Araştırma Makalesi
BibTex RIS Kaynak Göster

FFF Kullanılarak Üretilen 3D Baskılı PLA’nın Mekanik Özellikleri Üzerinde Dolgu Yoğunluğu ve Dolgu Deseninin Etkisi

Yıl 2025, Cilt: 37 Sayı: 1, 223 - 232, 27.03.2025
https://doi.org/10.35234/fumbd.1538296

Öz

Eklemeli imalat (AM) teknolojisinin gelişmesiyle bu teknolojide kullanılan malzemelerin mekanik özellikleri üzerindeki etkilerini incelemek giderek daha önemli hale gelmektedir. Farklı baskı yöntemleri ve üretim parametrelerinin kullanılması, 3D-baskılı malzemelerin mekanik özelliklerini etkilemektedir. Ancak bu konuda araştırmalar hala sınırlıdır. Dolayısıyla, bu çalışmanın hedefi, AM metodu kullanılarak farklı dolgu yoğunluklarına ve dolgu desenlerine sahip PLA malzeme ile üretilen numuneler üzerinde bu dolgu işlem parametrelerinin etkilerini incelemektir. Bu amaçla beş dolgu desenine (cubic, tri-hexagon, octet, grid and zig zag) ve iki dolgu yoğunluğuna (50%, 60%) sahip test numuneleri üretilmiştir. Ek olarak %100 dolgu yoğunluğu, desensiz katı dolguya sahip olacak şekilde oluşturulmuş ve referans olarak seçilmiştir. Tüm numunelere mekanik çekme testi ve Charpy testi uygulanmıştır. Sonuçlar, doldurma parametrelerinin üç boyutlu olarak basılmış yapıların enerji emilimi ve çekme dayanımı üzerinde önemli etkileri olduğunu göstermektedir. Baskı desenleri, basılan yapıların çekme dayanımını etkiler, özellikle octet desenli yapıların, 42 MPa ile en iyi çekme dayanımı ve 16,94 kJ.mm-2 ile en yüksek enerji emilim değerine sahip olduğu tespit edilmiştir. Ayrıca dolgu yoğunluğunun artması ile çekme mukavemetinin de arttığı belirlenmiştir. Bu çalışmanın mekanik test sonucunda elde edilen değerleri, yüksek mukavemetli mekanik özelliklere ihtiyaç duyan 3B baskı ürünlerinde kullanılacak dilimleme uygulamasında doğru dolgu parametrelerini seçmede bir referans olacaktır.

