Araştırma Makalesi
BibTex RIS Kaynak Göster

Serpantinli Topraklarda Yetişen Teucrium Polium’ un Bor Akümülasyon Performansının İncelenmesi

Yıl 2024, Cilt: 36 Sayı: 2, 735 - 742, 30.09.2024
https://doi.org/10.35234/fumbd.1433177

Öz

Guleman bölgesi, Türkiye' nin en önemli krom cevheri üreten bölgelerinden biri olup, geniş alanda serpantinli kayaçlar yüzeylemeler vermektedir. Bu çalışma Guleman serpantinli toprakları üzerinde yetişen Teucrium polium bitkisinin kök ve dalındaki bor akümülasyonlarını incelemiştir. Çalışma alanında serpantinli topraklar üzerinde yetişen 17 adet Teucrium polium bitkisi toprağı, kök ve dalı ile birlikte toplanarak, bor için ayrı ayrı kimyasal analizleri yapılmıştır. Kimyasal analizler ICP-MS (İndüktif Eşleşmiş Plazma-Kütle Spektrometresi)’de gerçekleştirilmiştir. Ortalama olarak toprakta 7,94 ppm, kökte 14,8 ppm ve dalda ise 70,06 ppm bor değerleri saptanmıştır. Bu bitkinin toprak, kök ve dallarındaki bor zenginleşme değerleri (ECR, ECS ve TLF) oldukça yüksek çıkmıştır. Bu değerler de Teucrium polium bitkisinin topraktan hem köke, hem de dala önemli oranda bor akümülasyonu gerçekleştirdiğini göstermiştir. Sonuç olarak bu bitki, özellikle bor ile kirlenmiş toprakların ıslah çalışmasında ve böyle alanların iyileştirilmesinde biyoakümülatör bitki olarak değerlendirilebileceğini göstermiştir.

Etik Beyan

Yok

Destekleyen Kurum

FÜBAP

Proje Numarası

FUBAP-MF.20.16

Teşekkür

Bu çalışma Fırat Üniversitesi BAP Birimi tarafından FUBAP-MF.20.16 nolu proje ile desteklenmiştir. Desteklerinden dolayı F.Ü. BAP çalışanlarına teşekkür ederim.

