Araştırma Makalesi
BibTex RIS Kaynak Göster

Dental Panoramik Radyografi Veri Setinde GAN Tabanlı Segmentasyon Modellerinin Karşılaştırmalı Analizi

Yıl 2025, Cilt: 37 Sayı: 1, 523 - 532, 27.03.2025
https://doi.org/10.35234/fumbd.1642238

Öz

Özellikle ceza soruşturmalarında mağdurun kimliği esastır. Mağdurların dişlerinden kimlik tespiti yöntemini kullanan adli tıp dalına adli odontoloji denir. Adli odontolojide, bireye ait fiziksel bilgiler dişlerin kemik ve mine yapısından elde edilebilir. Bireyin odontolojik kimlik tespitinde en sık kullanılanlar panoramik, periapikal ve sefalometrik görüntüleme teknikleridir. Adli odontoloji, kitlesel felaketler, cinsel saldırı vakaları ve çocuk istismarı soruşturmaları sırasında kişisel kimlik tespitindeki temel rolüyle giderek daha fazla tanınmaktadır. Derin öğrenme algoritmaları son zamanlarda çürük, periodontal kemik kaybı ve apikal lezyonlar gibi diş bozukluklarını başarıyla tespit etmiştir. Üretken Çekişmeli Ağlar (GAN) modelleri çoğunlukla medikal görüntülerde yüksek segmentasyon performansı elde etmiştir. Bu çalışmada, literatürde üreteç olarak yaygın olarak kullanılan U-Net, Volumetrik Evrişimli Sinir Ağı (V-Net), Uzaysal ve Kanal Sıkıştırma-Uyartım Tabanlı U-Net (scSEU-Net), Transformatör Tabanlı U-Net (TransU-Net) ve U-Net benzeri Saf Transformatör (SwinU-Net) segmentasyon mimarileri kullanılarak GAN modelleri tasarlanmış ve karşılaştırmalı olarak analiz edilmiştir. Karşılaştırmalı analizler sonucunda scSEU-Net tabanlı GAN, 0,8826 Eşikli Zar (DSC), 0,7901 Eşikli Birleşim Kesişimi (Thresh-IoU), 0,9805 Doğruluk (ACC), 0,9268 Hassasiyet (PREC) ve 0,9001 Geri Çağırma (REC) değerleriyle en yüksek performans değerlerine ulaşmıştır.