Kaynakça

  • Saleh M, Anwar S, Al-Ahmari AM, Alfaify A. Compression Performance and Failure Analysis of 3D-Printed Carbon Fiber/PLA Composite TPMS Lattice Structures. Polymers 2022; 14(21): 1–22.
  • Yang Y, Huang W, Ma YE, Wang S, Chen X, Meng Y. Mechanical Properties and Failure Modes of Additively Manufactured Ti6Al4V Lattice Structures under Quasi-Static Compressive Loading. Int J Appl Mech 2022; 14(9).
  • Dudescu MC, Racz L, Popa F. Effect of infill pattern on fatigue characteristics of 3D printed polymers. Mater Today Proc 2023; 78 263–269.
  • Abd El Aal MI, Awd Allah MM, Abd Alaziz SA, Abd El-baky MA. Biodegradable 3D printed polylactic acid structures for different engineering applications: effect of infill pattern and density. J Polym Res 2024; 31(1): 1–15.
  • Farias D, Oliveira D, Quaresma L, Sousa M, Pinheiro M. Effect of Infill Parameters and Nano ‐ Reinforcement on Compression Performance of 3D Printed Polylactic Acid 2024.
  • Ma Q, Rejab MRM, Kumar AP. Effect of infill pattern of polylactide acid (PLA) 3D-printed integral sandwich panels under ballistic impact loading. Mater. Today Commun 2024; 38: 107626.
  • Rahman MM, Sultana J, Rayhan S Bin, Ahmed A. Optimization of FDM manufacturing parameters for the compressive behavior of cubic lattice cores: an experimental approach by Taguchi method. Int J Adv Manuf Technol 2023.
  • Hozdić E, Hozdić E. Comparative Analysis of the Influence of Mineral Engine Oil on the Mechanical Parameters of FDM 3D-Printed PLA, PLA+CF, PETG, and PETG+CF Materials. Materials (Basel) 2023; 16(18).
  • Xu Z, La Mendola I, Razavi SMJ, Bagherifard S. Additive manufactured Triply Periodical Minimal Surface lattice structures with modulated hybrid topology. Eng Struct 2023; 289.
  • Zhang H, Wu J, Robert C, Ó Brádaigh CM, Yang D. 3D printing and epoxy-infusion treatment of curved continuous carbon fibre reinforced dual-polymer composites. Compos Part B Eng 2022; 234.
  • Pernet B, Nagel JK, Zhang H. Compressive Strength Assessment of 3D Printing Infill Patterns. Procedia CIRP 2022; 105: 682–687.
  • Darsin M, Mauludy RR, Hardiatama I, Fachri BA, Ramadhan ME, Parningotan D. Analysis of the effect 3D printing parameters on tensile strength using Copper-PLA filament. Sinergi 2022; 26(1): 99.
  • Abou-Ali AM, Lee DW, Abu Al-Rub RK. On the Effect of Lattice Topology on Mechanical Properties of SLS Additively Manufactured Sheet-, Ligament-, and Strut-Based Polymeric Metamaterials. Polymers 2022; 14(21).
  • Pandzic A, Hodzic D, Milovanovic A. Influence of material colour on mechanical properties of pla material in fdm technology. Ann DAAAM Proc Int DAAAM Symp 2019; 30(1): 555–561.
  • Ali Z, Yan Y, Mei H, Cheng L, Zhang L. Effect of infill density, build direction and heat treatment on the tensile mechanical properties of 3D-printed carbon-fiber nylon composites. Compos Struct 2023; 304: 116370.
  • Garg S, Sardar A, Srivastava R, Verma S, Madan AK. Variation in Tensile Strength of 3D Printed PLA Parts by Varying Infill Density and Infill Pattern. Saudi J Eng Technol 2023; 8(05): 103–107.
  • Naik M, Thakur DG, Chandel S. An insight into the effect of printing orientation on tensile strength of multi-infill pattern 3D printed specimen: Experimental study. Mater Today Proc 2022; 62: 7391–7395.
  • Rismalia M, Hidajat SC, Permana IGR, Hadisujoto B, Muslimin M, Triawan F. Infill pattern and density effects on the tensile properties of 3D printed PLA material. J Phys Conf Ser 2019; 1402(4): 2–8.
  • Dave HK, Rajpurohit SR, Sheth K V. Compressive Strength of PLA based Scaffolds: Effect of layer height, Infill Density and Print Speed. Int J Mod Manuf Technol 2019; 11(1): 21–27.
  • ISO 179-1. International standard - determination of charpy impact properties. Int Organ Stand 2015; 10406–1:20 3–6.
  • ISO-527-2. Plastics-Determination of tensile properties-COPYRIGHT PROTECTED 2012.

Effect of Infill Density and Infill Pattern on Mechanical Properties of 3D-printed PLA Produced by FFF

Yıl 2025, Cilt: 37 Sayı: 1, 223 - 232, 27.03.2025
https://doi.org/10.35234/fumbd.1538296