Kaynakça

  • Kabata-Pendias A. Trace elements in soils and plants. CRC Press, Boca Raton 2011.
  • US Environmental Protection Agency (USEPA). Framework for human health risk assessment to inform decision making, 2014; EPA/100/R-14/001, Risk Assessment Forum, Office of the Science Advisor, USEPA, Washington, DC. http:// www. epa. gov/risk/ framework- human- health- risk- asses sment- inform- decis ionma king.
  • Helvacı C. Stratigraphy, mineralogy, and genesis of the Bigadic Borate deposits, Western Turkey. Economic Geology 1995; 90,1237–1260.
  • Helvacı C, Alonso RC. Borate deposits of Turkey and Argentina; a summary and geological comparison. Turkish Journal of Earth Sciences 2000; 9, 1–27.
  • Yermiyahu U, Keren R, Chen Y. Boron sorption by soil in the presence of composted organic matter. Soil Sci Soc Am J 1995; 59:405–409.
  • Tatar SY, Obek E. Potential of Lemna gibba L. and Lemna minör L. for accumulation of boron from secondary effluents. Ecol Eng 2014; 70:332–336.
  • Rees R, Robinson BH, Menon M, Lehmann E, Gunthardt-Goerg MS, Schulin R. Boron accumulation and toxicity in hybrid poplar (Populus nigra xeuramericana). Environ Sci Technol 2011; 45:10538–10543.
  • Turker OC, Vymazal J, Ture C. Constructed wetlands for boron removal: a review. Ecol Eng 2014; 64:350–359.
  • Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ. Heavy Metals Toxicity and the Environment. Molecular, Clinical and Environmental Toxicology 2012; 101, 133-164.
  • Duffus JH. "Heavy metals" a meaningless term (IUPAC Technical Report). Pure and Applied Chemistry 2002; 74(5), 793-807.
  • Gergen I, Harmanescu M. Application of Principal Component Analysis in the Pollution Assessment with Heavy Metals of Vegetable Food Chain in the Old mining Areas. Chem Cent J 2012; 6, 56.
  • Rai S, Gupta S, Mittal PC. Dietary Intakes and Health Risk of Toxic and Essential Heavy Metals through the Food Chain in Agricultural, Industrial, and Coal Mining Areas of Northern India. Hum Ecol Risk Assess. 2015; 21, 913–933.
  • Sood A, Uniyal PL, Prasanna R, Ahluwalia AS. Phytoremediation potential of aquatic macrophyte, Azolla. Ambio 2012; 41, 122-137.
  • Goswami C, Majumder A, Misra AK, Bandyopadhyay K. Arsenic uptake by Lemna minor in hydroponic system. Int J Phytorem 2014.; 16, 1221-1227.10.
  • Sasmaz M, Arslan Topal EI, Obek E, Sasmaz A. The potential of Lemna gibba L. and Lemna minor L. to remove Cu, Pb, Zn, and As in gallery water in a mining area in Keban, Turkey. J Environ Manag 2015; 163:246–253.
  • Rahman MA, Hasegawa H. Aquatic arsenic: phytoremediation using floating macrophytes. Chemosphere 2011; 83, 633-646.
  • Baker AJM, Brooks RR. Terrestrial higher plants which hyper¬accumulate metalic elements-A review of their distribution,ecology and phytochemistry. Biorecovery 1989; 1:81–126.
  • Terzi H, Yıldız M. Bitkilerde ağır metal toksisitesi: proteomik yaklaşım. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 2013; 13 (021001): 1-21.
  • Bani A, Echevarria G, Sulçe S, Morel JL, Mullai A. In-situ phy¬toextraction of Ni by a native population of Alyssum murale on an ultramafic site (Albania). Plant Soil 2007; 293:79–89.
  • Alexander EB. Soil and vegetation differences from peridotite to serpentinite. Northeast Nat. 2009; 16, 178-192.
  • Alfaro MR, Montero A, Ugarte OM, Nascimento CWA, Accioly AMA, Biondi CM, Silva YJAB. Background concentrations and reference values for heavy metals in soils of Cuba. Environ Monit Assess. 2015; 187:4198.
  • Galey ML, Van der Ent A, Iqbal MCM, Rajakaruna N. Ultramafic geoecology of South and Southeast Asia. Bot Stud 2017;58:18.
  • Nascimento CWA, Lima LHV, Silva JAB, Biondi CM. Ultramafic soils and nickelphytomining opportunities: A review. Rev. Bras. Ciˆencia do Solo 2022; 46, 1-17.
  • Ghafoori M, Shariati M, Van der Ent A, Baker AJM. Nickel hyperaccumulation, elemental profiles and agromining potential of three species of Odontarrhena from the ultramafics of Western Iran. International journal of phytoremediation 2023; 25 (3),381-392.
  • Proctor J, Woodell SRJ. The ecology of serpentine soils. Advances in Ecological Research 1975; 9: 255–366. Proctor, J. Vegetation and soil and plant chemistry on ultramafi c rocks in the tropical Far East, Perspectives in Plant Ecology Evolution & Systematics 2003; 6, (1–2), 105–124.
