. Grachev, Graphene based adsorbents for remediation of noxious pollutants from wastewater, Environ. Int. 127 (2019) 160–180. https://doi.org/10.1016/j.envint.2019.03.029.
  • Referans19 P. Singh, P. Shandilya, P. Raizada, A. Sudhaik, A. Rahmani-Sani, A. Hosseini-Bandegharaei, Review on various strategies for enhancing photocatalytic activity of graphene based nanocomposites for water purification, Arab. J. Chem. 13 (2020) 3498–3520. https://doi.org/10.1016/j.arabjc.2018.12.001.
  • Referans20 C.N. Nupearachchi, K. Mahatantila, M. Vithanage, Application of graphene for decontamination of water; Implications for sorptive removal, Groundw. Sustain. Dev. 5 (2017) 206–215. https://doi.org/10.1016/j.gsd.2017.06.006.
  • Referans21 S.Z.N. Ahmad, W.N. Wan Salleh, A.F. Ismail, N. Yusof, M.Z. Mohd Yusop, F. Aziz, Adsorptive removal of heavy metal ions using graphene-based nanomaterials: Toxicity, roles of functional groups and mechanisms, Chemosphere. 248 (2020) 126008. https://doi.org/10.1016/j.chemosphere.2020.126008.
  • Referans22 M.Y. Xia, Y. Xie, C.H. Yu, G.Y. Chen, Y.H. Li, T. Zhang, Q. Peng, Graphene-based nanomaterials: the promising active agents for antibiotics-independent antibacterial applications, J. Control. Release. (2019). https://doi.org/10.1016/j.jconrel.2019.06.011.
  • Referans23 N. Baig, Ihsanullah, M. Sajid, T.A. Saleh, Graphene-based adsorbents for the removal of toxic organic pollutants: A review, J. Environ. Manage. 244 (2019) 370–382. https://doi.org/10.1016/j.jenvman.2019.05.047.
  • Referans24 H.P. Boehm, R. Setton, E. Stumpp, Nomenclature and terminology of graphite intercalation compounds, Carbon N. Y. 24 (1986) 241–245. https://doi.org/https://doi.org/10.1016/0008-6223(86)90126-0.
  • Referans25 E. Fitzer, K.H. Köchling, H.P. Boehm, H. Marsh, Recommended terminology for the description of carbon as a solid, Pure Appl. Chem. 67 (1995) 473–506. https://doi.org/10.1351/pac199567030473.
  • Referans26 M.I. Katsnelson, Graphene: carbon in two dimensions, Mater. Today. 10 (2007) 20–27. https://doi.org/https://doi.org/10.1016/S1369-7021(06)71788-6.
  • Referans27 X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R.D. Piner, L. Colomba, R.S. Ruoff, Transfer of large-area graphene films for high-performance transparent conductive electrodes, Nano Lett. 9 (2009) 4359–4363. https://doi.org/10.1021/nl902623y.
  • Referans28 M.D. Stoller, S. Park, Z. Yanwu, J. An, R.S. Ruoff, Graphene-Based ultracapacitors, Nano Lett. 8 (2008) 3498–3502. https://doi.org/10.1021/nl802558y.
  • Referans29 J. Moser, A. Barreiro, A. Bachtold, Current-induced cleaning of graphene, Appl. Phys. Lett. 91 (2007) 1–4. https://doi.org/10.1063/1.2789673.
  • Referans30 E. Lee, J.-Y. Hong, H. Kang, J. Jang, Synthesis of TiO2 nanorod-decorated graphene sheets and their highly efficient photocatalytic activities under visible-light irradiation, J. Hazard. Mater. 219–220 (2012) 13–18. https://doi.org/https://doi.org/10.1016/j.jhazmat.2011.12.033.
  • Referans31 B. Tan, N.L. Thomas, A review of the water barrier properties of polymer/clay and polymer/graphene nanocomposites, J. Memb. Sci. 514 (2016) 595–612. https://doi.org/10.1016/j.memsci.2016.05.026.
  • Referans32 N.I. Zaaba, K.L. Foo, U. Hashim, S.J. Tan, W.W. Liu, C.H. Voon, Synthesis of Graphene Oxide using Modified Hummers Method: Solvent Influence, Procedia Eng. 184 (2017) 469–477. https://doi.org/10.1016/j.proeng.2017.04.118.
  • Referans33 S. Pei, H.-M. Cheng, The reduction of graphene oxide, Carbon N. Y. 50 (2012) 3210–3228. https://doi.org/https://doi.org/10.1016/j.carbon.2011.11.010.
  • Referans34 Y. Cao, X. Li, Adsorption of graphene for the removal of inorganic pollutants in water purification: A review, Adsorption. 20 (2014) 713–727. https://doi.org/10.1007/s10450-014-9615-y.