Öz

With the rapid advancements in Additive Manufacturing (AM) technology, examining the mechanical properties of products utilized in this process has become increasingly important. The mechanical properties of 3D-printed products are significantly influenced by the choice of printing methods and printing parameters. Despite ongoing progress, research exploring these effects remains limited. Therefore, the aim of this study is to examine the effects of these production parameters on samples produced with PLA material with different infill densities and infill patterns using the fused filament fabrication technique, one of the AM methods. For this purpose, test samples with five patterns (cubic, tri-hexagon, octet, grid, and zigzag) and two densities (50%, 60%) were produced. In addition, 100% infill density was created with a solid infill pattern and selected as a reference. Mechanical tensile and Charpy tests were conducted on all samples. The results indicate that infill parameters have significant effects on the energy absorption and tensile strength of 3D-printed products. Printing patterns influence the tensile strength of printed structures, with octet-patterned structures showing the maximum tensile strength at 42 MPa and the highest energy absorption value at 16.94 kJ.mm-2. Furthermore, it was found that the tensile strength increases with increasing infill density. The values obtained from the mechanical tests in this study will serve as a reference for selecting the correct infill parameters in the slicing program for 3D-printed products requiring high-strength.

Kaynakça

  • Saleh M, Anwar S, Al-Ahmari AM, Alfaify A. Compression Performance and Failure Analysis of 3D-Printed Carbon Fiber/PLA Composite TPMS Lattice Structures. Polymers 2022; 14(21): 1–22.
  • Yang Y, Huang W, Ma YE, Wang S, Chen X, Meng Y. Mechanical Properties and Failure Modes of Additively Manufactured Ti6Al4V Lattice Structures under Quasi-Static Compressive Loading. Int J Appl Mech 2022; 14(9).
  • Dudescu MC, Racz L, Popa F. Effect of infill pattern on fatigue characteristics of 3D printed polymers. Mater Today Proc 2023; 78 263–269.
  • Abd El Aal MI, Awd Allah MM, Abd Alaziz SA, Abd El-baky MA. Biodegradable 3D printed polylactic acid structures for different engineering applications: effect of infill pattern and density. J Polym Res 2024; 31(1): 1–15.
  • Farias D, Oliveira D, Quaresma L, Sousa M, Pinheiro M. Effect of Infill Parameters and Nano ‐ Reinforcement on Compression Performance of 3D Printed Polylactic Acid 2024.
  • Ma Q, Rejab MRM, Kumar AP. Effect of infill pattern of polylactide acid (PLA) 3D-printed integral sandwich panels under ballistic impact loading. Mater. Today Commun 2024; 38: 107626.
  • Rahman MM, Sultana J, Rayhan S Bin, Ahmed A. Optimization of FDM manufacturing parameters for the compressive behavior of cubic lattice cores: an experimental approach by Taguchi method. Int J Adv Manuf Technol 2023.
  • Hozdić E, Hozdić E. Comparative Analysis of the Influence of Mineral Engine Oil on the Mechanical Parameters of FDM 3D-Printed PLA, PLA+CF, PETG, and PETG+CF Materials. Materials (Basel) 2023; 16(18).
  • Xu Z, La Mendola I, Razavi SMJ, Bagherifard S. Additive manufactured Triply Periodical Minimal Surface lattice structures with modulated hybrid topology. Eng Struct 2023; 289.
  • Zhang H, Wu J, Robert C, Ó Brádaigh CM, Yang D. 3D printing and epoxy-infusion treatment of curved continuous carbon fibre reinforced dual-polymer composites. Compos Part B Eng 2022; 234.
  • Pernet B, Nagel JK, Zhang H. Compressive Strength Assessment of 3D Printing Infill Patterns. Procedia CIRP 2022; 105: 682–687.
  • Darsin M, Mauludy RR, Hardiatama I, Fachri BA, Ramadhan ME, Parningotan D. Analysis of the effect 3D printing parameters on tensile strength using Copper-PLA filament. Sinergi 2022; 26(1): 99.
  • Abou-Ali AM, Lee DW, Abu Al-Rub RK. On the Effect of Lattice Topology on Mechanical Properties of SLS Additively Manufactured Sheet-, Ligament-, and Strut-Based Polymeric Metamaterials. Polymers 2022; 14(21).
  • Pandzic A, Hodzic D, Milovanovic A. Influence of material colour on mechanical properties of pla material in fdm technology. Ann DAAAM Proc Int DAAAM Symp 2019; 30(1): 555–561.
  • Ali Z, Yan Y, Mei H, Cheng L, Zhang L. Effect of infill density, build direction and heat treatment on the tensile mechanical properties of 3D-printed carbon-fiber nylon composites. Compos Struct 2023; 304: 116370.
  • Garg S, Sardar A, Srivastava R, Verma S, Madan AK. Variation in Tensile Strength of 3D Printed PLA Parts by Varying Infill Density and Infill Pattern. Saudi J Eng Technol 2023; 8(05): 103–107.
  • Naik M, Thakur DG, Chandel S. An insight into the effect of printing orientation on tensile strength of multi-infill pattern 3D printed specimen: Experimental study. Mater Today Proc 2022; 62: 7391–7395.
  • Rismalia M, Hidajat SC, Permana IGR, Hadisujoto B, Muslimin M, Triawan F. Infill pattern and density effects on the tensile properties of 3D printed PLA material. J Phys Conf Ser 2019; 1402(4): 2–8.
  • Dave HK, Rajpurohit SR, Sheth K V. Compressive Strength of PLA based Scaffolds: Effect of layer height, Infill Density and Print Speed. Int J Mod Manuf Technol 2019; 11(1): 21–27.
  • ISO 179-1. International standard - determination of charpy impact properties. Int Organ Stand 2015; 10406–1:20 3–6.
  • ISO-527-2. Plastics-Determination of tensile properties-COPYRIGHT PROTECTED 2012.
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Katmanlı Üretim
Bölüm MBD
Yazarlar