  • Tomovic GM, Mihailovic ML, Tumi AF, Gajic BA, Misljenovic TD, Niketic MS. Trace metals in soils and several Brassicaceae plant species from serpentine sites of Serbia. Arch Environ Protec. 2013; 39, 29- 49.
  • Jaffré T. Étude écologique du peuplement végétal des sol dérivés de roches ultrabasiques en Nouvelle Calédonie. Travaux et Documents de 1980; L’ORSTOM 124 Paris: ORSTOM.
  • Rajakaruna N, Boyd RS. Serpentine Soils. In: Oxford Bibliographies in Ecology 2014; Ed. David Gibson. New York: Oxford University Press.
  • Avcı M. Diversity and endemism in Turkey’s vegetation. İstanbul Üniversitesi Edebiyat Fakültesi Coğrafya Bölümü Coğrafya Dergisi 2005; 13: 27-55.
  • Reeves RD, Baker AJM, Borhidi A, Berazain R. Nickel hyperaccumulation in the serpentine flora of Cuba. Annals of Botany 1999; 83(1), 29-38.
  • Rajakaruna N. The edaphic factor in the origin of plant species. International Geology Review 2004; 46: 471–478.
  • Kurt L, Ozbey BG, Kurt F, Ozdeniz E Bolukbaşı A. Serpentine Flora of Turkey. Biological Diversity and Conservation 2013; 6(1): 134- 152.
  • Gavrilescu, M. Enhancing phytoremediation of soils polluted with heavy metals. Current Opinion in Biotechnology 2022; 74,(21), 31.
  • Konakcı N, Sasmaz Kislioglu M, Sasmaz A. Ni, Cr and Co Phytoremediations by Alyssum murale Grown in the Serpentine Soils Around Guleman Cr Deposits, Elazig Turkey. Bulletin of Environmental Contamination and Toxicology 2023; 110:97.
  • Engin T, Balcı M, Simer Y, Ozkan YZ. General geological setting and the structural features of the Guleman peridotite unit and the chromite deposits. Bull Min Res Exp Ins Turkey 1983; 95, 34-56.
  • Oualidi J, Verneau O, Puech S, Dubuisson JY. Utility of rDNA ITS sequences in the systematics of Teucrium section polium (lamiaceae). Plant Syst Evol 1999; 215: 49–70.
  • Kırkık D, Sancak NP, Alragabi JM. Türkiye’de yetişen Teucrium polium L. bitkisinin HepG2 hücre hattı üzerindeki etkisi. J Med Palliat Care 2020; 1(3): 49-52.
  • Feinbrun-Dothan N. Flora Palaestina, Part three. Israel Acad Sci Hum 1970; 3: 101–6.
  • Tapeh NG, Bernousi I, Moghadam AF, Mandoulakani, BA. Genetic diversity and structure of Iranian Teucrium (Teucrium polium L.) populations assessed by ISSR markers. J Agr Sci Tech 2018; 20: 333-45.
  • Özkan YZ. Guleman (Elazığ) ofiyolitinin yapısal incelenmesi, MTA Dergisi 1983 a; 37,78-85.
  • Sasmaz A. Translocation and accumulation of boron in roots and shoots of plants grown in soils of low B concentration in Turkey’s Keban Pb–Zn mining area. Int J Phytoremed 2008; 10:302–310.
  • Craw D, Rufaut CG, Haffert L, Todd A. Mobilization and attenuation of boron during coal mine rehabilitation. Wangaloa New Zealand. Sci Total Environ 2006; 368:444–455.
  • Lucho-Constantino CA, Priesto-Garcia F, Del Razo LM. Chemical fractionation of boron and heavy metals in soils irrigated with wastewater in cetral Mexico. Agric Ecosyst Environ 2005; 108:57–71.
  • Bowen HJM. Environmental chemistry of the elements. Academic Press 1979; New York.
  • Jin J, Martens DC, Zelazny LW. Distribution and plant availability of soil boron fractions. Soil Sci Soc Am J 1987; 51:1228.
  • Szabo AS. Non-destructive boron determination by activation analysis, the role of boron in the trophic chain.
  • In: Pais I (ed) Proceedings of international symposium on new results in the research of hardly known trace elements and their role in food chains. University of Horticulture and Food Industry 1988, Budapest.
  • Kot FS. Boron sources, speciation and its potential impact on health. Rev Environ Sci Biotechnol 2009; 8:3–28.
  • Robinson BH, Green SR, Chancerel B, Mills TM, Clothier BE. Poplar for phytoremanagement of boron contaminated sites. Environ Pollut 2007; 150:225–233.
  • Marin CMDC, Oron G. Boron removal by duckweed Lemna gibba: a potential method for the remediation of boron-polluted waters. Water Res 2007; 41:4579–4584.
  • Zhao Q, Li J, Dai Z, Ma C, Sun H, Liu C. Boron tolerance and accumulation potential of four salt-tolerant plant species. Sci Rep 2019; 9:6260.
  • Sasmaz M, Uslu Senel G, Obek E. Boron Bioaccumulation by the Dominant Macrophytes Grown in Various Discharge Water Environments. Bull Environ Contam Toxicol 2021; 106(6), 1050-1058.

