Derleme
BibTex RIS Kaynak Göster

Sürdürülebilir Biyoenerji Üretimi İçin Mikroalg Tabanlı Mikrobiyal Yakıt Hücreleri

Yıl 2022, Cilt: 34 Sayı: 1, 277 - 288, 20.03.2022
https://doi.org/10.35234/fumbd.1019858

Öz

Nüfus artışı ve endüstriyel gelişme nedeniyle küresel enerji ihtiyacı ve enerji tüketimi endişe verici bir oranda artmaktadır. Artan enerji talebini karşılamak için alternatif yenilenebilir enerji kaynaklarına ihtiyaç vardır. Mikrobiyal yakıt hücreleri (MYH’ler) atıklardan direk elektrik üretimi ve eş zamanlı olarak atıkların arıtımının gerçekleştirilmesinden dolayı yenilenebilir enerji üretimi açısından son yıllarda oldukça dikkat çekmektedir. Diğer taraftan mikroalgler, bünyelerinde enerji değeri yüksek bileşikleri depolaması ve fotosentez yoluyla CO2’yi uzaklaştırarak oksijen üretmesi nedeniyle yenilenebilir enerji üretimi alanında ve çevresel uygulamalarda ön plana çıkmıştır. Son yıllarda mikroalglerin MYH sistemlerinde kullanılması ile mikroalglerin MYH’nin verimliliğini artırabildiği ve biyoelektrik üretimi için uygun maliyetli ve sürdürülebilir bir yaklaşım sağlayabildiği anlaşılmıştır. Mikroalg tabanlı MYH’ler (MT-MYH) diğer MYH sistemlerine kıyasla daha fazla sürdürülebilir olmasına rağmen, şu an literatürdeki veriler yetersizdir. Bu sistemlerin verimliliğini artırmak ve büyük ölçekli uygulamaların yaygınlaşabilmesi için bu sistemler üzerine yapılan araştırmaların arttırılması gerekmektedir. Bu çalışmada sürdürülebilir bir biyoenerji üretimi için mikroalg tabanlı MYH’ler detaylı bir şekilde analiz edilerek ele alınmıştır.

