Araştırma Makalesi
BibTex RIS Kaynak Göster

Investigation of the Bioactivity Properties of TiZrCrNb0.3Ta0.07 Medium Entropy Alloy Produced from TNTZ Waste

Yıl 2025, Cilt: 37 Sayı: 2, 685 - 698, 30.09.2025
https://doi.org/10.35234/fumbd.1665680

Öz

High entropy alloys (HEAs) and medium entropy alloys (MEAs) have garnered significant attention as alternative materials in various fields due to their superior physical and chemical properties compared to conventional alloys. One of the most promising applications of this innovative material class is in biomaterials. In this study, a bio-medium entropy alloy (BioMEA), TiZrCrNb0.25Ta0.05, was successfully synthesized using non-toxic elements (Ti, Zr, Cr, Nb and Ta) through arc melting of TNTZ alloy waste. The produced BioMEA was comprehensively characterized using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD) to analyze its structural and chemical properties. Additionally, the in-vitro degradation, ion release, and bioactivity properties of the alloy were evaluated and compared with those of the conventional TNTZ alloy, with a focus on the effects of heat treatment. The results demonstrated that heat treatment did not cause significant changes in the microstructure of the TiZrCrNb0.25Ta0.05 alloy but led to the formation of intermetallic compounds such as Cr2Zr and Cr2Ta on the surface. Degradation tests revealed an unexpected mass gain across all sample groups after a four-week immersion period due to surface precipitation, surpassing the expected mass loss from degradation. Ion release analyses showed similar behavior between the TiZrCrNb0.25Ta0.05 and TNTZ alloys, with ion release levels in the ppb range, confirming that Ti was released at non-toxic levels. Bioactivity tests identified low lesvels of Ca-P-O deposition on all sample surfaces, with the highest bioactivity observed in the heat-treated TiZrCrNb0.25Ta0.05 sample. Overall, the findings suggest that the TiZrCrNb0.25Ta0.05 alloy has the potential to serve as an alternative biomaterial to the TNTZ alloy, with its bioactivity properties being further enhanced through heat treatment. Further studies are recommended to optimize its bioactivity and evaluate its in-vivo performance for biomedical applications.