Investigation of Boron Accumulation Performance of Teucrium polium Grown in Serpentine Soils

Yıl 2024, Cilt: 36 Sayı: 2, 735 - 742, 30.09.2024
https://doi.org/10.35234/fumbd.1433177

Öz

Guleman region is one of the most important chrome ore producing regions of Turkey, and serpentine rocks outcrop in a wide area. This study examined boron accumulation in the roots and shoots of the Teucrium polium plant growing on Guleman serpentine soil. The soil of 17 Teucrium polium plants growing on serpentine soils in the study area were collected together with their roots and shoots and chemical analyses were carried out separately for boron. Chemical analyses were carried out in ICP-MS (Inductively Coupled Plasma-Mass Spectrometry). On average, boron values were determined as 7.94 ppm in the soil, 14.8 ppm in the root and 70.06 ppm in the shoot. Boron enrichment values (ECR, ECS and TLF) in the soil, roots and shoots of this plant were quite high. These values showed that the Teucrium polium plant accumulated significant amounts of boron from the soil to both roots and shoots. As a result, it has been shown that this plant can be considered as a bioaccumulator plant, especially in the reclamation of boron-polluted soils and the improvement of such areas.

Proje Numarası

FUBAP-MF.20.16

Kaynakça

  • Kabata-Pendias A. Trace elements in soils and plants. CRC Press, Boca Raton 2011.
  • US Environmental Protection Agency (USEPA). Framework for human health risk assessment to inform decision making, 2014; EPA/100/R-14/001, Risk Assessment Forum, Office of the Science Advisor, USEPA, Washington, DC. http:// www. epa. gov/risk/ framework- human- health- risk- asses sment- inform- decis ionma king.
  • Helvacı C. Stratigraphy, mineralogy, and genesis of the Bigadic Borate deposits, Western Turkey. Economic Geology 1995; 90,1237–1260.
  • Helvacı C, Alonso RC. Borate deposits of Turkey and Argentina; a summary and geological comparison. Turkish Journal of Earth Sciences 2000; 9, 1–27.
  • Yermiyahu U, Keren R, Chen Y. Boron sorption by soil in the presence of composted organic matter. Soil Sci Soc Am J 1995; 59:405–409.
  • Tatar SY, Obek E. Potential of Lemna gibba L. and Lemna minör L. for accumulation of boron from secondary effluents. Ecol Eng 2014; 70:332–336.
  • Rees R, Robinson BH, Menon M, Lehmann E, Gunthardt-Goerg MS, Schulin R. Boron accumulation and toxicity in hybrid poplar (Populus nigra xeuramericana). Environ Sci Technol 2011; 45:10538–10543.
  • Turker OC, Vymazal J, Ture C. Constructed wetlands for boron removal: a review. Ecol Eng 2014; 64:350–359.
  • Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ. Heavy Metals Toxicity and the Environment. Molecular, Clinical and Environmental Toxicology 2012; 101, 133-164.
  • Duffus JH. "Heavy metals" a meaningless term (IUPAC Technical Report). Pure and Applied Chemistry 2002; 74(5), 793-807.
  • Gergen I, Harmanescu M. Application of Principal Component Analysis in the Pollution Assessment with Heavy Metals of Vegetable Food Chain in the Old mining Areas. Chem Cent J 2012; 6, 56.
  • Rai S, Gupta S, Mittal PC. Dietary Intakes and Health Risk of Toxic and Essential Heavy Metals through the Food Chain in Agricultural, Industrial, and Coal Mining Areas of Northern India. Hum Ecol Risk Assess. 2015; 21, 913–933.
  • Sood A, Uniyal PL, Prasanna R, Ahluwalia AS. Phytoremediation potential of aquatic macrophyte, Azolla. Ambio 2012; 41, 122-137.
  • Goswami C, Majumder A, Misra AK, Bandyopadhyay K. Arsenic uptake by Lemna minor in hydroponic system. Int J Phytorem 2014.; 16, 1221-1227.10.
  • Sasmaz M, Arslan Topal EI, Obek E, Sasmaz A. The potential of Lemna gibba L. and Lemna minor L. to remove Cu, Pb, Zn, and As in gallery water in a mining area in Keban, Turkey. J Environ Manag 2015; 163:246–253.
  • Rahman MA, Hasegawa H. Aquatic arsenic: phytoremediation using floating macrophytes. Chemosphere 2011; 83, 633-646.
  • Baker AJM, Brooks RR. Terrestrial higher plants which hyper¬accumulate metalic elements-A review of their distribution,ecology and phytochemistry. Biorecovery 1989; 1:81–126.
  • Terzi H, Yıldız M. Bitkilerde ağır metal toksisitesi: proteomik yaklaşım. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 2013; 13 (021001): 1-21.
  • Bani A, Echevarria G, Sulçe S, Morel JL, Mullai A. In-situ phy¬toextraction of Ni by a native population of Alyssum murale on an ultramafic site (Albania). Plant Soil 2007; 293:79–89.
  • Alexander EB. Soil and vegetation differences from peridotite to serpentinite. Northeast Nat. 2009; 16, 178-192.
  • Alfaro MR, Montero A, Ugarte OM, Nascimento CWA, Accioly AMA, Biondi CM, Silva YJAB. Background concentrations and reference values for heavy metals in soils of Cuba. Environ Monit Assess. 2015; 187:4198.
  • Galey ML, Van der Ent A, Iqbal MCM, Rajakaruna N. Ultramafic geoecology of South and Southeast Asia. Bot Stud 2017;58:18.