Kaynakça

  • [1] F. A. Alatraktchi, Y. Zhang, and I. Angelidaki, “Nanomodification of the electrodes in microbial fuel cell: Impact of nanoparticle density on electricity production and microbial community,” Appl. Energy, vol. 116, pp. 216–222, 2014, doi: https://doi.org/10.1016/j.apenergy.2013.11.058.
  • [2] M. E. Elshobary, H. M. Zabed, J. Yun, G. Zhang, and X. Qi, “Recent insights into microalgae-assisted microbial fuel cells for generating sustainable bioelectricity,” Int. J. Hydrogen Energy, vol. 46, no. 4, pp. 3135–3159, 2021, doi: https://doi.org/10.1016/j.ijhydene.2020.06.251.
  • [3] “Dünya Karbondioksit Salınımı (2021).” https://www.co2.earth.
  • [4] E. Kabir, P. Kumar, S. Kumar, A. A. Adelodun, and K.-H. Kim, “Solar energy: Potential and future prospects,” Renew. Sustain. Energy Rev., vol. 82, pp. 894–900, 2018, doi: https://doi.org/10.1016/j.rser.2017.09.094.
  • [5] S. Arun, A. Sinharoy, K. Pakshirajan, and P. N. L. Lens, “Algae based microbial fuel cells for wastewater treatment and recovery of value-added products,” Renew. Sustain. Energy Rev., vol. 132, p. 110041, 2020, doi: https://doi.org/10.1016/j.rser.2020.110041.
  • [6] B. E. Logan and J. M. Regan, “Electricity-producing bacterial communities in microbial fuel cells,” Trends Microbiol., vol. 14, no. 12, pp. 512–518, 2006, doi: https://doi.org/10.1016/j.tim.2006.10.003.
  • [7] M. C. Potter, “Electrical effects accompanying the decomposition of organic compounds,” Proc. R. Soc. London, Ser. B, vol. 84, pp. 260–276, 1911.
  • [8] D.-J. Lee, J.-S. Chang, and J.-Y. Lai, “Microalgae–microbial fuel cell: A mini review,” Bioresour. Technol., vol. 198, pp. 891–895, 2015, doi: https://doi.org/10.1016/j.biortech.2015.09.061.
  • [9] H. M. Zabed, X. Qi, J. Yun, and H. Zhang, “Anaerobic Digestion of Microalgae Biomass for Methane Production BT - Microalgae Biotechnology for Development of Biofuel and Wastewater Treatment,” M. A. Alam and Z. Wang, Eds. Singapore: Springer Singapore, 2019, pp. 397–421.
  • [10] M. Ashour, M. E. Elshobary, R. El-Shenody, A.-W. Kamil, and A. E.-F. Abomohra, “Evaluation of a native oleaginous marine microalga Nannochloropsis oceanica for dual use in biodiesel production and aquaculture feed,” Biomass and Bioenergy, vol. 120, pp. 439–447, 2019, doi: https://doi.org/10.1016/j.biombioe.2018.12.009.
  • [11] M. Shukla and S. Kumar, “Algal growth in photosynthetic algal microbial fuel cell and its subsequent utilization for biofuels,” Renew. Sustain. Energy Rev., vol. 82, pp. 402–414, 2018, doi: https://doi.org/10.1016/j.rser.2017.09.067.
  • [12] J. K. Jang et al., “Construction and operation of a novel mediator- and membrane-less microbial fuel cell,” Process Biochem., vol. 39, no. 8, pp. 1007–1012, 2004, doi: https://doi.org/10.1016/S0032-9592(03)00203-6.
  • [13] J. R. Kim, S. H. Jung, J. M. Regan, and B. E. Logan, “Electricity generation and microbial community analysis of alcohol powered microbial fuel cells,” Bioresour. Technol., vol. 98, no. 13, pp. 2568–2577, 2007, doi: https://doi.org/10.1016/j.biortech.2006.09.036.
  • [14] C. Xu, K. Poon, M. M. F. Choi, and R. Wang, “Using live algae at the anode of a microbial fuel cell to generate electricity,” Environ. Sci. Pollut. Res., vol. 22, no. 20, pp. 15621–15635, 2015, doi: 10.1007/s11356-015-4744-8.
  • [15] C.-C. Fu, C.-H. Su, T.-C. Hung, C.-H. Hsieh, D. Suryani, and W.-T. Wu, “Effects of biomass weight and light intensity on the performance of photosynthetic microbial fuel cells with Spirulina platensis,” Bioresour. Technol., vol. 100, no. 18, pp. 4183–4186, 2009, doi: https://doi.org/10.1016/j.biortech.2009.03.059.
  • [16] C.-C. Lin, C.-H. Wei, C.-I. Chen, C.-J. Shieh, and Y.-C. Liu, “Characteristics of the photosynthesis microbial fuel cell with a Spirulina platensis biofilm,” Bioresour. Technol., vol. 135, pp. 640–643, 2013, doi: https://doi.org/10.1016/j.biortech.2012.09.138.