Kaynakça

  • Senkov O, Miller J, Miracle D, Woodward C. Accelerated exploration of multi-principal element alloys with solid solution phases. Nat Commun 2015; 6(1):6529.
  • Lu Z, Wang H, Chen M, Baker I, Yeh J, Liu C, et al. An assessment on the future development of high-entropy alloys: Summary from a recent workshop. Intermetallics. 2015; 66:67-76.
  • Tsai M-H, Yeh J-W. High-entropy alloys: a critical review. Mater Res Lett 2014; 2(3):107-23.
  • Yeh J-W. Alloy design strategies and future trends in high-entropy alloys. Jom. 2013; 65:1759-71.
  • Wu X. Chemical short-range orders in high-/medium-entropy alloys. J Mater Sci Technol 2023; 147:189-96.
  • George EP, Ritchie RO. High-entropy materials. MRS Bull 2022; 47(2):145-50.
  • Miracle DB, Miller JD, Senkov ON, Woodward C, Uchic MD, Tiley J. Exploration and development of high entropy alloys for structural applications. Entropy. 2014; 16(1):494-525.
  • Zhang W, Liaw PK, Zhang Y. Science and technology in high-entropy alloys. Sci China Mater 2018; 61(1):2-22.
  • Gao MC, Yeh J-W, Liaw PK, Zhang Y. High-entropy alloys: fundamentals and applications: Springer; 2016.
  • Zhang Y, Yang X, Liaw P. Alloy design and properties optimization of high-entropy alloys. Jom. 2012; 64:830-8.
  • Wong K-K, Hsu H-C, Wu S-C, Ho W-F. A review: Design from beta titanium alloys to medium-entropy alloys for biomedical applications. Materials 2023; 16(21):7046.
  • Xu X, Li Z, Lai W, Wang B, Xu Q, Zhang Z, et al. Improved wear and corrosion resistance of biomedical TiZrNbTaMo medium-entropy alloy by thermal oxidation treatment. Tribol Int 2023; 189:108897.
  • Zhu D, Li X, Chai S, Chee T-S, Kim C, Li L, et al. Evaluation of wear, corrosion, and biocompatibility of a novel biomedical TiZr-based medium entropy alloy. J Mech Behav Biomed Mater 2025:106951.
  • Miracle DB, Senkov ON. A critical review of high entropy alloys and related concepts. Acta Mater 2017; 122:448-511.
  • Ye Y, Wang Q, Lu J, Liu C, Yang Y. High-entropy alloy: challenges and prospects. Mater Today 2016; 19(6):349-62.
  • Zhang LS, Ma GL, Fu LC, Tian JY. Recent progress in high-entropy alloys. Adv Mater Res. 2013; 631:227-32.
  • Zhou H, Mao J, Jiang H, Zhang H, Wei W, Qin S, et al. Effect of rare-earth element Y addition on microstructure and mechanical properties of CrFeNi2 medium entropy alloy. Intermetallics. 2023; 163:108079.
  • Lin S, Lai W, Vogel F, Tong X, You D, Li W, et al. Mechanical and corrosion properties of biomedical (TiZr) 90-xNbxTa5Mo5 medium entropy alloys. Int J Refract Met Hard Mater 2023; 116:106361.
  • Odetola PI, Babalola BJ, Afolabi AE, Anamu US, Olorundaisi E, Umba MC, et al. Exploring high entropy alloys: A review on thermodynamic design and computational modeling strategies for advanced materials applications. Heliyon. 2024.
  • Bu QZ, Zhang JX, Zhang HR, Li R, Zhang T, Liu L, et al. Separating the Role of Mixing‐Entropy on the Dynamics of Glass‐Forming Liquids. Adv Sci 2025:2502568.
  • Jien-Wei Y. Recent progress in high entropy alloys. Ann. Chim. Sci. Mat. 2006; 31(6):633-48.
  • Senkov O, Miller J, Miracle D, Woodward C. Accelerated exploration of multi-principal element alloys for structural applications. Calphad. 2015; 50:32-48.
  • MacDonald B, Fu Z, Zheng B, Chen W, Lin Y, Chen F, et al. Recent progress in high entropy alloy research. Jom 2017; 69:2024-31.
  • Zhang Y, Zuo TT, Tang Z, Gao MC, Dahmen KA, Liaw PK, et al. Microstructures and properties of high-entropy alloys. Prog Mater Sci 2014; 61:1-93.
  • Hsu W-L, Tsai C-W, Yeh A-C, Yeh J-W. Clarifying the four core effects of high-entropy materials. Nat Rev Chem 2024:1-15.
  • Murty BS, Yeh J-W, Ranganathan S, Bhattacharjee PP. High-entropy alloys: Elsevier; 2019.
  • Li W, Xie D, Li D, Zhang Y, Gao Y, Liaw PK. Mechanical behavior of high-entropy alloys. Prog Mater Sci 2021; 118:100777.
  • Yeh JW, Chen YL, Lin SJ, Chen SK, editors. High-entropy alloys–a new era of exploitation. Mater Sci Forum; 2007: Trans Tech Publ.
  • Yang Y-C, Liu C, Lin C-Y, Xia Z. Core effect of local atomic configuration and design principles in AlxCoCrFeNi high-entropy alloys. Scr Mater 2020; 178:181-6.
  • X. Chang MZ, K. Liu, L. Fu. Phase engineering of high‐entropy alloys. Adv. Mater. 2020; 32(14):1907226.
  • Kozak R, Sologubenko A, Steurer W. Single-phase high-entropy alloys–an overview. Z Kristallogr Cryst Mater 2015; 230(1):55-68.
  • Shuai C, Xie J, Jiang X, Peng S, Wang C. Additively manufactured high entropy alloy with high wear resistance for biomedical implant. Vacuum. 2024; 221:112939.
  • Xu D, Wang M, Li T, Wei X, Lu Y. A critical review of the mechanical properties of CoCrNi-based medium-entropy alloys. Microstructures. 2022; 2(1):N/A-N/A.
  • Alshataif YA, Sivasankaran S, Al-Mufadi FA, Alaboodi AS, Ammar HR. Manufacturing methods, microstructural and mechanical properties evolutions of high-entropy alloys: a review. Met Mater Int 2020; 26:1099-133.
  • Kumari P, Gupta AK, Mishra RK, Ahmad M, Shahi RR. A comprehensive review: recent progress on magnetic high entropy alloys and oxides. J Magn Magn Mater 2022; 554:169142.
  • Leyens C, Peters M. Titanium and titanium alloys: fundamentals and applications: Wiley Online Library; 2006.
  • Veiga C, Davim JP, Loureiro A. Properties and applications of titanium alloys: a brief review. Rev Adv Mater Sci 2012; 32(2):133-48.
  • Zhang LC, Chen LY. A review on biomedical titanium alloys: recent progress and prospect. Adv Eng Mater 2019; 21(4):1801215.
  • Bandyopadhyay A, Mitra I, Goodman SB, Kumar M, Bose S. Improving biocompatibility for next generation of metallic implants. Prog Mater Sci 2023; 133:101053.
  • Khan FS, Khalid M, Ali AH, Bazighifan O, Ghanim F Results Eng.
  • Ahmady AR, Ekhlasi A, Nouri A, Nazarpak MH, Gong P, Solouk A. High entropy alloy coatings for biomedical applications: A review. Smart Mater Manuf 2023; 1:100009.
  • Castro D, Jaeger P, Baptista AC, Oliveira JP. An overview of high-entropy alloys as biomaterials. Metals. 2021; 11(4):648.
  • Shi Z, Fang Q, Liaw PK, Li J. Corrosion‐Resistant Biomedical High‐Entropy Alloys: A Review Adv Eng Mater 2023; 25(22):2300968.
  • San S, Adhikari P, Sakidja R, Brechtl J, Liaw PK, Ching W-Y. Porosity modeling in a TiNbTaZrMo high-entropy alloy for biomedical applications. RSC Adv 2023; 13(51):36468-76.
  • Bololoi AE, Geambazu LE, Antoniac IV, Bololoi RV, Manea CA, Cojocaru VD, et al. Solid-State Processing of CoCrMoNbTi High-Entropy Alloy for Biomedical Applications. Materials. 2023; 16(19):6520.
  • Say Y. Synthesis and characterization of TiNbZrMo medium‐entropy bio‐composites: Microstructure, mechanical properties, and in vitro degradation. J Biomed Mater Res B Appl Biomater 2024; 112(6):e35415.
  • de Oliveira TG, Fagundes DV, Capellato P, Sachs D, da Silva AAAP. A review of biomaterials based on high-entropy alloys. Metals 2022; 12(11):1940.