  • Nascimento CWA, Lima LHV, Silva JAB, Biondi CM. Ultramafic soils and nickelphytomining opportunities: A review. Rev. Bras. Ciˆencia do Solo 2022; 46, 1-17.
  • Ghafoori M, Shariati M, Van der Ent A, Baker AJM. Nickel hyperaccumulation, elemental profiles and agromining potential of three species of Odontarrhena from the ultramafics of Western Iran. International journal of phytoremediation 2023; 25 (3),381-392.
  • Proctor J, Woodell SRJ. The ecology of serpentine soils. Advances in Ecological Research 1975; 9: 255–366. Proctor, J. Vegetation and soil and plant chemistry on ultramafi c rocks in the tropical Far East, Perspectives in Plant Ecology Evolution & Systematics 2003; 6, (1–2), 105–124.
  • Tomovic GM, Mihailovic ML, Tumi AF, Gajic BA, Misljenovic TD, Niketic MS. Trace metals in soils and several Brassicaceae plant species from serpentine sites of Serbia. Arch Environ Protec. 2013; 39, 29- 49.
  • Jaffré T. Étude écologique du peuplement végétal des sol dérivés de roches ultrabasiques en Nouvelle Calédonie. Travaux et Documents de 1980; L’ORSTOM 124 Paris: ORSTOM.
  • Rajakaruna N, Boyd RS. Serpentine Soils. In: Oxford Bibliographies in Ecology 2014; Ed. David Gibson. New York: Oxford University Press.
  • Avcı M. Diversity and endemism in Turkey’s vegetation. İstanbul Üniversitesi Edebiyat Fakültesi Coğrafya Bölümü Coğrafya Dergisi 2005; 13: 27-55.
  • Reeves RD, Baker AJM, Borhidi A, Berazain R. Nickel hyperaccumulation in the serpentine flora of Cuba. Annals of Botany 1999; 83(1), 29-38.
  • Rajakaruna N. The edaphic factor in the origin of plant species. International Geology Review 2004; 46: 471–478.
  • Kurt L, Ozbey BG, Kurt F, Ozdeniz E Bolukbaşı A. Serpentine Flora of Turkey. Biological Diversity and Conservation 2013; 6(1): 134- 152.
  • Gavrilescu, M. Enhancing phytoremediation of soils polluted with heavy metals. Current Opinion in Biotechnology 2022; 74,(21), 31.
  • Konakcı N, Sasmaz Kislioglu M, Sasmaz A. Ni, Cr and Co Phytoremediations by Alyssum murale Grown in the Serpentine Soils Around Guleman Cr Deposits, Elazig Turkey. Bulletin of Environmental Contamination and Toxicology 2023; 110:97.
  • Engin T, Balcı M, Simer Y, Ozkan YZ. General geological setting and the structural features of the Guleman peridotite unit and the chromite deposits. Bull Min Res Exp Ins Turkey 1983; 95, 34-56.
  • Oualidi J, Verneau O, Puech S, Dubuisson JY. Utility of rDNA ITS sequences in the systematics of Teucrium section polium (lamiaceae). Plant Syst Evol 1999; 215: 49–70.
  • Kırkık D, Sancak NP, Alragabi JM. Türkiye’de yetişen Teucrium polium L. bitkisinin HepG2 hücre hattı üzerindeki etkisi. J Med Palliat Care 2020; 1(3): 49-52.
  • Feinbrun-Dothan N. Flora Palaestina, Part three. Israel Acad Sci Hum 1970; 3: 101–6.
  • Tapeh NG, Bernousi I, Moghadam AF, Mandoulakani, BA. Genetic diversity and structure of Iranian Teucrium (Teucrium polium L.) populations assessed by ISSR markers. J Agr Sci Tech 2018; 20: 333-45.
  • Özkan YZ. Guleman (Elazığ) ofiyolitinin yapısal incelenmesi, MTA Dergisi 1983 a; 37,78-85.
  • Sasmaz A. Translocation and accumulation of boron in roots and shoots of plants grown in soils of low B concentration in Turkey’s Keban Pb–Zn mining area. Int J Phytoremed 2008; 10:302–310.
  • Craw D, Rufaut CG, Haffert L, Todd A. Mobilization and attenuation of boron during coal mine rehabilitation. Wangaloa New Zealand. Sci Total Environ 2006; 368:444–455.
  • Lucho-Constantino CA, Priesto-Garcia F, Del Razo LM. Chemical fractionation of boron and heavy metals in soils irrigated with wastewater in cetral Mexico. Agric Ecosyst Environ 2005; 108:57–71.
  • Bowen HJM. Environmental chemistry of the elements. Academic Press 1979; New York.
  • Jin J, Martens DC, Zelazny LW. Distribution and plant availability of soil boron fractions. Soil Sci Soc Am J 1987; 51:1228.
  • Szabo AS. Non-destructive boron determination by activation analysis, the role of boron in the trophic chain.
  • In: Pais I (ed) Proceedings of international symposium on new results in the research of hardly known trace elements and their role in food chains. University of Horticulture and Food Industry 1988, Budapest.
  • Kot FS. Boron sources, speciation and its potential impact on health. Rev Environ Sci Biotechnol 2009; 8:3–28.
  • Robinson BH, Green SR, Chancerel B, Mills TM, Clothier BE. Poplar for phytoremanagement of boron contaminated sites. Environ Pollut 2007; 150:225–233.
  • Marin CMDC, Oron G. Boron removal by duckweed Lemna gibba: a potential method for the remediation of boron-polluted waters. Water Res 2007; 41:4579–4584.
  • Zhao Q, Li J, Dai Z, Ma C, Sun H, Liu C. Boron tolerance and accumulation potential of four salt-tolerant plant species. Sci Rep 2019; 9:6260.
  • Sasmaz M, Uslu Senel G, Obek E. Boron Bioaccumulation by the Dominant Macrophytes Grown in Various Discharge Water Environments. Bull Environ Contam Toxicol 2021; 106(6), 1050-1058.
Toplam 52 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Maden Yatakları ve Jeokimya
Bölüm MBD
Yazarlar