  • [17] C.-C. Fu, T.-C. Hung, W.-T. Wu, T.-C. Wen, and C.-H. Su, “Current and voltage responses in instant photosynthetic microbial cells with Spirulina platensis,” Biochem. Eng. J., vol. 52, no. 2, pp. 175–180, 2010, doi: https://doi.org/10.1016/j.bej.2010.08.004.
  • [18] C. Karthikeyan et al., “3D Flower–Like FeWO4/CeO2 Hierarchical Architectures on rGO for Durable and High-Performance Microalgae Biophotovoltaic Fuel Cells,” Appl. Biochem. Biotechnol., vol. 192, no. 3, pp. 751–769, 2020, doi: 10.1007/s12010-020-03352-4.
  • [19] J.-H. Hwang et al., “A strategy for power generation from bilgewater using a photosynthetic microalgal fuel cell (MAFC),” J. Power Sources, vol. 484, p. 229222, 2021, doi: https://doi.org/10.1016/j.jpowsour.2020.229222.
  • [20] F.-L. Ng et al., “Integration of bioelectricity generation from algal biophotovoltaic (BPV) devices with remediation of palm oil mill effluent (POME) as substrate for algal growth,” Environ. Technol. Innov., vol. 21, p. 101280, 2021, doi: https://doi.org/10.1016/j.eti.2020.101280.
  • [21] D. P. B. T. B. Strik, H. V. M. Hamelers (Bert), J. F. H. Snel, and C. J. N. Buisman, “Green electricity production with living plants and bacteria in a fuel cell,” Int. J. Energy Res., vol. 32, no. 9, pp. 870–876, Jul. 2008, doi: https://doi.org/10.1002/er.1397.
  • [22] S. B. Velasquez-Orta, T. P. Curtis, and B. E. Logan, “Energy from algae using microbial fuel cells.,” Biotechnol. Bioeng., vol. 103, no. 6, pp. 1068–1076, Aug. 2009, doi: 10.1002/bit.22346.
  • [23] N. Rashid, Y.-F. Cui, M. Saif Ur Rehman, and J.-I. Han, “Enhanced electricity generation by using algae biomass and activated sludge in microbial fuel cell,” Sci. Total Environ., vol. 456–457, pp. 91–94, 2013, doi: https://doi.org/10.1016/j.scitotenv.2013.03.067.
  • [24] S. Kondaveeti, K. S. Choi, R. Kakarla, and B. Min, “Microalgae Scenedesmus obliquus as renewable biomass feedstock for electricity generation in microbial fuel cells (MFCs),” Front. Environ. Sci. Eng., vol. 8, no. 5, pp. 784–791, 2014, doi: 10.1007/s11783-013-0590-4.
  • [25] V. Gadhamshetty, D. Belanger, C.-J. Gardiner, A. Cummings, and A. Hynes, “Evaluation of Laminaria-based microbial fuel cells (LbMs) for electricity production,” Bioresour. Technol., vol. 127, pp. 378–385, 2013, doi: https://doi.org/10.1016/j.biortech.2012.09.079.
  • [26] X. A. Walter, J. Greenman, B. Taylor, and I. A. Ieropoulos, “Microbial fuel cells continuously fuelled by untreated fresh algal biomass,” Algal Res., vol. 11, pp. 103–107, 2015, doi: https://doi.org/10.1016/j.algal.2015.06.003.
  • [27] A. Khandelwal, A. Vijay, A. Dixit, and M. Chhabra, “Microbial fuel cell powered by lipid extracted algae: A promising system for algal lipids and power generation,” Bioresour. Technol., vol. 247, pp. 520–527, 2018, doi: https://doi.org/10.1016/j.biortech.2017.09.119.
  • [28] A.-M. Lakaniemi, O. H. Tuovinen, and J. A. Puhakka, “Production of Electricity and Butanol from Microalgal Biomass in Microbial Fuel Cells,” BioEnergy Res., vol. 5, no. 2, pp. 481–491, 2012, doi: 10.1007/s12155-012-9186-2.
  • [29] A. Gonzalez del Campo, J. F. Perez, P. Cañizares, M. A. Rodrigo, F. J. Fernandez, and J. Lobato, “Characterization of light/dark cycle and long-term performance test in a photosynthetic microbial fuel cell,” Fuel, vol. 140, pp. 209–216, 2015, doi: https://doi.org/10.1016/j.fuel.2014.09.087.
  • [30] E. E. Powell, R. W. Evitts, G. A. Hill, and J. C. Bolster, “A Microbial Fuel Cell with a Photosynthetic Microalgae Cathodic Half Cell Coupled to a Yeast Anodic Half Cell,” Energy Sources, Part A Recover. Util. Environ. Eff., vol. 33, no. 5, pp. 440–448, Jan. 2011, doi: 10.1080/15567030903096931.
  • [31] Z. Baicha et al., “A critical review on microalgae as an alternative source for bioenergy production: A promising low cost substrate for microbial fuel cells,” Fuel Process. Technol., vol. 154, pp. 104–116, 2016, doi: https://doi.org/10.1016/j.fuproc.2016.08.017.
  • [32] Y. Zhang, Y. Zhao, and M. Zhou, “A photosynthetic algal microbial fuel cell for treating swine wastewater,” Environ. Sci. Pollut. Res., vol. 26, no. 6, pp. 6182–6190, 2019, doi: 10.1007/s11356-018-3960-4.