  • Gokcekaya O, Ishimoto T, Nishikawa Y, Kim YS, Matsugaki A, Ozasa R, et al. Novel single crystalline-like non-equiatomic TiZrHfNbTaMo bio-high entropy alloy (BioHEA) developed by laser powder bed fusion. Mater Res Lett 2023; 11(4):274-80.
  • Feng J, Tang Y, Liu J, Zhang P, Liu C, Wang L. Bio-high entropy alloys: Progress, challenges, and opportunities. Front Bioeng Biotechnol 2022; 10:977282.
  • Li C, Ma Y, Yang X, Hou M. New TiTaNbZrMo high-entropy alloys for metallic biomaterials. Mater Res Express 2021; 8(10):105403.
  • Xiang T, Du P, Bao W, Cai Z, Li K, Xie G. Bimodal grain size structure design to optimize the mechanical properties of TiZrNbTa high entropy alloys/Ti composites. Mater Sci Eng A 2022; 849:143488.
  • Zhu D, Hu S, Fu Y, Zhao N, Liu D. A review of preparation methods, friction and wear, corrosion, and biocompatibility of biomedical high-entropy alloys. J Mater Sci 2024; 59(4):1153-83.
  • Yang W, Pang S, Liu Y, Wang Q, Liaw PK, Zhang T. Design and properties of novel Ti–Zr–Hf–Nb–Ta high-entropy alloys for biomedical applications. Intermetallics. 2022; 141:107421.
  • Yang W, Liu Y, Pang S, Liaw PK, Zhang T. Bio-corrosion behavior and in vitro biocompatibility of equimolar TiZrHfNbTa high-entropy alloy. Intermetallics. 2020; 124:106845.
  • Zhao X, Huang H, Su Y, Qiao L, Yan Y. Exploring high corrosion-resistant refractory high-entropy alloy via a combined experimental and simulation study. npj Mater Degrad 2024; 8(1):77.
  • Rajabi M, Dehghani K, Shahmir H. Development of a novel Ti35Nb25Zr15Mo15V10 high-entropy alloy for metallic biomaterials. Phys B Condens Matter 2024:416283.
  • Li Z, Lai W, Tong X, You D, Li W, Wang X. Design of TiZrNbTa multi-principal element alloys with outstanding mechanical properties and wear resistance. Mater Sci Eng A 2022; 845:143203.
  • Mustafi L, Nguyen VT, Song T, Deng Q, Murdoch BJ, Chen X-B, et al. A strong and ductile biocompatible Ti40Zr25Nb25Ta5Mo5 high entropy alloy. J Mater Res Technol 2024; 30:7885-95.
  • Wang W, Yang K, Wang Q, Dai P, Fang H, Wu F, et al. Novel Ti-Zr-Hf-Nb-Fe refractory high-entropy alloys for potential biomedical applications. J Alloys Compd 2022; 906:164383.
  • Hu S, Li T, Su Z, Meng S, Jia Z, Liu D. A novel TiZrNb medium entropy alloy (MEA) with appropriate elastic modulus for biocompatible materials. Mater Sci Eng B 2021; 270:115226.
  • Martin P, Madrid-Cortes CE, Cáceres C, Araya N, Aguilar C, Cabrera JM. HEAPS: A user-friendly tool for the design and exploration of high-entropy alloys based on semi-empirical parameters. Comput Phys Commun 2022; 278:108398.
  • Blázquez JS, Manchón‐Gordón AF, Vidal‐Crespo A, Caballero‐Flores R, Ipus JJ, Conde CF. Revisiting Stability Criteria in Ball‐Milled High‐Entropy Alloys: Do Hume–Rothery and Thermodynamic Rules Equally Apply? Adv Eng Mater 2024:2401148.
  • Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 2006; 27(15):2907-15.
  • Liu G-L, Wang W, Ma W, Guo S, Shen B-G, Liu H-X. A novel Nb–TiNb nanocomposite with single-phase BCC structure for bio-implant applications. Rare Met 2024:1-8.
  • Guo Y, Yang F, Lu B, Qiu H, Zhu J, Wang D, et al. Competitive relationship between the FCC+ BCC dual phases in the wear mechanism of laser cladding FeCoCrNiAl0. 5Ti0. 5 HEAs coating. Surf Coat Technol 2024; 493:131315.
  • Panda J, Arya P, Guruvidyathri K, Ravikirana, Murty B. Studies on kinetics of BCC to FCC phase transformation in AlCoCrFeNi equiatomic high entropy alloy. Metall Mater Trans A 2021; 52:1679-88.
  • Torrento JE, Sousa TdSPd, Cristino da Cruz N, Santos de Almeida G, Zambuzzi WF, Grandini CR, et al. Development of non-equiatomic Bio-HEAs based on TiZrNbTa-(Mo and Mn). APL Mater 2022; 10(8).
  • Lai C-Y, Chen Y-I. Structural, mechanical, and anticorrosive properties of (TiZrNbTa) Nx films. J Mater Res Technol 2023; 26:8327-36.
  • Lushnikov S, Filippova T, Mitrokhin S. Hydride Phases Based on TiZrNbTa (Mo1–xVx)(0< x< 1) High-Entropy Alloys. Inorg Mater 2024; 60(11):1337-43.
  • Zhang S, Chen L, Stepanov A, Lapteva O, Kholodnaya G, Yu X, et al., editors. Irradiation effect of intense pulsed ion beam on (TiZrNbTaCr) C. Proc. 8th Int. Congr. Energy Fluxes Radiat. Eff. 2022.
  • Su W, Chen L, Huo S, Zhang W, Wang Y, Zhou Y. Fracture mode transition from intergranular to transgranular in (TiZrNbTaCr) C: the grain boundary purification effect of Cr carbide. J Eur Ceram Soc 2024; 44(4):1881-9.
  • Su W, Chen L, Zhang W, Huo S, Wang Y, Zhou Y. Insights into grain boundary segregation and solubility limit of Cr in (TiZrNbTaCr) C. J Mater Sci Technol 2023; 139:1-9.
  • Yi J, Yang L, Wang L, Xu M. Lightweight, Refractory High-Entropy Alloy, CrNbTa 0.25 TiZr, with High Yield Strength. Met Mater Int 2022:1-8.
  • Inoue A. Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 2000; 48(1):279-306.
  • Senkov O, Woodward C. Microstructure and properties of a refractory NbCrMo0. 5Ta0. 5TiZr alloy. Mater Sci Eng A 2011; 529:311-20.
  • Rabiei M, Palevicius A, Monshi A, Nasiri S, Vilkauskas A, Janusas G. Comparing methods for calculating nano crystal size of natural hydroxyapatite using X-ray diffraction. Nanomaterials. 2020; 10(9):1627.
  • Figueroa-Rosales EX, Martínez-Juárez J, García-Díaz E, Hernández-Cruz D, Sabinas-Hernández SA, Robles-Águila MJ. Photoluminescent properties of hydroxyapatite and hydroxyapatite/multi-walled carbon nanotube composites. Crystals. 2021; 11(7):832.
  • Serhiienko A, Dontsova T, Yanushevska O, Lapinskyi A, Krymets G. Synthesis and characterization of hydroxyapatite and composite based on it with collagen/alginate. Chem Pap 2021:1-8.
  • Par M, Gubler A, Attin T, Tarle Z, Tarle A, Tauböck TT. Ion release and hydroxyapatite precipitation of resin composites functionalized with two types of bioactive glass. J Dent 2022; 118:103950.
  • Temiz A, Alshemary AZ, Akar N, Yaşar M. Rapid casting of biodegradable porous magnesium scaffolds and electrophoretic deposition of 45S5 bioactive glass nanoparticles coatings on porous scaffolds: characterization and in vitro bioactivity analysis. Int J Met Cast 2023; 17(3):1871-82.
  • Mahato A, De M, Bhattacharjee P, Kumar V, Mukherjee P, Singh G, et al. Role of calcium phosphate and bioactive glass coating on in vivo bone healing of new Mg–Zn–Ca implant. J Mater Sci Mater Med 2021; 32(5):55.
  • Sfikas AK, Lekatou AG, Emmanouilidou S, Tsirka K. Corrosion Behavior of As-Cast and Heat-Treated Al–Co Alloys in 3.5 wt% NaCl. Mater 2024; 17(3):655.
  • Guo W, Li J, Qi M, Xu Y, Ezatpour HR. Effects of heat treatment on the microstructure, mechanical properties and corrosion resistance of AlCoCrFeNiTi0. 5 high-entropy alloy. J Alloys Compd 2021; 884:161026.
  • Huaizhi Q, Minglong G, Dongdong Z, Wenda S, Fengfang L, Jing B, et al. Effect of heat treatment time on the microstructure and properties of FeCoNiCuTi high-entropy alloy. J Mater Res Technol 2023; 24:4510-6.
  • Liang H, Hou J, Jiang L, Qi Z, Zhang M, Cao Z. The Effect of Heat Treatment on the Microstructure and Mechanical Properties of Al0. 6CoFeNi2V0. 5 High Entropy Alloy Coatings 2024; 14(6):658.