Nevin Konakcı 0000-0002-0163-0966

Proje Numarası FUBAP-MF.20.16
Yayımlanma Tarihi 30 Eylül 2024
Gönderilme Tarihi 7 Şubat 2024
Kabul Tarihi 26 Temmuz 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 36 Sayı: 2

Kaynak Göster

APA Konakcı, N. (2024). Serpantinli Topraklarda Yetişen Teucrium Polium’ un Bor Akümülasyon Performansının İncelenmesi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 36(2), 735-742. https://doi.org/10.35234/fumbd.1433177
AMA Konakcı N. Serpantinli Topraklarda Yetişen Teucrium Polium’ un Bor Akümülasyon Performansının İncelenmesi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. Eylül 2024;36(2):735-742. doi:10.35234/fumbd.1433177
Chicago Konakcı, Nevin. “Serpantinli Topraklarda Yetişen Teucrium Polium’ Un Bor Akümülasyon Performansının İncelenmesi”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 36, sy. 2 (Eylül 2024): 735-42. https://doi.org/10.35234/fumbd.1433177.
EndNote Konakcı N (01 Eylül 2024) Serpantinli Topraklarda Yetişen Teucrium Polium’ un Bor Akümülasyon Performansının İncelenmesi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 36 2 735–742.
IEEE N. Konakcı, “Serpantinli Topraklarda Yetişen Teucrium Polium’ un Bor Akümülasyon Performansının İncelenmesi”, Fırat Üniversitesi Mühendislik Bilimleri Dergisi, c. 36, sy. 2, ss. 735–742, 2024, doi: 10.35234/fumbd.1433177.
ISNAD Konakcı, Nevin. “Serpantinli Topraklarda Yetişen Teucrium Polium’ Un Bor Akümülasyon Performansının İncelenmesi”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 36/2 (Eylül 2024), 735-742. https://doi.org/10.35234/fumbd.1433177.
JAMA Konakcı N. Serpantinli Topraklarda Yetişen Teucrium Polium’ un Bor Akümülasyon Performansının İncelenmesi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2024;36:735–742.
MLA Konakcı, Nevin. “Serpantinli Topraklarda Yetişen Teucrium Polium’ Un Bor Akümülasyon Performansının İncelenmesi”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, c. 36, sy. 2, 2024, ss. 735-42, doi:10.35234/fumbd.1433177.
Vancouver Konakcı N. Serpantinli Topraklarda Yetişen Teucrium Polium’ un Bor Akümülasyon Performansının İncelenmesi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2024;36(2):735-42.