  • [33] R. Kakarla and B. Min, “Evaluation of microbial fuel cell operation using algae as an oxygen supplier: carbon paper cathode vs. carbon brush cathode,” Bioprocess Biosyst. Eng., vol. 37, no. 12, pp. 2453–2461, 2014, doi: 10.1007/s00449-014-1223-4.
  • [34] T. Liu, L. Rao, Y. Yuan, and L. Zhuang, “Bioelectricity Generation in a Microbial Fuel Cell with a Self-Sustainable Photocathode,” Sci. World J., vol. 2015, p. 864568, 2015, doi: 10.1155/2015/864568.
  • [35] A. González del Campo, P. Cañizares, M. A. Rodrigo, F. J. Fernández, and J. Lobato, “Microbial fuel cell with an algae-assisted cathode: A preliminary assessment,” J. Power Sources, vol. 242, pp. 638–645, 2013, doi: https://doi.org/10.1016/j.jpowsour.2013.05.110.
  • [36] H. He, M. Zhou, J. Yang, Y. Hu, and Y. Zhao, “Simultaneous wastewater treatment, electricity generation and biomass production by an immobilized photosynthetic algal microbial fuel cell,” Bioprocess Biosyst. Eng., vol. 37, no. 5, pp. 873–880, 2014, doi: 10.1007/s00449-013-1058-4.
  • [37] J. Lobato, A. González del Campo, F. J. Fernández, P. Cañizares, and M. A. Rodrigo, “Lagooning microbial fuel cells: A first approach by coupling electricity-producing microorganisms and algae,” Appl. Energy, vol. 110, pp. 220–226, 2013, doi: https://doi.org/10.1016/j.apenergy.2013.04.010.
  • [38] X. Wu, T. Song, X. Zhu, P. Wei, and C. C. Zhou, “Construction and Operation of Microbial Fuel Cell with Chlorella vulgaris Biocathode for Electricity Generation,” Appl. Biochem. Biotechnol., vol. 171, no. 8, pp. 2082–2092, 2013, doi: 10.1007/s12010-013-0476-8.
  • [39] D. F. Juang, C. H. Lee, and S. C. Hsueh, “Comparison of electrogenic capabilities of microbial fuel cell with different light power on algae grown cathode,” Bioresour. Technol., vol. 123, pp. 23–29, 2012, doi: https://doi.org/10.1016/j.biortech.2012.07.041.
  • [40] M. Zhou, H. He, T. Jin, and H. Wang, “Power generation enhancement in novel microbial carbon capture cells with immobilized Chlorella vulgaris,” J. Power Sources, vol. 214, pp. 216–219, 2012, doi: https://doi.org/10.1016/j.jpowsour.2012.04.043.
  • [41] X. Wang et al., “Sequestration of CO2 discharged from anode by algal cathode in microbial carbon capture cells (MCCs),” Biosens. Bioelectron., vol. 25, no. 12, pp. 2639–2643, 2010, doi: https://doi.org/10.1016/j.bios.2010.04.036.
  • [42] E. E. Powell, M. L. Mapiour, R. W. Evitts, and G. A. Hill, “Growth kinetics of Chlorella vulgaris and its use as a cathodic half cell,” Bioresour. Technol., vol. 100, no. 1, pp. 269–274, 2009, doi: https://doi.org/10.1016/j.biortech.2008.05.032.
  • [43] W. Logroño et al., “Single chamber microbial fuel cell (SCMFC) with a cathodic microalgal biofilm: A preliminary assessment of the generation of bioelectricity and biodegradation of real dye textile wastewater,” Chemosphere, vol. 176, pp. 378–388, 2017, doi: https://doi.org/10.1016/j.chemosphere.2017.02.099.
  • [44] A. S. Mathuriya and J. V Yakhmi, “Microbial fuel cells - Applications for generation of electrical power and beyond.,” Crit. Rev. Microbiol., vol. 42, no. 1, pp. 127–143, 2016, doi: 10.3109/1040841X.2014.905513.
  • [45] L. De Schamphelaire and W. Verstraete, “Revival of the biological sunlight-to-biogas energy conversion system,” Biotechnol. Bioeng., vol. 103, no. 2, pp. 296–304, Jun. 2009, doi: https://doi.org/10.1002/bit.22257.
  • [46] E. E. Powell and G. A. Hill, “Economic assessment of an integrated bioethanol–biodiesel–microbial fuel cell facility utilizing yeast and photosynthetic algae,” Chem. Eng. Res. Des., vol. 87, no. 9, pp. 1340–1348, 2009, doi: https://doi.org/10.1016/j.cherd.2009.06.018.
  • [47] J. Greenman, I. Gajda, and I. Ieropoulos, “Microbial fuel cells (MFC) and microalgae; photo microbial fuel cell (PMFC) as complete recycling machines,” Sustain. Energy Fuels, vol. 3, no. 10, pp. 2546–2560, 2019, doi: 10.1039/C9SE00354A.