Kaynakça

  • Arsiwala-Scheppach LT, Chaurasia A, Mueller A, Krois J, Schwendicke F. Machine learning in dentistry: a scoping review. J Clin Med 2023; 12(3), 937.
  • Krois J, Ekert T, Meinhold L, Golla T, Kharbot B, Wittemeier A, Schwendicke F. Deep learning for the radiographic detection of periodontal bone loss. Sci Rep 2019; 9(1), 8495.
  • Ekert T, Krois J, Meinhold L, Elhennawy K, Emara R, Golla T, Schwendicke F. Deep learning for the radiographic detection of apical lesions. J Endod 2019; 45(7), 917-922.
  • Lee JH, Kim DH, Jeong SN, Choi SH. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. J Dent 2018; 77, 106-111.
  • Schwendicke FA, Samek W, Krois J. Artificial intelligence in dentistry: chances and challenges. J Dent Res 2020; 99(7), 769-774.
  • Mateusz B, Atsuto M, Mazurowski MA. A systematic study of the class imbalance problem in convolutional neural networks. Neural nets 2018; 106, 249-259.
  • Bhat S, Birajdar GK, Patil MD. A comprehensive survey of deep learning algorithms and applications in dental radiograph analysis. Healthc Anal 2023; 100282.
  • Girshick R, Donahue J, Darrell T, Malik J. Rich feature hierarchies for accurate object detection and semantic segmentation. Proc. IEEE Comput Soc Conf Comput Vis Pattern Recognit 2014; Ohio, USA, 580–587.
  • He K, Zhang X, Ren S, Sun J. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE PAMI 2015; 37, 1904–1916.
  • Girshick R. F R-CNN. ICCV 2015; Santiago, Chile, 1440–1448.
  • Ren S, He K, Girshick R, Sun J. Faster r-cnn: Towards real-time object detection with region proposal networks. NIPS 2015; Montreal, Canada, 91–99.
  • Szegedy C, Iofe S, Vanhoucke V. Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning. AAAI 12 2017; San Frnasisco, USA, 1602-1625.
  • He K, Zhang X, Ren S, Sun J. Deep Residual Learning for Image Recognition. CVPR IEEE 2016; Las Vegas, USA, 770–778.
  • Xu X, Liu C, Zheng Y. 3D tooth segmentation and labeling using deep convolutional neural networks. IEEE Trans Vis Comput Graph 2018; 25(7):2336-2348.
  • Tian S, Dai N, Zhang B, Yuan F, Yu Q, Cheng X. Automatic classification and segmentation of teeth on 3D dental model using hierarchical deep learning networks. IEEE Access 2019; 7, 84817-84828.
  • Sampath V, Maurtua I, Aguilar Martin JJ, Gutierrez A. A survey on generative adversarial networks for imbalance problems in computer vision tasks. J Big Data 2021; 8, 1-59.
  • Fatima A, Shafi I, Afzal H, Mahmood K, Díez IDLT, Lipari V, Ashraf I. Deep learning-based multiclass instance segmentation for dental lesion detection. Healthcare MDPI 2023, Basel, Balgium, Vol. 11, No. 3, p. 347.
  • Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. MICCAI 2015; Munich, Germany 234-241.
  • Tyas MJ, Anusavice KJ, Frencken JE, Mount GJ. Minimal intervention dentistry—a review. Int Dent J 2000; 50(1), 1-12.
  • Featherstone JD. The caries balance: the basis for caries management by risk assessment. Oral Health Prev Dent 2004; 2, 259-264.
  • Li Z, Tang W, Gao S, Wang Y, Wang S. Adapting SAM2 Model from Natural Images for Tooth Segmentation in Dental Panoramic X-Ray Images. Entropy 2024; 26(12), 1059.
  • Şahin ME, Ulutaş H, Süzgen EE. Automated Segmentation of Dental Structures in Panoramic Radiographs Using U-Net 3+. IDAP IEEE 2024; Malatya, Türkiye, 1-6.
  • Xing Y, Liao P, Alasleh RA, Khampatee V, Alizadeh-Shabdiz F. Dental X-ray Segmentation and Auto Implant Design Based on Convolutional Neural Network. MIPR IEEE 2024; San Jose, CA, USA, 243-246.
  • Özçelik STA, Üzen H, Şengür A, Fırat H, Türkoğlu M, Çelebi A, Sobahi NM. Enhanced Panoramic Radiograph-Based Tooth Segmentation and Identification Using an Attention Gate-Based Encoder–Decoder Network. Diagnostics 2024; 14(23), 2719.
  • Zhou W, Lu X, Zhao D, Jiang M, Fan L, Zhang W, Liu X. A dual-labeled dataset and fusion model for automatic teeth segmentation, numbering, and state assessment on panoramic radiographs. BMC Oral Health 2024; 24(1), 1201.
  • Kong V, Lee EY, Kim KA, Shon HS. Integrating Super-Resolution with Deep Learning for Enhanced Periodontal Bone Loss Segmentation in Panoramic Radiographs. Bioeng. 2024; 11(11), 1130, (2024).
  • Altundağ G, Öcal H. A Comparison of shcU-Net Based GAN and U-net Based GAN in Adult Dental Segmentation. UBMK IEEE 2024; Antalya, Türkiye, 1040-1045.
  • Milletari F, Navab N, Ahmadi SA. V-net: Fully convolutional neural networks for volumetric medical image segmentation. 3DV IEEE 2016; Stanford University, CA, USA; 565-571).
  • Roy AG, Navab N, Wachinger C. Recalibrating fully convolutional networks with spatial and channel “squeeze and excitation” blocks. IEEE Trans Med Imaging 2018; 38(2), 540-549.
  • Chen J, Lu Y, Yu Q, Luo X, Adeli E, Wang Y, Zhou Y. Transunet: Transformers make strong encoders for medical image segmentation. arXiv preprint arXiv:2102.04306 2021.
  • Cao H, Wang Y, Chen J, Jiang D, Zhang X, Tian Q, Wang M. Swin-unet: Unet-like pure transformer for medical image segmentation. ECCV 2022; Switzerland, 205-218.
  • Ba J, Kingma P. Adam: a method for stochastic optimization. ICLR 2015; San Diego, USA, 1–11.

Comparative Analysis of GAN-based Segmentation Models on Dental Panoramic Radiography Dataset

Yıl 2025, Cilt: 37 Sayı: 1, 523 - 532, 27.03.2025
https://doi.org/10.35234/fumbd.1642238

Öz

Especially in criminal investigations, the identification of the victim is essential. The branch of forensic medicine that uses the method of identification from the teeth of the victims is called forensic odontology. In forensic odontology, physical information about the individual can be obtained from the bone and enamel structure of the teeth. Panoramic, periapical, and cephalometric imaging techniques are the most commonly used in the odontological identification of the individual. Forensic odontology is increasingly recognized for its essential role in personal identification during mass disasters, sexual assault cases, and child abuse investigations. Deep learning algorithms have recently successfully detected dental disorders such as caries, periodontal bone loss, and apical lesions. Generative adversarial networks (GAN) models have mainly achieved high segmentation performance in medical images. In this study, GAN models were designed and comparatively analyzed using U-Net, Volumetric convolutional neural network (V-Net), spatial and channel Squeeze-Excitation-based U-Net(scSEU-Net), Transformer-based U-Net (TransU-Net), and U-Net like pure Transformer (SwinU-Net) segmentation architectures which are widely used in the literature as generators. As a result of the comparative analyses, scSEU-Net-based GAN achieved the highest performance values with 0.8826 Thresholded Dice(DSC), 0.7901 Thresholded Intersection over Union (Thresh-IoU), 0.9805 Accuracy (ACC), 0.9268 Precision (PREC), and 0.9001 Recall (REC).