TNTZ Atıklarından Üretilen TiZrCrNb0.3Ta0.07 Orta Entropili Alaşımın Biyoaktivite Özelliklerinin Araştırılması

Yıl 2025, Cilt: 37 Sayı: 2, 685 - 698, 30.09.2025
https://doi.org/10.35234/fumbd.1665680

Öz

Yüksek entropili alaşımlar ve orta entropili alaşımlar, üstün fiziksel ve kimyasal özellikleri sayesinde geleneksel alaşımlara kıyasla çeşitli alanlarda alternatif malzemeler olarak önemli bir ilgi görmektedir. Bu yenilikçi malzeme sınıfının en umut verici uygulama alanlarından biri biyomalzemelerdir. Bu çalışmada, toksik olmayan elementler (Ti, Zr, Cr, Nb ve Ta) kullanılarak, TNTZ alaşımı atığından ark ergitme yöntemiyle başarıyla sentezlenen bir biyo-orta entropili alaşım, TiZrCrNb0.25Ta0.05, elde edilmiştir. Üretilen biyo-orta entropili alaşımın yapısal ve kimyasal özellikleri; taramalı elektron mikroskobu, enerji saçınımlı X-ışını spektroskopisi ve X-ışını difraksiyonu teknikleriyle kapsamlı bir şekilde karakterize edilmiştir. Ayrıca, alaşımın in-vitro degradasyon davranışı, iyon salınımı ve biyouyumluluğu değerlendirilmiş ve bu özellikler ısıl işlemin etkisi dikkate alınarak konvansiyonel TNTZ alaşımıyla karşılaştırılmıştır. Elde edilen sonuçlar, ısıl işlemin TiZrCrNb0.25Ta0.05 alaşımının mikroyapısında belirgin bir değişikliğe yol açmadığını, ancak yüzeyde Cr2Zr ve Cr2Ta gibi intermetalik fazların oluşumuna neden olduğunu göstermiştir. Degradasyon testleri, dört haftalık daldırma süreci sonunda tüm numune gruplarında beklenen kütle kaybının aksine, yüzeydeki çökelmelere bağlı olarak net kütle artışı gözlemlendiğini ortaya koymuştur. İyon salınım analizlerinde, TiZrCrNb0.25Ta0.05 ve TNTZ alaşımlarının benzer davranışlar sergilediği ve iyon salınım seviyelerinin ppb aralığında olduğu tespit edilmiş; özellikle salınan titanyum iyonlarının toksik olmayan düzeylerde olduğu doğrulanmıştır. Biyouyumluluk testlerinde, tüm numunelerin yüzeylerinde düşük seviyede Ca-P-O birikimi gözlemlenmiş; en yüksek biyouyumluluk ise ısıl işlem uygulanmış TiZrCrNb0.25Ta0.05 numunesinde saptanmıştır. Genel olarak, elde edilen bulgular TiZrCrNb0.25Ta0.05 alaşımının TNTZ alaşımına alternatif bir biyomalzeme olarak kullanılabileceğini ve ısıl işlemle biyouyumluluğunun daha da artırılabileceğini göstermektedir. Biyolojik uygulamalarda in-vivo performansının değerlendirilmesi ve biyouyumluluğunun optimize edilmesi için ileri düzey çalışmalar önerilmektedir.

