İçmesuyu Dağıtım Sistemlerinde Şebeke Yenileme için Ekonomik Analiz Hesaplama Modelinin Geliştirilmesi
Yıl 2022,
Cilt: 34 Sayı: 1, 421 - 432, 20.03.2022
Salih Yılmaz
,
Mahmut Fırat
Öz
Öz: İçme suyu dağıtım sistemlerinde meydana gelen arızaların ve sızıntıların azaltılması için çok farklı yöntemler uygulanmaktadır. Bu yöntemler zaman alıcı ve maliyetlidir. Bu nedenle yöntem uygulanmadan önce maliyet bileşenleri tanımlanmalıdır. Şebeke yenileme faaliyeti, kentsel su yönetiminde uygulanan yöntemler arasında en fazla maliyet oluşturan yöntemdir. Bu nedenle bir dağıtım sisteminde şebeke rehabilitasyonuna karar vermeden önce, gerekliliğin ortaya konulması, maliyet bileşenlerinin belirlenmesi ve hesaplanması ve bu analizlerin belirli bir standart yapıda gerçekleştirilmesi oldukça önemlidir. Bu çalışmada içme suyu dağıtım sistemlerinde şebeke yenileme faaliyetleri için fayda maliyet bileşenlerini dikkate alan ve analiz gerçekleştiren web tabanlı bir hesaplama aracı geliştirilmiştir. Bu hesaplama aracında şebeke yenilemede maliyet oluşturan tüm bileşenler saha verileri esas alınarak tanımlanmıştır. Ayrıca mevcut şebeke koşullarında şebekedeki boru malzeme ve çap dağılımları ve arıza oranları dikkate alınarak faydalı ömür analizi için model tanımlanmıştır. Bu modelde yeni yapılacak şebekedeki boru malzeme ve çap dağılımı da dikkate alınmakta ve fayda maliyet analizi gerçekleştirilmektedir. Geliştirilen bu hesaplama aracının özellikle belediye ve su idarelerinde karar vericiler ve teknik personel için referans teşkil edeceği düşünülmektedir.
Destekleyen Kurum
İnönü Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi
Proje Numarası
FDK 2020-2053
Kaynakça
- [1] A. Candelieri, D. Soldi, and F. Archetti, “Cost-effective sensors placement and leak localization – the Neptun pilot of the ICeWater Project.,” J. Water Supply Res. Technol., vol. 64–5, pp. 567–582, 2015.
- [2] L. Berardi, D. B. Laucelli, A. Simone, G. Mazzolani, and O. Giustolisi, “Active Leakage Control with WDNetXL,” Procedia Eng., vol. 154, pp. 62–70, 2016, doi: 10.1016/j.proeng.2016.07.420.
- [3] M. Cabral, D. Loureiro, M. Almeida, and D. Covas, “Estimation of costs for monitoring urban water and wastewater networks.,” J. Water Supply Res. Technol. - AQUA, vol. 68:2, pp. 87–97, 2019.
- [4] S. Lipiwattanakarn, S. Kaewsang, A. Pornprommin, and T. Wongwiset, “Real benefits of leak repair and increasing the number of inlets to energy.,” Water Sci., vol. 14:3, pp. 714–725, 2019.
- [5] G. Ferrari and D. Savic, “Economic performance of DMAs in water distribution systems,” Procedia Eng., vol. 119, no. 1, pp. 189–195, 2015, doi: 10.1016/j.proeng.2015.08.874.
- [6] E. Campbell, J. Izquierdo, I. Montalvo, and R. Pérez-García, “A novel water supply network sectorization methodology based on a complete economic analysis, including uncertainties,” Water (Switzerland), vol. 8, no. 5, 2016, doi: 10.3390/w8050179.
- [7] A. di Nardo, M. di Natale, C. Giudicianni, G. F. Santonastaso, V. Tzatchkov, and J. M. R. Varela, “Economic and energy criteria for district meter areas design of water distribution networks,” Water (Switzerland), vol. 9, no. 7, pp. 1–13, 2017, doi: 10.3390/w9070463.
- [8] D. Rogers and B. Calvo, “Defining the rehabilitation needs of water networks,” Procedia Eng., vol. 119, no. 1, pp. 182–188, 2015, doi: 10.1016/j.proeng.2015.08.873.
- [9] V. Marchionni, M. Cabral, C. Amado, and D. Covas, “Estimating water supply infrastructure cost using regression techniques,” J. Water Resour. Plan. Manag., vol. 142, no. 4, 2016, doi: 10.1061/(ASCE)WR.1943-5452.0000627.
- [10] A. Agathokleous and S. Christodoulou, “Component-holistic condition assessment of water distribution networks.,” J. Water Supply Res. Technol., vol. 64:7, pp. 509–519, 2017.