  • Referans35 S. Tao, C. Wang, W. Ma, S. Wu, C. Meng, Designed multifunctionalized magnetic mesoporous microsphere for sequential sorption of organic and inorganic pollutants, Microporous Mesoporous Mater. 147 (2012) 295–301. https://doi.org/10.1016/j.micromeso.2011.06.027.
  • Referans36 Q. Liang, H. Luo, J. Geng, J. Chen, Facile one-pot preparation of nitrogen-doped ultra-light graphene oxide aerogel and its prominent adsorption performance of Cr(VI), Chem. Eng. J. 338 (2018) 62–71. https://doi.org/https://doi.org/10.1016/j.cej.2017.12.145.
  • Referans37 X. Guo, B. Du, Q. Wei, J. Yang, L. Hu, L. Yan, W. Xu, Synthesis of amino functionalized magnetic graphenes composite material and its application to remove Cr(VI), Pb(II), Hg(II), Cd(II) and Ni(II) from contaminated water, J. Hazard. Mater. 278 (2014) 211–220. https://doi.org/https://doi.org/10.1016/j.jhazmat.2014.05.075.
  • Referans38 L. Wu, Z. Qin, F. Yu, J. Ma, Graphene oxide cross-linked chitosan nanocomposite adsorbents for the removal of Cr (VI) from aqueous environments, Desalin. Water Treat. 72 (2017) 300–307. https://doi.org/10.5004/dwt.2017.20648.
  • Referans39 Z. Yu, Q. Chen, L. Lv, Y. Pan, G. Zeng, Y. He, Attached β-cyclodextrin/γ-(2,3-epoxypropoxy) propyl trimethoxysilane to graphene oxide and its application in copper removal, Water Sci. Technol. 75 (2017) 2403–2411. https://doi.org/10.2166/wst.2017.045.
  • Referans40 H.V. Tran, T.L. Tran, T.D. Le, T.D. Le, H.M.T. Nguyen, L.T. Dang, Graphene oxide enhanced adsorption capacity of chitosan/magnetite nanocomposite for Cr(VI) removal from aqueous solution, Mater. Res. Express. 6 (2019). https://doi.org/10.1088/2053-1591/aae55c.
  • Referans41 X. Wang, J. Lu, B. Cao, X. Liu, Z. Lin, C. Yang, R. Wu, X. Su, X. Wang, Facile synthesis of recycling Fe<inf>3</inf>O<inf>4</inf>/graphene adsorbents with potassium humate for Cr(VI) removal, Colloids Surfaces A Physicochem. Eng. Asp. 560 (2019) 384–392. https://doi.org/10.1016/j.colsurfa.2018.10.036.
  • Referans42 Z. Wang, F. Lin, L. Huang, Z. Chang, B. Yang, S. Liu, M. Zheng, Y. Lu, J. Chen, Cyclodextrin functionalized 3D-graphene for the removal of Cr(VI) with the easy and rapid separation strategy, Environ. Pollut. 254 (2019) 112854. https://doi.org/https://doi.org/10.1016/j.envpol.2019.07.022.
  • Referans43 L.T. Tran, H.V. Tran, T.D. Le, G.L. Bach, L.D. Tran, Studying Ni(II) adsorption of magnetite/graphene oxide/chitosan nanocomposite, Adv. Polym. Technol. 2019 (2019). https://doi.org/10.1155/2019/8124351.
  • Referans44 P.L. Yap, Y.L. Auyoong, K. Hassan, F. Farivar, D.N.H. Tran, J. Ma, D. Losic, Multithiol functionalized graphene bio-sponge via photoinitiated thiol-ene click chemistry for efficient heavy metal ions adsorption, Chem. Eng. J. 395 (2020) 124965. https://doi.org/10.1016/j.cej.2020.124965.
  • Referans45 J.-H. Deng, X.-R. Zhang, G.-M. Zeng, J.-L. Gong, Q.-Y. Niu, J. Liang, Simultaneous removal of Cd(II) and ionic dyes from aqueous solution using magnetic graphene oxide nanocomposite as an adsorbent, Chem. Eng. J. 226 (2013) 189–200. https://doi.org/https://doi.org/10.1016/j.cej.2013.04.045.
  • Referans46 J. Liu, H. Du, S. Yuan, W. He, Z. Liu, Synthesis of thiol-functionalized magnetic graphene as adsorbent for Cd(II) removal from aqueous systems, J. Environ. Chem. Eng. 3 (2015) 617–621. https://doi.org/https://doi.org/10.1016/j.jece.2015.01.016.
