Araştırma Makalesi
BibTex RIS Kaynak Göster

Turba Ortamında Titanyumun Korozyonunun Elektrokimyasal Empedans Spektroskopisi ile İncelenmesi

Yıl 2025, Cilt: 37 Sayı: 1, 467 - 474, 27.03.2025
https://doi.org/10.35234/fumbd.1607863

Öz

Elektrokimyasal korozyonun oluşumunda önemli rol oynayan toprak türlerinden biri olan turba, dünya kara yüzeyinin yaklaşık %8’ini kaplamaktadır. Ancak literatür, turbaların metalik malzemeler üzerindeki korozyon davranışını incelemede oldukça yetersizdir. Özellikle boru hatlarının metalik malzemelerden imal edildiği düşünüldüğünde, turbanın metalik malzemeler üzerindeki korozyon etkisinin araştırılması ve buna göre stratejiler geliştirilmesi önemli bir araştırma konusu haline gelmiştir. Bu çalışmada, yeraltı boru hattı imalatında yaygın olarak kullanılan metal malzemelerden biri olan titanyumun turba ortamındaki korozyon davranışı açık devre potansiyeli ve elektrokimyasal empedans spektroskopisi ile incelenmiştir. 24 saatlik açık devre potansiyel gözleminin başlangıcında -0,845 mV olan potansiyel, deneylerin sonunda -0,532 mV olarak ölçülmüş ve böylece daha pozitif bir yöne kaymıştır. Elektrokimyasal empedans spektroskopisi testlerinden elde edilen Nyquist eğrisi yarım daireseldi ve bu da titanyum metalinin yüzeyinde bir bariyer tabakasının oluştuğunu göstermiştir. Her iki test de titanyum metalinin turbanın korozyon saldırısına karşı direnç gösterdiğini ortaya koymuştur.