Kaynakça

  • Senkov O, Miller J, Miracle D, Woodward C. Accelerated exploration of multi-principal element alloys with solid solution phases. Nat Commun 2015; 6(1):6529.
  • Lu Z, Wang H, Chen M, Baker I, Yeh J, Liu C, et al. An assessment on the future development of high-entropy alloys: Summary from a recent workshop. Intermetallics. 2015; 66:67-76.
  • Tsai M-H, Yeh J-W. High-entropy alloys: a critical review. Mater Res Lett 2014; 2(3):107-23.
  • Yeh J-W. Alloy design strategies and future trends in high-entropy alloys. Jom. 2013; 65:1759-71.
  • Wu X. Chemical short-range orders in high-/medium-entropy alloys. J Mater Sci Technol 2023; 147:189-96.
  • George EP, Ritchie RO. High-entropy materials. MRS Bull 2022; 47(2):145-50.
  • Miracle DB, Miller JD, Senkov ON, Woodward C, Uchic MD, Tiley J. Exploration and development of high entropy alloys for structural applications. Entropy. 2014; 16(1):494-525.
  • Zhang W, Liaw PK, Zhang Y. Science and technology in high-entropy alloys. Sci China Mater 2018; 61(1):2-22.
  • Gao MC, Yeh J-W, Liaw PK, Zhang Y. High-entropy alloys: fundamentals and applications: Springer; 2016.
  • Zhang Y, Yang X, Liaw P. Alloy design and properties optimization of high-entropy alloys. Jom. 2012; 64:830-8.
  • Wong K-K, Hsu H-C, Wu S-C, Ho W-F. A review: Design from beta titanium alloys to medium-entropy alloys for biomedical applications. Materials 2023; 16(21):7046.
  • Xu X, Li Z, Lai W, Wang B, Xu Q, Zhang Z, et al. Improved wear and corrosion resistance of biomedical TiZrNbTaMo medium-entropy alloy by thermal oxidation treatment. Tribol Int 2023; 189:108897.
  • Zhu D, Li X, Chai S, Chee T-S, Kim C, Li L, et al. Evaluation of wear, corrosion, and biocompatibility of a novel biomedical TiZr-based medium entropy alloy. J Mech Behav Biomed Mater 2025:106951.
  • Miracle DB, Senkov ON. A critical review of high entropy alloys and related concepts. Acta Mater 2017; 122:448-511.
  • Ye Y, Wang Q, Lu J, Liu C, Yang Y. High-entropy alloy: challenges and prospects. Mater Today 2016; 19(6):349-62.
  • Zhang LS, Ma GL, Fu LC, Tian JY. Recent progress in high-entropy alloys. Adv Mater Res. 2013; 631:227-32.
  • Zhou H, Mao J, Jiang H, Zhang H, Wei W, Qin S, et al. Effect of rare-earth element Y addition on microstructure and mechanical properties of CrFeNi2 medium entropy alloy. Intermetallics. 2023; 163:108079.
  • Lin S, Lai W, Vogel F, Tong X, You D, Li W, et al. Mechanical and corrosion properties of biomedical (TiZr) 90-xNbxTa5Mo5 medium entropy alloys. Int J Refract Met Hard Mater 2023; 116:106361.
  • Odetola PI, Babalola BJ, Afolabi AE, Anamu US, Olorundaisi E, Umba MC, et al. Exploring high entropy alloys: A review on thermodynamic design and computational modeling strategies for advanced materials applications. Heliyon. 2024.
  • Bu QZ, Zhang JX, Zhang HR, Li R, Zhang T, Liu L, et al. Separating the Role of Mixing‐Entropy on the Dynamics of Glass‐Forming Liquids. Adv Sci 2025:2502568.
  • Jien-Wei Y. Recent progress in high entropy alloys. Ann. Chim. Sci. Mat. 2006; 31(6):633-48.
  • Senkov O, Miller J, Miracle D, Woodward C. Accelerated exploration of multi-principal element alloys for structural applications. Calphad. 2015; 50:32-48.
  • MacDonald B, Fu Z, Zheng B, Chen W, Lin Y, Chen F, et al. Recent progress in high entropy alloy research. Jom 2017; 69:2024-31.
  • Zhang Y, Zuo TT, Tang Z, Gao MC, Dahmen KA, Liaw PK, et al. Microstructures and properties of high-entropy alloys. Prog Mater Sci 2014; 61:1-93.
  • Hsu W-L, Tsai C-W, Yeh A-C, Yeh J-W. Clarifying the four core effects of high-entropy materials. Nat Rev Chem 2024:1-15.
  • Murty BS, Yeh J-W, Ranganathan S, Bhattacharjee PP. High-entropy alloys: Elsevier; 2019.
  • Li W, Xie D, Li D, Zhang Y, Gao Y, Liaw PK. Mechanical behavior of high-entropy alloys. Prog Mater Sci 2021; 118:100777.
  • Yeh JW, Chen YL, Lin SJ, Chen SK, editors. High-entropy alloys–a new era of exploitation. Mater Sci Forum; 2007: Trans Tech Publ.
  • Yang Y-C, Liu C, Lin C-Y, Xia Z. Core effect of local atomic configuration and design principles in AlxCoCrFeNi high-entropy alloys. Scr Mater 2020; 178:181-6.
  • X. Chang MZ, K. Liu, L. Fu. Phase engineering of high‐entropy alloys. Adv. Mater. 2020; 32(14):1907226.
  • Kozak R, Sologubenko A, Steurer W. Single-phase high-entropy alloys–an overview. Z Kristallogr Cryst Mater 2015; 230(1):55-68.
  • Shuai C, Xie J, Jiang X, Peng S, Wang C. Additively manufactured high entropy alloy with high wear resistance for biomedical implant. Vacuum. 2024; 221:112939.
  • Xu D, Wang M, Li T, Wei X, Lu Y. A critical review of the mechanical properties of CoCrNi-based medium-entropy alloys. Microstructures. 2022; 2(1):N/A-N/A.