  • Referans47 S. Wan, W. Ding, Y. Wang, J. Wu, Y. Gu, F. He, Manganese oxide nanoparticles impregnated graphene oxide aggregates for cadmium and copper remediation, Chem. Eng. J. 350 (2018) 1135–1143. https://doi.org/https://doi.org/10.1016/j.cej.2018.06.068.
  • Referans48 J. Wei, M.F. Aly Aboud, I. Shakir, Z. Tong, Y. Xu, Graphene Oxide-Supported Organo-Montmorillonite Composites for the Removal of Pb(II), Cd(II), and As(V) Contaminants from Water, ACS Appl. Nano Mater. 3 (2020) 806–813. https://doi.org/10.1021/acsanm.9b02311.
  • Referans49 A. Croitoru, A. Ficai, D. Ficai, R. Trusca, G. Dolete, E. Andronescu, S.C. Turculet, materials Chitosan / Graphene Oxide Nanocomposite Water Purification, (n.d.) 1–13.
  • Referans50 B. Yang, Y. Wei, Q. Liu, Y. Luo, S. Qiu, Z. Shi, Polyvinylpyrrolidone functionalized magnetic graphene-based composites for highly efficient removal of lead from wastewater, Colloids Surfaces A Physicochem. Eng. Asp. 582 (2019) 123927. https://doi.org/10.1016/j.colsurfa.2019.123927.
  • Referans51 L. Cui, Y. Wang, L. Gao, L. Hu, L. Yan, Q. Wei, B. Du, EDTA functionalized magnetic graphene oxide for removal of Pb(II), Hg(II) and Cu(II) in water treatment: Adsorption mechanism and separation property, Chem. Eng. J. 281 (2015) 1–10. https://doi.org/https://doi.org/10.1016/j.cej.2015.06.043.
  • Referans52 A. Shahzad, W. Miran, K. Rasool, M. Nawaz, J. Jang, S.-R. Lim, D.S. Lee, Heavy metals removal by EDTA-functionalized chitosan graphene oxide nanocomposites, RSC Adv. 7 (2017) 9764–9771. https://doi.org/10.1039/c6ra28406j.
  • Referans53 W.J. Zeng, C.Y. Wang, Y.H. Wang, H.M. Guo, Y. Huang, X.L. Zhang, Facile synthesis of graphene oxide/palygorskite composites for Pb(II) rapid removal from aqueous solutions, Water Sci. Technol. 80 (2019) 989–997. https://doi.org/10.2166/wst.2019.345.
  • Referans54 K.C. Lai, L.Y. Lee, B.Y.Z. Hiew, S. Thangalazhy-Gopakumar, S. Gan, Facile synthesis of xanthan biopolymer integrated 3D hierarchical graphene oxide/titanium dioxide composite for adsorptive lead removal in wastewater, Bioresour. Technol. 309 (2020) 123296. https://doi.org/https://doi.org/10.1016/j.biortech.2020.123296.
  • Referans55 W. Zhu, J. Lei, Y. Li, L. Dai, T. Chen, X. Bai, J. zhou, L. Wang, T. Duan, Procedural growth of fungal hyphae/Fe3O4/graphene oxide as ordered-structure composites for water purification, Chem. Eng. J. (2019). https://doi.org/10.1016/j.cej.2018.08.215.
  • Referans56 Y. Li, G. Zou, S. Yang, P. Shi, T. Chen, Y. Lian, T. Duan, K. Zheng, L. Dai, W. Zhu, Bioassembly of fungal hyphae/graphene oxide composite as high performance adsorbents for U(VI) removal, Appl. Surf. Sci. (2018). https://doi.org/10.1016/j.apsusc.2018.07.081.
  • Referans57 Z. Wang, D. Zhao, C. Wu, S. Chen, Y. Wang, C. Chen, Magnetic metal organic frameworks/graphene oxide adsorbent for the removal of U(VI) from aqueous solution, Appl. Radiat. Isot. 162 (2020) 109160. https://doi.org/10.1016/j.apradiso.2020.109160.
  • Referans58 D. Zhao, Y. Wang, S. Zhao, M. Wakeel, Z. Wang, R.S. Shaikh, T. Hayat, C. Chen, A simple method for preparing ultra-light graphene aerogel for rapid removal of U(VI) from aqueous solution, Environ. Pollut. 251 (2019) 547–554. https://doi.org/https://doi.org/10.1016/j.envpol.2019.05.011.
  • Referans59 G. Xue, X. Luo, C. Srinivasakannan, L. Zheng, Y. Miao, X. Duan, Effective removal of organic dye and heavy metal from wastewater by tourmaline/graphene oxide composite nano material, Mater. Res. Express. 6 (2019). https://doi.org/10.1088/2053-1591/ab4d22.