Kaynakça

  • Arsiwala-Scheppach LT, Chaurasia A, Mueller A, Krois J, Schwendicke F. Machine learning in dentistry: a scoping review. J Clin Med 2023; 12(3), 937.
  • Krois J, Ekert T, Meinhold L, Golla T, Kharbot B, Wittemeier A, Schwendicke F. Deep learning for the radiographic detection of periodontal bone loss. Sci Rep 2019; 9(1), 8495.
  • Ekert T, Krois J, Meinhold L, Elhennawy K, Emara R, Golla T, Schwendicke F. Deep learning for the radiographic detection of apical lesions. J Endod 2019; 45(7), 917-922.
  • Lee JH, Kim DH, Jeong SN, Choi SH. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. J Dent 2018; 77, 106-111.
  • Schwendicke FA, Samek W, Krois J. Artificial intelligence in dentistry: chances and challenges. J Dent Res 2020; 99(7), 769-774.
  • Mateusz B, Atsuto M, Mazurowski MA. A systematic study of the class imbalance problem in convolutional neural networks. Neural nets 2018; 106, 249-259.
  • Bhat S, Birajdar GK, Patil MD. A comprehensive survey of deep learning algorithms and applications in dental radiograph analysis. Healthc Anal 2023; 100282.
  • Girshick R, Donahue J, Darrell T, Malik J. Rich feature hierarchies for accurate object detection and semantic segmentation. Proc. IEEE Comput Soc Conf Comput Vis Pattern Recognit 2014; Ohio, USA, 580–587.
  • He K, Zhang X, Ren S, Sun J. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE PAMI 2015; 37, 1904–1916.
  • Girshick R. F R-CNN. ICCV 2015; Santiago, Chile, 1440–1448.
  • Ren S, He K, Girshick R, Sun J. Faster r-cnn: Towards real-time object detection with region proposal networks. NIPS 2015; Montreal, Canada, 91–99.
  • Szegedy C, Iofe S, Vanhoucke V. Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning. AAAI 12 2017; San Frnasisco, USA, 1602-1625.
  • He K, Zhang X, Ren S, Sun J. Deep Residual Learning for Image Recognition. CVPR IEEE 2016; Las Vegas, USA, 770–778.
  • Xu X, Liu C, Zheng Y. 3D tooth segmentation and labeling using deep convolutional neural networks. IEEE Trans Vis Comput Graph 2018; 25(7):2336-2348.
  • Tian S, Dai N, Zhang B, Yuan F, Yu Q, Cheng X. Automatic classification and segmentation of teeth on 3D dental model using hierarchical deep learning networks. IEEE Access 2019; 7, 84817-84828.
  • Sampath V, Maurtua I, Aguilar Martin JJ, Gutierrez A. A survey on generative adversarial networks for imbalance problems in computer vision tasks. J Big Data 2021; 8, 1-59.
  • Fatima A, Shafi I, Afzal H, Mahmood K, Díez IDLT, Lipari V, Ashraf I. Deep learning-based multiclass instance segmentation for dental lesion detection. Healthcare MDPI 2023, Basel, Balgium, Vol. 11, No. 3, p. 347.
  • Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. MICCAI 2015; Munich, Germany 234-241.
  • Tyas MJ, Anusavice KJ, Frencken JE, Mount GJ. Minimal intervention dentistry—a review. Int Dent J 2000; 50(1), 1-12.
  • Featherstone JD. The caries balance: the basis for caries management by risk assessment. Oral Health Prev Dent 2004; 2, 259-264.
  • Li Z, Tang W, Gao S, Wang Y, Wang S. Adapting SAM2 Model from Natural Images for Tooth Segmentation in Dental Panoramic X-Ray Images. Entropy 2024; 26(12), 1059.
  • Şahin ME, Ulutaş H, Süzgen EE. Automated Segmentation of Dental Structures in Panoramic Radiographs Using U-Net 3+. IDAP IEEE 2024; Malatya, Türkiye, 1-6.
  • Xing Y, Liao P, Alasleh RA, Khampatee V, Alizadeh-Shabdiz F. Dental X-ray Segmentation and Auto Implant Design Based on Convolutional Neural Network. MIPR IEEE 2024; San Jose, CA, USA, 243-246.
  • Özçelik STA, Üzen H, Şengür A, Fırat H, Türkoğlu M, Çelebi A, Sobahi NM. Enhanced Panoramic Radiograph-Based Tooth Segmentation and Identification Using an Attention Gate-Based Encoder–Decoder Network. Diagnostics 2024; 14(23), 2719.
  • Zhou W, Lu X, Zhao D, Jiang M, Fan L, Zhang W, Liu X. A dual-labeled dataset and fusion model for automatic teeth segmentation, numbering, and state assessment on panoramic radiographs. BMC Oral Health 2024; 24(1), 1201.
  • Kong V, Lee EY, Kim KA, Shon HS. Integrating Super-Resolution with Deep Learning for Enhanced Periodontal Bone Loss Segmentation in Panoramic Radiographs. Bioeng. 2024; 11(11), 1130, (2024).
  • Altundağ G, Öcal H. A Comparison of shcU-Net Based GAN and U-net Based GAN in Adult Dental Segmentation. UBMK IEEE 2024; Antalya, Türkiye, 1040-1045.
  • Milletari F, Navab N, Ahmadi SA. V-net: Fully convolutional neural networks for volumetric medical image segmentation. 3DV IEEE 2016; Stanford University, CA, USA; 565-571).
  • Roy AG, Navab N, Wachinger C. Recalibrating fully convolutional networks with spatial and channel “squeeze and excitation” blocks. IEEE Trans Med Imaging 2018; 38(2), 540-549.
  • Chen J, Lu Y, Yu Q, Luo X, Adeli E, Wang Y, Zhou Y. Transunet: Transformers make strong encoders for medical image segmentation. arXiv preprint arXiv:2102.04306 2021.
  • Cao H, Wang Y, Chen J, Jiang D, Zhang X, Tian Q, Wang M. Swin-unet: Unet-like pure transformer for medical image segmentation. ECCV 2022; Switzerland, 205-218.
  • Ba J, Kingma P. Adam: a method for stochastic optimization. ICLR 2015; San Diego, USA, 1–11.
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Derin Öğrenme, Şaşırtmalı Makine Öğrenimi, Biyomedikal Görüntüleme
Bölüm MBD
Yazarlar