  • Alshataif YA, Sivasankaran S, Al-Mufadi FA, Alaboodi AS, Ammar HR. Manufacturing methods, microstructural and mechanical properties evolutions of high-entropy alloys: a review. Met Mater Int 2020; 26:1099-133.
  • Kumari P, Gupta AK, Mishra RK, Ahmad M, Shahi RR. A comprehensive review: recent progress on magnetic high entropy alloys and oxides. J Magn Magn Mater 2022; 554:169142.
  • Leyens C, Peters M. Titanium and titanium alloys: fundamentals and applications: Wiley Online Library; 2006.
  • Veiga C, Davim JP, Loureiro A. Properties and applications of titanium alloys: a brief review. Rev Adv Mater Sci 2012; 32(2):133-48.
  • Zhang LC, Chen LY. A review on biomedical titanium alloys: recent progress and prospect. Adv Eng Mater 2019; 21(4):1801215.
  • Bandyopadhyay A, Mitra I, Goodman SB, Kumar M, Bose S. Improving biocompatibility for next generation of metallic implants. Prog Mater Sci 2023; 133:101053.
  • Khan FS, Khalid M, Ali AH, Bazighifan O, Ghanim F Results Eng.
  • Ahmady AR, Ekhlasi A, Nouri A, Nazarpak MH, Gong P, Solouk A. High entropy alloy coatings for biomedical applications: A review. Smart Mater Manuf 2023; 1:100009.
  • Castro D, Jaeger P, Baptista AC, Oliveira JP. An overview of high-entropy alloys as biomaterials. Metals. 2021; 11(4):648.
  • Shi Z, Fang Q, Liaw PK, Li J. Corrosion‐Resistant Biomedical High‐Entropy Alloys: A Review Adv Eng Mater 2023; 25(22):2300968.
  • San S, Adhikari P, Sakidja R, Brechtl J, Liaw PK, Ching W-Y. Porosity modeling in a TiNbTaZrMo high-entropy alloy for biomedical applications. RSC Adv 2023; 13(51):36468-76.
  • Bololoi AE, Geambazu LE, Antoniac IV, Bololoi RV, Manea CA, Cojocaru VD, et al. Solid-State Processing of CoCrMoNbTi High-Entropy Alloy for Biomedical Applications. Materials. 2023; 16(19):6520.
  • Say Y. Synthesis and characterization of TiNbZrMo medium‐entropy bio‐composites: Microstructure, mechanical properties, and in vitro degradation. J Biomed Mater Res B Appl Biomater 2024; 112(6):e35415.
  • de Oliveira TG, Fagundes DV, Capellato P, Sachs D, da Silva AAAP. A review of biomaterials based on high-entropy alloys. Metals 2022; 12(11):1940.
  • Gokcekaya O, Ishimoto T, Nishikawa Y, Kim YS, Matsugaki A, Ozasa R, et al. Novel single crystalline-like non-equiatomic TiZrHfNbTaMo bio-high entropy alloy (BioHEA) developed by laser powder bed fusion. Mater Res Lett 2023; 11(4):274-80.
  • Feng J, Tang Y, Liu J, Zhang P, Liu C, Wang L. Bio-high entropy alloys: Progress, challenges, and opportunities. Front Bioeng Biotechnol 2022; 10:977282.
  • Li C, Ma Y, Yang X, Hou M. New TiTaNbZrMo high-entropy alloys for metallic biomaterials. Mater Res Express 2021; 8(10):105403.
  • Xiang T, Du P, Bao W, Cai Z, Li K, Xie G. Bimodal grain size structure design to optimize the mechanical properties of TiZrNbTa high entropy alloys/Ti composites. Mater Sci Eng A 2022; 849:143488.
  • Zhu D, Hu S, Fu Y, Zhao N, Liu D. A review of preparation methods, friction and wear, corrosion, and biocompatibility of biomedical high-entropy alloys. J Mater Sci 2024; 59(4):1153-83.
  • Yang W, Pang S, Liu Y, Wang Q, Liaw PK, Zhang T. Design and properties of novel Ti–Zr–Hf–Nb–Ta high-entropy alloys for biomedical applications. Intermetallics. 2022; 141:107421.
  • Yang W, Liu Y, Pang S, Liaw PK, Zhang T. Bio-corrosion behavior and in vitro biocompatibility of equimolar TiZrHfNbTa high-entropy alloy. Intermetallics. 2020; 124:106845.
  • Zhao X, Huang H, Su Y, Qiao L, Yan Y. Exploring high corrosion-resistant refractory high-entropy alloy via a combined experimental and simulation study. npj Mater Degrad 2024; 8(1):77.
  • Rajabi M, Dehghani K, Shahmir H. Development of a novel Ti35Nb25Zr15Mo15V10 high-entropy alloy for metallic biomaterials. Phys B Condens Matter 2024:416283.
  • Li Z, Lai W, Tong X, You D, Li W, Wang X. Design of TiZrNbTa multi-principal element alloys with outstanding mechanical properties and wear resistance. Mater Sci Eng A 2022; 845:143203.
  • Mustafi L, Nguyen VT, Song T, Deng Q, Murdoch BJ, Chen X-B, et al. A strong and ductile biocompatible Ti40Zr25Nb25Ta5Mo5 high entropy alloy. J Mater Res Technol 2024; 30:7885-95.
  • Wang W, Yang K, Wang Q, Dai P, Fang H, Wu F, et al. Novel Ti-Zr-Hf-Nb-Fe refractory high-entropy alloys for potential biomedical applications. J Alloys Compd 2022; 906:164383.
  • Hu S, Li T, Su Z, Meng S, Jia Z, Liu D. A novel TiZrNb medium entropy alloy (MEA) with appropriate elastic modulus for biocompatible materials. Mater Sci Eng B 2021; 270:115226.
  • Martin P, Madrid-Cortes CE, Cáceres C, Araya N, Aguilar C, Cabrera JM. HEAPS: A user-friendly tool for the design and exploration of high-entropy alloys based on semi-empirical parameters. Comput Phys Commun 2022; 278:108398.