Kaynakça

  • Erensoy A, Mulayim S, Orhan A, Çek N, Tuna A. Ak N. The system design of the peat-based microbial fuel cell as a new renewable energy source: The potential and limitations. Alexandria Eng J 2022; 61(11): 8743-8750.
  • Jafery KM, Embong Z, Othman NK, Yaakob N, Shah M, Hashim NZN. Initial stage of corrosion formation for X70 pipeline external surface in acidic soil (peat) environment. Mater Today: Proc 2022; 51(2): 1381-1387.
  • Kreuzburg M, Ibenthal M, Janssen M, Rehder G, Voss M, Naumann M, Feldens P. Sub-marine Continuation of Peat Deposits From a Coastal Peatland in the Southern Baltic Sea and its Holocene Development. Front Earth Sci 2018; 6: 103.
  • Graham SA, Craft CB, McCormick PV, Aldous A. Forms and accumulation of soil P in natural and recently restored peatlands—Upper Klamath Lake, Oregon, USA. Wetlands 2005; 25: 594-606.
  • Mikhailov AV, Korolyov IA, Lopatiuk AO. Corrosion Stability of Cutting Tool’s Material for Exploitation of Peat Deposits. Procedia Eng 2017; 206: 668-675.
  • NorDin NIM, Embong Z. Corrosion Effect of X70 Pipeline External Surface Under Sedentary and Peat Soil Environment. EKST 2022; 2(2): 365-372.
  • Velikotskij MA, Marakhtanov VP. Corrosion of the Gas Pipelines of The Field Medvezhiye in The Different Landscape Types. Geography, Environment, Sustainability 2020; 13(3): 6-12.
  • Çek N. Galvanic Corrosion of Zinc Anode and Copper Cathode Cell. Turkish Journal of Engineering 2018; 2(1): 22-26.
  • Wasim M, Shoaib S, Mubarak NM, Inamuddin, Asiri AM. Factors influencing corrosion of metal pipes in soils. Environ Chem Lett 2018; 16: 861-879.
  • Hussein Farh HM, Ben Seghier MEA, Taiwo R, et al. Analysis and ranking of corrosion causes for water pipelines: a critical review. npj Clean Water 2023; 6: 65.
  • Hussein Farh, HM, Ben Seghier MEA, Zayed T. A comprehensive review of corrosion protection and control techniques for metallic pipelines. Eng Fail Anal 2023; 143(A): 106885.
  • Casanova L, Gruarin M, Pedeferri M, Ormellese M. A comparison between corrosion performances of titanium grade 2 and 7 in strong reducing acids. Mater Corros 2021; 72(9): 1506-1517.
  • Giri SR, Khamari RK, Moharana BK. Joining of titanium and stainless steel by using different welding processes: A review. Mater Today: Proc 2022; 66(2): 505-508.
  • Gu Y, Li Z, Li J, Wang Q, Zhao Y, Wu C, Su X, Peng H. Effect of Ti addition on mechanical properties and corrosion resistance of X80 pipeline steel. Int J Press Vessels Pip 2023; 206: 105003.
  • Huang Y, Zheng Z, Fu Z, Zhang Y, Xu J, Chen S, Zhang H. Electrochemical corrosion behavior of Ti-3Mo alloy under different accelerated corrosion tests. Mater Corros 2022; 73(11): 1888-1899.
  • Dargahi M, Mahidashti Z, Rezaei M. Corrosion prevention of storage tank bottom using impressed current cathodic protection – Experimental and simulation study. Eng Fail Anal 2024; 158: 107982.
  • Freire L, Ezpeleta I, Sánchez J, Castro R. Advanced EIS-Based Sensor for Online Corrosion and Scaling Monitoring in Pipelines of Geothermal Power Plants Metals 2024; 14(3): 279.
  • Irving P, Cecil R, Yates M.Z. MYSTAT: A compact potentiostat/galvanostat for general electrochemistry measurements. HardwareX 2021; 9: e00163.
  • Ansarian I, Taghiabadi R, Amini S, Saboori A. Enhancing the corrosion behavior of Laser Powder Bed Fusion processed CP-Ti via Ultrasonic Peening. Mater Lett 2024; 354: 135410.
  • Marín-Sánchez M, Gracia-Escosa E, Conde A, Palacio C, García I. Deposition of Zinc–Cerium Coatings from Deep Eutectic Ionic Liquids. Materials 2018; 11(10): 2035.
  • Pal A, Krishna NG, Shankar AR, Philip J. High contrast corrosion mapping of dissimilar metal weld joints using alternating current scanning electrochemical microscopy: A case study with Zr-4–Ti–304L SS weld. Corros Sci 2023; 221: 111345.
  • Zhang F, Qin J, Cai K, Myers JJ, Ma H. Anti-Corrosion Performance of Magnesium Potassium Phosphate Cement Coating on Steel Reinforcement: The Effect of Boric Acid. Materials 2024; 17(21): 5310.
  • Jin J, Zhou S, Zhang W, Li K, Liu Y, Chen D, Zhang LC. Effect of ceramic types on the microstructure and corrosion behavior of titanium matrix composites produced by selective laser melting. J. Alloys Compd. 2022; 918: 165704.
  • Meng Z, Shi Y, Qiao Z, Yang J, Wang L. Study on microstructure and corrosion resistance of Ti-doped nickel-based alloy coatings. J Solid State Electrochem 2022; 26: 1677-1686.
  • Aljohani TA, Albeladi MI, Alshammari BA. Improving pitting corrosion resistance of the commercial titanium through graphene oxide-titanium oxide composite. Heliyon 2021; 7 (6): e07289.
  • Liu L, Shan X., Bi F., Sun C, Wang M, Tan X., Ren G, Xue Y. Effect of temperature on the electrochemical corrosion behavior of X52 pipeline steel in NS4 simulated solution. Int J Electrochem Sci 2025; 20(1): 100883.
  • Ünal E, Yaşar A, Karahan İH. Ni-B/TiC Nanokompozit Kaplamaların Korozyon Dayanımlarının Elektrokimyasal Empedans Spektroskopisi (EES) Yöntemi ile Analizi. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 2023; 38(1): 115-129.
  • Gao X, Sun Y, Jia Q, Lee E-S., Jiang HB. Cross-Disciplinary Application for Qualitative Magnesium Corrosion Assays. Bioinorg Chem Appl 2022; 2022: 289447.
  • Lin CH, Duh CG. Electrochemical impedance spectroscopy (EIS) study on corrosion performance of CrAlSiN coated steels in 3.5 wt.% NaCl solution. Surf Coat Technol 2009; 204(6–7): 784-787.
  • Gupta AK, Mandal N, Nayak S, Moirangthem RS, Reddy SRM, Bhagat AN, Rout TK. Efficient and Cost-Effective Single-Step Thin Overlay Zinc Oxide Nanostructure for Enhanced Corrosion Protection of Galvanized Steel. Met Mater Int 2024; 30: 3045-3055.
  • El Hamdouni, Y., Bouhlal, F., Kouri, Chellouli M., Benmessaoud M, Dahrouch A, Labjar N, El Hajjaji S. Use of Omeprazole as Inhibitor for C38 Steel Corrosion in 1.0 M H3PO4 Medium. J Fail Anal and Preven 2020; 20: 563-571.
  • Haruna K, Saleh TA. Dopamine functionalized graphene oxide (DGO) as a corrosion inhibitor against X60 carbon steel corrosion in a simulated acidizing environment; An electrochemical, weight loss, SERS, and computational study. Surf Interfaces 2024; 44: 103688.
  • El-Aouni N, Dagdag O, Amri AE, Kim H, Dkhireche N, Elbachiri A, Berdimurodov E, Berisha A, Rafik M. Hybrid epoxy/Br inhibitor in corrosion protection of steel: experimental and theoretical investigations. Environ Sci Pollut Res 2024; 31: 1033-1049.
  • Marinescu M. Recent advances in the use of benzimidazoles as corrosion inhibitors. BMC Chemistry 2019; 13: 136.
  • Lu YJ, Liu XC, Liu YJ, Wu X, Jiang Y, Liu Z, Lin JX, Zhang LC. Corrosion behavior of novel titanium-based composite with engineering 3D artificial nacre-like structures. Composites, Part A 2023; 164: 107278.