- [11] H. M. Mutikanga, S. K. Sharma, and K. Vairavamoorthy, “Methods and Tools for Managing Losses in Water Distribution Systems,” J. Water Resour. Plan. Manag., vol. 139, no. 2, pp. 166–174, 2013.
- [12] F. Ezbakhe and A. Foguet, “Embracing data uncertainty in water decision-making: an application to evaluate water supply and sewerage in Spain,” Water Supply, vol. 19, no. 3, pp. 778–788, 2019.
- [13] O. Jensen and S. Nair, “Integrated Urban Water Management and Water Security: A Comparison of Singapore and Hong Kong,” Water, vol. 11, no. 4, p. 785, 2019.
- [14] S. T. Lopez, M. Barrionuevo, and B. Labajos, “Water accounts in decision-making processes of urban water management: Benefits, limitations and implications in a real implementation,” Sustain. Cities Soc., vol. 50, 2019.
- [15] V. Kanakoudis and K. Gonelas, “Non-revenue water reduction through pressure management in Kozani’s water distribution network: from theory to practice,” Desalin. Water Treat., vol. 57, no. 25, pp. 11436–11446, 2016, doi: 10.1080/19443994.2015.1049967.
- [16] A. Francisque, S. Tesfamariam, G. Kabir, H. Haider, A. Reeder, and R. Sadiq, “Water mains renewal planning framework for small to medium sized water utilities: a life cycle cost analysis approach,” Urban Water J., vol. 14, no. 5, pp. 493–501, 2017.
- [17] H. Zamenian, F. L. Mannering, D. M. Abraham, and T. Iseley, “Modeling the Frequency of Water Main Breaks in Water Distribution Systems: Random-Parameters Negative-Binomial Approach,” J. Infrastruct. Syst., vol. 23, no. 2: 04016035, 2017.
- [18] H. Haider, I. S. Al-Salamah, Y. M. Ghazaw, R. H. Abdel-Maguid, M. Shafiquzzaman, and A. R. Ghumman, “Framework to establish economic level of leakage for intermittent water supplies in arid environments,” J. Water Resour. Plan. Manag., vol. 145, no. 2, pp. 1–12, 2019, doi: 10.1061/(ASCE)WR.1943-5452.0001027.
- [19] I. Moslehi, M. R. Jalili Ghazizadeh, and E. Yousefie Khoshghalb, “Economic analysis of pressure management in water distribution networks,” J. Water Wastewater, vol. 31, no. 2, pp. 100–117, 2019.
- [20] T. AL-Washali, S. Sharma, R. Lupoja, F. AL-Nozaily, M. Haidera, and M. Kennedy, “Assessment of water losses in distribution networks: Methods, applications, uncertainties, and implications in intermittent supply,” Resour. Conserv. Recycl., vol. 152, no. September 2019, p. 104515, 2020, doi: 10.1016/j.resconrec.2019.104515.
- [21] A. Lambert and W. Hirner, “Losses from water supply systems: Standard terminology and recommended performance measures,” blue pages, IWA, 2000.
- [22] M. Farley, G. Wyeth, Z. B. M. Ghazali, A. Istandar, and S. Singh, The Manager’s Non-Revenue Water Handbook. A Guide to Understanding Water Losses. 2008.
- [23] M. Nicolini, C. Giacomello, M. Scarsini, and M. Mion, “Numerical modeling and leakage reduction in the water distribution system of Udine,” Procedia Eng., vol. 70, pp. 1241–1250, 2014, doi: 10.1016/j.proeng.2014.02.137.
- [24] M. Aydogdu and M. Firat, “Estimation of Failure Rate in Water Distribution Network Using Fuzzy Clustering and LS-SVM Methods,” Water Resour. Manag., vol. 29, no. 5, pp. 1575–1590, 2015, doi: 10.1007/s11269-014-0895-5.
- [25] F. Boztaş, Özdemir, F. M. Durmuşçelebi, and M. Firat, “Analyzing the effect of the unreported leakages in service connections of water distribution networks on non-revenue water,” Int. J. Environ. Sci. Technol., vol. 16, no. 8, pp. 4393–4406, 2019, doi: 10.1007/s13762-018-2085-0.
- [26] A. O. Lambert, T. G. Brown, M. Takizawa, and D. Weimer, “A review of performance indicators for real losses from water supply systems,” J. Water Supply Res. Technol. - AQUA, vol. 48, no. 6, pp. 227–237, 1999, doi: 10.2166/aqua.1999.0025.
- [27] S. Yılmaz, “Su Kayıp Yönetiminde Ekonomik Kaçak Seviyesinin Optimizasyon Algoritmalarıyla Belirlenmesi,” İnönü Üniversitesi, 2021.