  • Blázquez JS, Manchón‐Gordón AF, Vidal‐Crespo A, Caballero‐Flores R, Ipus JJ, Conde CF. Revisiting Stability Criteria in Ball‐Milled High‐Entropy Alloys: Do Hume–Rothery and Thermodynamic Rules Equally Apply? Adv Eng Mater 2024:2401148.
  • Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 2006; 27(15):2907-15.
  • Liu G-L, Wang W, Ma W, Guo S, Shen B-G, Liu H-X. A novel Nb–TiNb nanocomposite with single-phase BCC structure for bio-implant applications. Rare Met 2024:1-8.
  • Guo Y, Yang F, Lu B, Qiu H, Zhu J, Wang D, et al. Competitive relationship between the FCC+ BCC dual phases in the wear mechanism of laser cladding FeCoCrNiAl0. 5Ti0. 5 HEAs coating. Surf Coat Technol 2024; 493:131315.
  • Panda J, Arya P, Guruvidyathri K, Ravikirana, Murty B. Studies on kinetics of BCC to FCC phase transformation in AlCoCrFeNi equiatomic high entropy alloy. Metall Mater Trans A 2021; 52:1679-88.
  • Torrento JE, Sousa TdSPd, Cristino da Cruz N, Santos de Almeida G, Zambuzzi WF, Grandini CR, et al. Development of non-equiatomic Bio-HEAs based on TiZrNbTa-(Mo and Mn). APL Mater 2022; 10(8).
  • Lai C-Y, Chen Y-I. Structural, mechanical, and anticorrosive properties of (TiZrNbTa) Nx films. J Mater Res Technol 2023; 26:8327-36.
  • Lushnikov S, Filippova T, Mitrokhin S. Hydride Phases Based on TiZrNbTa (Mo1–xVx)(0< x< 1) High-Entropy Alloys. Inorg Mater 2024; 60(11):1337-43.
  • Zhang S, Chen L, Stepanov A, Lapteva O, Kholodnaya G, Yu X, et al., editors. Irradiation effect of intense pulsed ion beam on (TiZrNbTaCr) C. Proc. 8th Int. Congr. Energy Fluxes Radiat. Eff. 2022.
  • Su W, Chen L, Huo S, Zhang W, Wang Y, Zhou Y. Fracture mode transition from intergranular to transgranular in (TiZrNbTaCr) C: the grain boundary purification effect of Cr carbide. J Eur Ceram Soc 2024; 44(4):1881-9.
  • Su W, Chen L, Zhang W, Huo S, Wang Y, Zhou Y. Insights into grain boundary segregation and solubility limit of Cr in (TiZrNbTaCr) C. J Mater Sci Technol 2023; 139:1-9.
  • Yi J, Yang L, Wang L, Xu M. Lightweight, Refractory High-Entropy Alloy, CrNbTa 0.25 TiZr, with High Yield Strength. Met Mater Int 2022:1-8.
  • Inoue A. Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 2000; 48(1):279-306.
  • Senkov O, Woodward C. Microstructure and properties of a refractory NbCrMo0. 5Ta0. 5TiZr alloy. Mater Sci Eng A 2011; 529:311-20.
  • Rabiei M, Palevicius A, Monshi A, Nasiri S, Vilkauskas A, Janusas G. Comparing methods for calculating nano crystal size of natural hydroxyapatite using X-ray diffraction. Nanomaterials. 2020; 10(9):1627.
  • Figueroa-Rosales EX, Martínez-Juárez J, García-Díaz E, Hernández-Cruz D, Sabinas-Hernández SA, Robles-Águila MJ. Photoluminescent properties of hydroxyapatite and hydroxyapatite/multi-walled carbon nanotube composites. Crystals. 2021; 11(7):832.
  • Serhiienko A, Dontsova T, Yanushevska O, Lapinskyi A, Krymets G. Synthesis and characterization of hydroxyapatite and composite based on it with collagen/alginate. Chem Pap 2021:1-8.
  • Par M, Gubler A, Attin T, Tarle Z, Tarle A, Tauböck TT. Ion release and hydroxyapatite precipitation of resin composites functionalized with two types of bioactive glass. J Dent 2022; 118:103950.
  • Temiz A, Alshemary AZ, Akar N, Yaşar M. Rapid casting of biodegradable porous magnesium scaffolds and electrophoretic deposition of 45S5 bioactive glass nanoparticles coatings on porous scaffolds: characterization and in vitro bioactivity analysis. Int J Met Cast 2023; 17(3):1871-82.
  • Mahato A, De M, Bhattacharjee P, Kumar V, Mukherjee P, Singh G, et al. Role of calcium phosphate and bioactive glass coating on in vivo bone healing of new Mg–Zn–Ca implant. J Mater Sci Mater Med 2021; 32(5):55.
  • Sfikas AK, Lekatou AG, Emmanouilidou S, Tsirka K. Corrosion Behavior of As-Cast and Heat-Treated Al–Co Alloys in 3.5 wt% NaCl. Mater 2024; 17(3):655.
  • Guo W, Li J, Qi M, Xu Y, Ezatpour HR. Effects of heat treatment on the microstructure, mechanical properties and corrosion resistance of AlCoCrFeNiTi0. 5 high-entropy alloy. J Alloys Compd 2021; 884:161026.
  • Huaizhi Q, Minglong G, Dongdong Z, Wenda S, Fengfang L, Jing B, et al. Effect of heat treatment time on the microstructure and properties of FeCoNiCuTi high-entropy alloy. J Mater Res Technol 2023; 24:4510-6.
  • Liang H, Hou J, Jiang L, Qi Z, Zhang M, Cao Z. The Effect of Heat Treatment on the Microstructure and Mechanical Properties of Al0. 6CoFeNi2V0. 5 High Entropy Alloy Coatings 2024; 14(6):658.
Toplam 85 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Malzeme Mühendisliği (Diğer)
Bölüm MBD
Yazarlar