  • [48] B. Taşkan, E. Taşkan, and H. Hasar, “Electricity generation potential of sewage sludge in sediment microbial fuel cell using Ti–TiO2 electrode,” Environ. Prog. Sustain. Energy, vol. 39, no. 5, p. e13407, Sep. 2020, doi: https://doi.org/10.1002/ep.13407.
  • [49] E. Taskan and H. Hasar, “Comprehensive comparison of a new tin-coated copper mesh and a graphite plate electrode as an anode material in microbial fuel cell.,” Appl. Biochem. Biotechnol., vol. 175, no. 4, pp. 2300–2308, Feb. 2015, doi: 10.1007/s12010-014-1439-4.
  • [50] S. Naina Mohamed, P. Ajit Hiraman, K. Muthukumar, and T. Jayabalan, “Bioelectricity production from kitchen wastewater using microbial fuel cell with photosynthetic algal cathode,” Bioresour. Technol., vol. 295, p. 122226, 2020, doi: https://doi.org/10.1016/j.biortech.2019.122226.
  • [51] B. Taşkan, “Investigation of Electricity Generation Performance of Grape Marc in Membrane-less Microbial Fuel Cell,” Environ. Res. Technol., Mar. 2021, doi: 10.35208/ert.881517.
  • [52] J. K. Nayak and U. K. Ghosh, “Microalgae Cultivation for Pretreatment of Pharmaceutical Wastewater Associated with Microbial Fuel Cell and Biomass Feed Stock Production BT - Frontiers in Water-Energy-Nexus—Nature-Based Solutions, Advanced Technologies and Best Practices for Environme,” 2020, pp. 383–387, doi: 0.1007/978-3-030-13068-8_96.
  • [53] H. Jiang, S. Luo, X. Shi, M. Dai, and R. Guo, “A system combining microbial fuel cell with photobioreactor for continuous domestic wastewater treatment and bioelectricity generation,” J. Cent. South Univ., vol. 20, no. 2, pp. 488–494, 2013, doi: 10.1007/s11771-013-1510-2.
  • [54] N. Yang, G. Zhan, D. Li, X. Wang, X. He, and H. Liu, “Complete nitrogen removal and electricity production in Thauera-dominated air-cathode single chambered microbial fuel cell,” Chem. Eng. J., vol. 356, pp. 506–515, 2019, doi: https://doi.org/10.1016/j.cej.2018.08.161.
  • [55] J. R. Kim, Y. Zuo, J. M. Regan, and B. E. Logan, “Analysis of ammonia loss mechanisms in microbial fuel cells treating animal wastewater,” Biotechnol. Bioeng., vol. 99, no. 5, pp. 1120–1127, Apr. 2008, doi: https://doi.org/10.1002/bit.21687.
  • [56] D. Li et al., “Characterising and control of ammonia emission in microbial fuel cells,” Chem. Eng. J., vol. 389, p. 124462, 2020, doi: https://doi.org/10.1016/j.cej.2020.124462.
  • [57] N. B., H. Pradhan, P. Sarkar, and M. M. Ghangrekar, “Application of ion exchange membranes in enhancing algal production alongside desalination of saline water in microbial fuel cell,” MRS Adv., vol. 4, no. 19, pp. 1077–1085, 2019, doi: 10.1557/adv.2019.170.
  • [58] V. R. V Ashwaniy and M. Perumalsamy, “Reduction of organic compounds in petro-chemical industry effluent and desalination using Scenedesmus abundans algal microbial desalination cell,” J. Environ. Chem. Eng., vol. 5, no. 6, pp. 5961–5967, 2017, doi: https://doi.org/10.1016/j.jece.2017.11.017.
  • [59] B. Kokabian, U. Ghimire, and V. G. Gude, “Water deionization with renewable energy production in microalgae - microbial desalination process,” Renew. Energy, vol. 122, pp. 354–361, 2018, doi: https://doi.org/10.1016/j.renene.2018.01.061.
  • [60] M. Khazraee Zamanpour, H.-R. Kariminia, and M. Vosoughi, “Electricity generation, desalination and microalgae cultivation in a biocathode-microbial desalination cell,” J. Environ. Chem. Eng., vol. 5, no. 1, pp. 843–848, 2017, doi: https://doi.org/10.1016/j.jece.2016.12.045.
  • [61] B. Kokabian and V. G. Gude, “Sustainable photosynthetic biocathode in microbial desalination cells,” Chem. Eng. J., vol. 262, pp. 958–965, 2015, doi: https://doi.org/10.1016/j.cej.2014.10.048.
  • [62] B. Kokabian and V. G. Gude, “Photosynthetic microbial desalination cells (PMDCs) for clean energy, water and biomass production,” Environ. Sci. Process. Impacts, vol. 15, no. 12, pp. 2178–2185, 2013, doi: 10.1039/C3EM00415E.
Toplam 62 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm MBD
Yazarlar