  • Referans60 M.H. Sadeghi, M.A. Tofighy, T. Mohammadi, One-dimensional graphene for efficient aqueous heavy metal adsorption: Rapid removal of arsenic and mercury ions by graphene oxide nanoribbons (GONRs), Chemosphere. 253 (2020). https://doi.org/10.1016/j.chemosphere.2020.126647.
  • Referans61 C. Zhou, H. Zhu, Q. Wang, J. Wang, J. Cheng, Y. Guo, X. Zhou, R. Bai, Adsorption of mercury(ii) with an Fe<inf>3</inf>O<inf>4</inf> magnetic polypyrrole-graphene oxide nanocomposite, RSC Adv. 7 (2017) 18466–18479. https://doi.org/10.1039/c7ra01147d.
  • Referans62 L. Zhao, B. Yu, F. Xue, J. Xie, X. Zhang, R. Wu, R. Wang, Z. Hu, S.-T. Yang, J. Luo, Facile hydrothermal preparation of recyclable S-doped graphene sponge for Cu2+ adsorption, J. Hazard. Mater. 286 (2015) 449–456. https://doi.org/https://doi.org/10.1016/j.jhazmat.2015.01.021.
  • Referans63 X. Yang, Y. Wan, Y. Zheng, F. He, Z. Yu, J. Huang, H. Wang, Y.S. Ok, Y. Jiang, B. Gao, Surface functional groups of carbon-based adsorbents and their roles in the removal of heavy metals from aqueous solutions: A critical review, Chem. Eng. J. 366 (2019) 608–621. https://doi.org/10.1016/j.cej.2019.02.119.
  • Referans64 H. Chen, Y. Meng, S. Jia, W. Hua, Y. Cheng, J. Lu, H. Wang, Graphene oxide modified waste newspaper for removal of heavy metal ions and its application in industrial wastewater, Mater. Chem. Phys. 244 (2020) 122692. https://doi.org/https://doi.org/10.1016/j.matchemphys.2020.122692.
Toplam 64 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm MBD
Yazarlar

Özgecan Madenli Bu kişi benim 0000-0002-8673-3963

Ece Ummu Deveci 0000-0002-7551-188X

Çağdaş Gönen 0000-0002-8554-8125

Yayımlanma Tarihi 15 Şubat 2021
Gönderilme Tarihi 9 Temmuz 2020
Yayımlandığı Sayı Yıl 2021 Cilt: 33 Sayı: 1

Kaynak Göster

APA Madenli, Ö., Deveci, E. U., & Gönen, Ç. (2021). Ağır Metal Gideriminde Grafen Uygulamaları Adsorpsiyon Teknolojisi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 33(1), 151-159. https://doi.org/10.35234/fumbd.767144
AMA Madenli Ö, Deveci EU, Gönen Ç. Ağır Metal Gideriminde Grafen Uygulamaları Adsorpsiyon Teknolojisi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. Şubat 2021;33(1):151-159. doi:10.35234/fumbd.767144
Chicago Madenli, Özgecan, Ece Ummu Deveci, ve Çağdaş Gönen. “Ağır Metal Gideriminde Grafen Uygulamaları Adsorpsiyon Teknolojisi”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 33, sy. 1 (Şubat 2021): 151-59. https://doi.org/10.35234/fumbd.767144.
EndNote Madenli Ö, Deveci EU, Gönen Ç (01 Şubat 2021) Ağır Metal Gideriminde Grafen Uygulamaları Adsorpsiyon Teknolojisi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 33 1 151–159.
IEEE Ö. Madenli, E. U. Deveci, ve Ç. Gönen, “Ağır Metal Gideriminde Grafen Uygulamaları Adsorpsiyon Teknolojisi”, Fırat Üniversitesi Mühendislik Bilimleri Dergisi, c. 33, sy. 1, ss. 151–159, 2021, doi: 10.35234/fumbd.767144.
ISNAD Madenli, Özgecan vd. “Ağır Metal Gideriminde Grafen Uygulamaları Adsorpsiyon Teknolojisi”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 33/1 (Şubat 2021), 151-159. https://doi.org/10.35234/fumbd.767144.
JAMA Madenli Ö, Deveci EU, Gönen Ç. Ağır Metal Gideriminde Grafen Uygulamaları Adsorpsiyon Teknolojisi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2021;33:151–159.
MLA Madenli, Özgecan vd. “Ağır Metal Gideriminde Grafen Uygulamaları Adsorpsiyon Teknolojisi”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, c. 33, sy. 1, 2021, ss. 151-9, doi:10.35234/fumbd.767144.
Vancouver Madenli Ö, Deveci EU, Gönen Ç. Ağır Metal Gideriminde Grafen Uygulamaları Adsorpsiyon Teknolojisi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2021;33(1):151-9.