Nihal Yayla 0000-0001-7170-4572

Ömer Güler 0000-0003-4334-7314

Yakup Say 0000-0001-5005-8516

Harun Güzel 0009-0006-2316-136X

Yayımlanma Tarihi 30 Eylül 2025
Gönderilme Tarihi 27 Mart 2025
Kabul Tarihi 14 Mayıs 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 37 Sayı: 2

Kaynak Göster

APA Yayla, N., Güler, Ö., Say, Y., Güzel, H. (2025). Investigation of the Bioactivity Properties of TiZrCrNb0.3Ta0.07 Medium Entropy Alloy Produced from TNTZ Waste. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 37(2), 685-698. https://doi.org/10.35234/fumbd.1665680
AMA Yayla N, Güler Ö, Say Y, Güzel H. Investigation of the Bioactivity Properties of TiZrCrNb0.3Ta0.07 Medium Entropy Alloy Produced from TNTZ Waste. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. Eylül 2025;37(2):685-698. doi:10.35234/fumbd.1665680
Chicago Yayla, Nihal, Ömer Güler, Yakup Say, ve Harun Güzel. “Investigation of the Bioactivity Properties of TiZrCrNb0.3Ta0.07 Medium Entropy Alloy Produced from TNTZ Waste”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 37, sy. 2 (Eylül 2025): 685-98. https://doi.org/10.35234/fumbd.1665680.
EndNote Yayla N, Güler Ö, Say Y, Güzel H (01 Eylül 2025) Investigation of the Bioactivity Properties of TiZrCrNb0.3Ta0.07 Medium Entropy Alloy Produced from TNTZ Waste. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 37 2 685–698.
IEEE N. Yayla, Ö. Güler, Y. Say, ve H. Güzel, “Investigation of the Bioactivity Properties of TiZrCrNb0.3Ta0.07 Medium Entropy Alloy Produced from TNTZ Waste”, Fırat Üniversitesi Mühendislik Bilimleri Dergisi, c. 37, sy. 2, ss. 685–698, 2025, doi: 10.35234/fumbd.1665680.
ISNAD Yayla, Nihal vd. “Investigation of the Bioactivity Properties of TiZrCrNb0.3Ta0.07 Medium Entropy Alloy Produced from TNTZ Waste”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 37/2 (Eylül2025), 685-698. https://doi.org/10.35234/fumbd.1665680.
JAMA Yayla N, Güler Ö, Say Y, Güzel H. Investigation of the Bioactivity Properties of TiZrCrNb0.3Ta0.07 Medium Entropy Alloy Produced from TNTZ Waste. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2025;37:685–698.
MLA Yayla, Nihal vd. “Investigation of the Bioactivity Properties of TiZrCrNb0.3Ta0.07 Medium Entropy Alloy Produced from TNTZ Waste”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, c. 37, sy. 2, 2025, ss. 685-98, doi:10.35234/fumbd.1665680.
Vancouver Yayla N, Güler Ö, Say Y, Güzel H. Investigation of the Bioactivity Properties of TiZrCrNb0.3Ta0.07 Medium Entropy Alloy Produced from TNTZ Waste. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2025;37(2):685-98.