Ahmet Saatçı 0000-0002-4283-2230

Banu Taşkan 0000-0001-7751-1165

Ergin Taşkan 0000-0002-9620-8644

Yayımlanma Tarihi 20 Mart 2022
Gönderilme Tarihi 5 Kasım 2021
Yayımlandığı Sayı Yıl 2022 Cilt: 34 Sayı: 1

Kaynak Göster

APA Saatçı, A., Taşkan, B., & Taşkan, E. (2022). Sürdürülebilir Biyoenerji Üretimi İçin Mikroalg Tabanlı Mikrobiyal Yakıt Hücreleri. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 34(1), 277-288. https://doi.org/10.35234/fumbd.1019858
AMA Saatçı A, Taşkan B, Taşkan E. Sürdürülebilir Biyoenerji Üretimi İçin Mikroalg Tabanlı Mikrobiyal Yakıt Hücreleri. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. Mart 2022;34(1):277-288. doi:10.35234/fumbd.1019858
Chicago Saatçı, Ahmet, Banu Taşkan, ve Ergin Taşkan. “Sürdürülebilir Biyoenerji Üretimi İçin Mikroalg Tabanlı Mikrobiyal Yakıt Hücreleri”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 34, sy. 1 (Mart 2022): 277-88. https://doi.org/10.35234/fumbd.1019858.
EndNote Saatçı A, Taşkan B, Taşkan E (01 Mart 2022) Sürdürülebilir Biyoenerji Üretimi İçin Mikroalg Tabanlı Mikrobiyal Yakıt Hücreleri. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 34 1 277–288.
IEEE A. Saatçı, B. Taşkan, ve E. Taşkan, “Sürdürülebilir Biyoenerji Üretimi İçin Mikroalg Tabanlı Mikrobiyal Yakıt Hücreleri”, Fırat Üniversitesi Mühendislik Bilimleri Dergisi, c. 34, sy. 1, ss. 277–288, 2022, doi: 10.35234/fumbd.1019858.
ISNAD Saatçı, Ahmet vd. “Sürdürülebilir Biyoenerji Üretimi İçin Mikroalg Tabanlı Mikrobiyal Yakıt Hücreleri”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 34/1 (Mart 2022), 277-288. https://doi.org/10.35234/fumbd.1019858.
JAMA Saatçı A, Taşkan B, Taşkan E. Sürdürülebilir Biyoenerji Üretimi İçin Mikroalg Tabanlı Mikrobiyal Yakıt Hücreleri. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2022;34:277–288.
MLA Saatçı, Ahmet vd. “Sürdürülebilir Biyoenerji Üretimi İçin Mikroalg Tabanlı Mikrobiyal Yakıt Hücreleri”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, c. 34, sy. 1, 2022, ss. 277-88, doi:10.35234/fumbd.1019858.
Vancouver Saatçı A, Taşkan B, Taşkan E. Sürdürülebilir Biyoenerji Üretimi İçin Mikroalg Tabanlı Mikrobiyal Yakıt Hücreleri. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2022;34(1):277-88.