Hakan Öcal 0000-0002-8061-8059

Gürdal Altundağ 0009-0001-9935-5893

Yayımlanma Tarihi 27 Mart 2025
Gönderilme Tarihi 18 Şubat 2025
Kabul Tarihi 15 Mart 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 37 Sayı: 1

Kaynak Göster

APA Öcal, H., & Altundağ, G. (2025). Comparative Analysis of GAN-based Segmentation Models on Dental Panoramic Radiography Dataset. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 37(1), 523-532. https://doi.org/10.35234/fumbd.1642238
AMA Öcal H, Altundağ G. Comparative Analysis of GAN-based Segmentation Models on Dental Panoramic Radiography Dataset. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. Mart 2025;37(1):523-532. doi:10.35234/fumbd.1642238
Chicago Öcal, Hakan, ve Gürdal Altundağ. “Comparative Analysis of GAN-Based Segmentation Models on Dental Panoramic Radiography Dataset”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 37, sy. 1 (Mart 2025): 523-32. https://doi.org/10.35234/fumbd.1642238.
EndNote Öcal H, Altundağ G (01 Mart 2025) Comparative Analysis of GAN-based Segmentation Models on Dental Panoramic Radiography Dataset. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 37 1 523–532.
IEEE H. Öcal ve G. Altundağ, “Comparative Analysis of GAN-based Segmentation Models on Dental Panoramic Radiography Dataset”, Fırat Üniversitesi Mühendislik Bilimleri Dergisi, c. 37, sy. 1, ss. 523–532, 2025, doi: 10.35234/fumbd.1642238.
ISNAD Öcal, Hakan - Altundağ, Gürdal. “Comparative Analysis of GAN-Based Segmentation Models on Dental Panoramic Radiography Dataset”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 37/1 (Mart 2025), 523-532. https://doi.org/10.35234/fumbd.1642238.
JAMA Öcal H, Altundağ G. Comparative Analysis of GAN-based Segmentation Models on Dental Panoramic Radiography Dataset. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2025;37:523–532.
MLA Öcal, Hakan ve Gürdal Altundağ. “Comparative Analysis of GAN-Based Segmentation Models on Dental Panoramic Radiography Dataset”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, c. 37, sy. 1, 2025, ss. 523-32, doi:10.35234/fumbd.1642238.
Vancouver Öcal H, Altundağ G. Comparative Analysis of GAN-based Segmentation Models on Dental Panoramic Radiography Dataset. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2025;37(1):523-32.