Investigation of Corrosion of Titanium in Peat Environment by Electrochemical Impedance Spectroscopy

Yıl 2025, Cilt: 37 Sayı: 1, 467 - 474, 27.03.2025
https://doi.org/10.35234/fumbd.1607863

Öz

The peat that one of the soil types that plays an important role in the formation of electrochemical corrosion, covers almost 8% of the world’s land surface. However, the literature is rather insufficient in studying the corrosion behavior of peats on metallic materials. Especially considering that pipelines are manufactured from metallic materials, investigating the corrosion effect of peat on metallic materials, and developing strategies accordingly has become an important research topic. In this study, the corrosion behavior of titanium, one of the metal materials widely used in underground pipeline manufacturing, in peat environment was investigated by open circuit potential and electrochemical impedance spectroscopy. The potential, which was -0.845 mV at the beginning of the 24-hour open circuit potential observation, was measured as -0.532 mV at the end of the experiments, thus shifting to a more positive direction. The Nyquist curve obtained from the electrochemical impedance spectroscopy tests was semicircular, indicating that a barrier layer was formed on the surface of the titanium metal. Both tests revealed that the titanium metal resisted the corrosion attack of the peat.

Kaynakça

  • Erensoy A, Mulayim S, Orhan A, Çek N, Tuna A. Ak N. The system design of the peat-based microbial fuel cell as a new renewable energy source: The potential and limitations. Alexandria Eng J 2022; 61(11): 8743-8750.
  • Jafery KM, Embong Z, Othman NK, Yaakob N, Shah M, Hashim NZN. Initial stage of corrosion formation for X70 pipeline external surface in acidic soil (peat) environment. Mater Today: Proc 2022; 51(2): 1381-1387.
  • Kreuzburg M, Ibenthal M, Janssen M, Rehder G, Voss M, Naumann M, Feldens P. Sub-marine Continuation of Peat Deposits From a Coastal Peatland in the Southern Baltic Sea and its Holocene Development. Front Earth Sci 2018; 6: 103.
  • Graham SA, Craft CB, McCormick PV, Aldous A. Forms and accumulation of soil P in natural and recently restored peatlands—Upper Klamath Lake, Oregon, USA. Wetlands 2005; 25: 594-606.
  • Mikhailov AV, Korolyov IA, Lopatiuk AO. Corrosion Stability of Cutting Tool’s Material for Exploitation of Peat Deposits. Procedia Eng 2017; 206: 668-675.
  • NorDin NIM, Embong Z. Corrosion Effect of X70 Pipeline External Surface Under Sedentary and Peat Soil Environment. EKST 2022; 2(2): 365-372.
  • Velikotskij MA, Marakhtanov VP. Corrosion of the Gas Pipelines of The Field Medvezhiye in The Different Landscape Types. Geography, Environment, Sustainability 2020; 13(3): 6-12.
  • Çek N. Galvanic Corrosion of Zinc Anode and Copper Cathode Cell. Turkish Journal of Engineering 2018; 2(1): 22-26.
  • Wasim M, Shoaib S, Mubarak NM, Inamuddin, Asiri AM. Factors influencing corrosion of metal pipes in soils. Environ Chem Lett 2018; 16: 861-879.
  • Hussein Farh HM, Ben Seghier MEA, Taiwo R, et al. Analysis and ranking of corrosion causes for water pipelines: a critical review. npj Clean Water 2023; 6: 65.
  • Hussein Farh, HM, Ben Seghier MEA, Zayed T. A comprehensive review of corrosion protection and control techniques for metallic pipelines. Eng Fail Anal 2023; 143(A): 106885.
  • Casanova L, Gruarin M, Pedeferri M, Ormellese M. A comparison between corrosion performances of titanium grade 2 and 7 in strong reducing acids. Mater Corros 2021; 72(9): 1506-1517.
  • Giri SR, Khamari RK, Moharana BK. Joining of titanium and stainless steel by using different welding processes: A review. Mater Today: Proc 2022; 66(2): 505-508.
  • Gu Y, Li Z, Li J, Wang Q, Zhao Y, Wu C, Su X, Peng H. Effect of Ti addition on mechanical properties and corrosion resistance of X80 pipeline steel. Int J Press Vessels Pip 2023; 206: 105003.
  • Huang Y, Zheng Z, Fu Z, Zhang Y, Xu J, Chen S, Zhang H. Electrochemical corrosion behavior of Ti-3Mo alloy under different accelerated corrosion tests. Mater Corros 2022; 73(11): 1888-1899.