Özlem Akçay 0009-0002-2316-6540

Ali Arı 0000-0003-2702-2982

Yayımlanma Tarihi 27 Mart 2025
Gönderilme Tarihi 9 Eylül 2024
Kabul Tarihi 3 Ocak 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 37 Sayı: 1

Kaynak Göster

APA Akçay, Ö., & Arı, A. (2025). Effect of Infill Density and Infill Pattern on Mechanical Properties of 3D-printed PLA Produced by FFF. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 37(1), 223-232. https://doi.org/10.35234/fumbd.1538296
AMA Akçay Ö, Arı A. Effect of Infill Density and Infill Pattern on Mechanical Properties of 3D-printed PLA Produced by FFF. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. Mart 2025;37(1):223-232. doi:10.35234/fumbd.1538296
Chicago Akçay, Özlem, ve Ali Arı. “Effect of Infill Density and Infill Pattern on Mechanical Properties of 3D-Printed PLA Produced by FFF”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 37, sy. 1 (Mart 2025): 223-32. https://doi.org/10.35234/fumbd.1538296.
EndNote Akçay Ö, Arı A (01 Mart 2025) Effect of Infill Density and Infill Pattern on Mechanical Properties of 3D-printed PLA Produced by FFF. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 37 1 223–232.
IEEE Ö. Akçay ve A. Arı, “Effect of Infill Density and Infill Pattern on Mechanical Properties of 3D-printed PLA Produced by FFF”, Fırat Üniversitesi Mühendislik Bilimleri Dergisi, c. 37, sy. 1, ss. 223–232, 2025, doi: 10.35234/fumbd.1538296.
ISNAD Akçay, Özlem - Arı, Ali. “Effect of Infill Density and Infill Pattern on Mechanical Properties of 3D-Printed PLA Produced by FFF”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 37/1 (Mart 2025), 223-232. https://doi.org/10.35234/fumbd.1538296.
JAMA Akçay Ö, Arı A. Effect of Infill Density and Infill Pattern on Mechanical Properties of 3D-printed PLA Produced by FFF. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2025;37:223–232.
MLA Akçay, Özlem ve Ali Arı. “Effect of Infill Density and Infill Pattern on Mechanical Properties of 3D-Printed PLA Produced by FFF”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, c. 37, sy. 1, 2025, ss. 223-32, doi:10.35234/fumbd.1538296.
Vancouver Akçay Ö, Arı A. Effect of Infill Density and Infill Pattern on Mechanical Properties of 3D-printed PLA Produced by FFF. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2025;37(1):223-32.