  • Dargahi M, Mahidashti Z, Rezaei M. Corrosion prevention of storage tank bottom using impressed current cathodic protection – Experimental and simulation study. Eng Fail Anal 2024; 158: 107982.
  • Freire L, Ezpeleta I, Sánchez J, Castro R. Advanced EIS-Based Sensor for Online Corrosion and Scaling Monitoring in Pipelines of Geothermal Power Plants Metals 2024; 14(3): 279.
  • Irving P, Cecil R, Yates M.Z. MYSTAT: A compact potentiostat/galvanostat for general electrochemistry measurements. HardwareX 2021; 9: e00163.
  • Ansarian I, Taghiabadi R, Amini S, Saboori A. Enhancing the corrosion behavior of Laser Powder Bed Fusion processed CP-Ti via Ultrasonic Peening. Mater Lett 2024; 354: 135410.
  • Marín-Sánchez M, Gracia-Escosa E, Conde A, Palacio C, García I. Deposition of Zinc–Cerium Coatings from Deep Eutectic Ionic Liquids. Materials 2018; 11(10): 2035.
  • Pal A, Krishna NG, Shankar AR, Philip J. High contrast corrosion mapping of dissimilar metal weld joints using alternating current scanning electrochemical microscopy: A case study with Zr-4–Ti–304L SS weld. Corros Sci 2023; 221: 111345.
  • Zhang F, Qin J, Cai K, Myers JJ, Ma H. Anti-Corrosion Performance of Magnesium Potassium Phosphate Cement Coating on Steel Reinforcement: The Effect of Boric Acid. Materials 2024; 17(21): 5310.
  • Jin J, Zhou S, Zhang W, Li K, Liu Y, Chen D, Zhang LC. Effect of ceramic types on the microstructure and corrosion behavior of titanium matrix composites produced by selective laser melting. J. Alloys Compd. 2022; 918: 165704.
  • Meng Z, Shi Y, Qiao Z, Yang J, Wang L. Study on microstructure and corrosion resistance of Ti-doped nickel-based alloy coatings. J Solid State Electrochem 2022; 26: 1677-1686.
  • Aljohani TA, Albeladi MI, Alshammari BA. Improving pitting corrosion resistance of the commercial titanium through graphene oxide-titanium oxide composite. Heliyon 2021; 7 (6): e07289.
  • Liu L, Shan X., Bi F., Sun C, Wang M, Tan X., Ren G, Xue Y. Effect of temperature on the electrochemical corrosion behavior of X52 pipeline steel in NS4 simulated solution. Int J Electrochem Sci 2025; 20(1): 100883.
  • Ünal E, Yaşar A, Karahan İH. Ni-B/TiC Nanokompozit Kaplamaların Korozyon Dayanımlarının Elektrokimyasal Empedans Spektroskopisi (EES) Yöntemi ile Analizi. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 2023; 38(1): 115-129.
  • Gao X, Sun Y, Jia Q, Lee E-S., Jiang HB. Cross-Disciplinary Application for Qualitative Magnesium Corrosion Assays. Bioinorg Chem Appl 2022; 2022: 289447.
  • Lin CH, Duh CG. Electrochemical impedance spectroscopy (EIS) study on corrosion performance of CrAlSiN coated steels in 3.5 wt.% NaCl solution. Surf Coat Technol 2009; 204(6–7): 784-787.
  • Gupta AK, Mandal N, Nayak S, Moirangthem RS, Reddy SRM, Bhagat AN, Rout TK. Efficient and Cost-Effective Single-Step Thin Overlay Zinc Oxide Nanostructure for Enhanced Corrosion Protection of Galvanized Steel. Met Mater Int 2024; 30: 3045-3055.
  • El Hamdouni, Y., Bouhlal, F., Kouri, Chellouli M., Benmessaoud M, Dahrouch A, Labjar N, El Hajjaji S. Use of Omeprazole as Inhibitor for C38 Steel Corrosion in 1.0 M H3PO4 Medium. J Fail Anal and Preven 2020; 20: 563-571.
  • Haruna K, Saleh TA. Dopamine functionalized graphene oxide (DGO) as a corrosion inhibitor against X60 carbon steel corrosion in a simulated acidizing environment; An electrochemical, weight loss, SERS, and computational study. Surf Interfaces 2024; 44: 103688.
  • El-Aouni N, Dagdag O, Amri AE, Kim H, Dkhireche N, Elbachiri A, Berdimurodov E, Berisha A, Rafik M. Hybrid epoxy/Br inhibitor in corrosion protection of steel: experimental and theoretical investigations. Environ Sci Pollut Res 2024; 31: 1033-1049.
  • Marinescu M. Recent advances in the use of benzimidazoles as corrosion inhibitors. BMC Chemistry 2019; 13: 136.
  • Lu YJ, Liu XC, Liu YJ, Wu X, Jiang Y, Liu Z, Lin JX, Zhang LC. Corrosion behavior of novel titanium-based composite with engineering 3D artificial nacre-like structures. Composites, Part A 2023; 164: 107278.
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Korozyon
Bölüm MBD
Yazarlar

Ayhan Orhan 0000-0002-7648-2566

Nurettin Çek 0000-0001-6120-9228

Yayımlanma Tarihi 27 Mart 2025
Gönderilme Tarihi 26 Aralık 2024
Kabul Tarihi 21 Ocak 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 37 Sayı: 1

Kaynak Göster

APA Orhan, A., & Çek, N. (2025). Turba Ortamında Titanyumun Korozyonunun Elektrokimyasal Empedans Spektroskopisi ile İncelenmesi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 37(1), 467-474. https://doi.org/10.35234/fumbd.1607863
AMA Orhan A, Çek N. Turba Ortamında Titanyumun Korozyonunun Elektrokimyasal Empedans Spektroskopisi ile İncelenmesi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. Mart 2025;37(1):467-474. doi:10.35234/fumbd.1607863
Chicago Orhan, Ayhan, ve Nurettin Çek. “Turba Ortamında Titanyumun Korozyonunun Elektrokimyasal Empedans Spektroskopisi Ile İncelenmesi”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 37, sy. 1 (Mart 2025): 467-74. https://doi.org/10.35234/fumbd.1607863.
EndNote Orhan A, Çek N (01 Mart 2025) Turba Ortamında Titanyumun Korozyonunun Elektrokimyasal Empedans Spektroskopisi ile İncelenmesi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 37 1 467–474.
IEEE A. Orhan ve N. Çek, “Turba Ortamında Titanyumun Korozyonunun Elektrokimyasal Empedans Spektroskopisi ile İncelenmesi”, Fırat Üniversitesi Mühendislik Bilimleri Dergisi, c. 37, sy. 1, ss. 467–474, 2025, doi: 10.35234/fumbd.1607863.
ISNAD Orhan, Ayhan - Çek, Nurettin. “Turba Ortamında Titanyumun Korozyonunun Elektrokimyasal Empedans Spektroskopisi Ile İncelenmesi”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 37/1 (Mart 2025), 467-474. https://doi.org/10.35234/fumbd.1607863.
JAMA Orhan A, Çek N. Turba Ortamında Titanyumun Korozyonunun Elektrokimyasal Empedans Spektroskopisi ile İncelenmesi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2025;37:467–474.
MLA Orhan, Ayhan ve Nurettin Çek. “Turba Ortamında Titanyumun Korozyonunun Elektrokimyasal Empedans Spektroskopisi Ile İncelenmesi”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, c. 37, sy. 1, 2025, ss. 467-74, doi:10.35234/fumbd.1607863.
Vancouver Orhan A, Çek N. Turba Ortamında Titanyumun Korozyonunun Elektrokimyasal Empedans Spektroskopisi ile İncelenmesi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2025;37(1):467-74.