Araştırma Makalesi
BibTex RIS Kaynak Göster

Multi-Input CNN Models for Breast Cancer Detection Using BreakHis Database

Yıl 2025, Cilt: 37 Sayı: 2, 711 - 721, 30.09.2025
https://doi.org/10.35234/fumbd.1674044

Öz

Breast cancer (BC) is one of the diseases that women suffer most, especially in the world. Routine breast checks are vital for both early diagnosis and early treatment of the person concerned. Computer aided diagnosis systems have also come a long way in being a helpful tool for pathologists during diagnosis. In this work, a novel convolutional neural network (CNN) is proposed for the effective diagnosis of BC from histopathological images. Since classical CNNs have only one input, the network is to use only the raw images from the dataset in the training process. This limits the network from using an extra feature as an input. However, the proposed model has two inputs, unlike classical CNN structures. One input of the network uses histopathological raw images and the other input uses deep features of related images. All of the experimental studies were performed on the widely used BreaKHis dataset. For the test of performance, the accuracy criterion was preferred and the 5-fold cross-validation technique was taken into account. Accuracy scores of 99.94%, 98.94%, 99.05%, and 97.30% were obtained in 40×, 100×, 200× and 400× sub-datasets, respectively. While the results obtained were highly effective values for the diagnosis of BC, they were also far superior to other results reported in the literature.

Kaynakça

  • American Cancer Society. About Breast Cancer. Available: https://www.cancer.org/content/dam/CRC/PDF/-Public/8577.00.pdf
  • American Cancer Society. Cancer Facts & Figures 2018. Available: https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/annual-cancer-facts-and-figures/2018/cancer-facts-and-figures-2018.pdf
  • Wang L. Early diagnosis of breast cancer. Sensors 2017; 17(7): 1572.
  • Spanhol FA, Oliveira LS, Petitjean C, Heutte L. A dataset for breast cancer histopathological image classification. IEEE Trans Biomed Eng 2015; 63(7): 1455-1462.
  • Wang X. Classification of breast histopathology images using convolutional neural networks. J Med Imaging 2018; 5(2): 021020.
  • Li Y. Classification of breast histopathology images using a deep learning approach. Comput Methods Programs Biomed. 2019; 173: 33-40.
  • Li J, Shi J, Chen J, Du Z, Huang L. Self-attention random forest for breast cancer image classification. Frontiers in oncology. 2023; 13: 1043463.
  • Li Y, Wu J, Wu Q. Classification of breast cancer histology images using multi-size and discriminative patches based on deep learning. IEEE Access. 2019; 7: 21400-21408.
  • Bardou D, Zhang K, Ahmad S M. Classification of breast cancer based on histology images using convolutional neural networks. IEEE Access. 2018; 6: 24680-24693.
  • Hameed Z, Zahia S, Garcia-Zapirain B, Javier Aguirre J, Maria Vanegas A. Breast cancer histopathology image classification using an ensemble of deep learning models. Sensors. 2020; 20(16): 4373.
  • Desai M, Shah M. An anatomization on breast cancer detection and diagnosis employing multi-layer perceptron neural network (MLP) and Convolutional neural network (CNN). Clinical eHealth. 2021; 4: 1-11.
  • Araújo T, Aresta G, Castro E, Rouco J, Aguiar P, Eloy C, Campilho A. Classification of breast cancer histology images using convolutional neural networks. PloS one. 2017; 12(6): e0177544.
  • Yan R, Ren F, Wang Z, Wang L, Zhang T, Liu Y, Zhang F. Breast cancer histopathological image classification using a hybrid deep neural network. Methods. 2020; 173: 52-60.
  • Deniz E, Şengür A, Kadiroğlu Z, Guo Y, Bajaj V, Budak Ü. Transfer learning based histopathologic image classification for breast cancer detection. Health Inf Sci Syst 2018; 6(1): 1-7.
  • Demir F. DeepBreastNet: A novel and robust approach for automated breast cancer detection from histopathological images. Biocybern Biomed Eng 2021; 41(3): 1123-1139.
  • Liu H, Cui G, Luo Y, Guo Y, Zhao L, Wang Y, Tuncer T. Artificial Intelligence-Based Breast Cancer Diagnosis Using Ultrasound Images and Grid-Based Deep Feature Generator. International Journal of General Medicine. 2022; 15: 2271.
  • Peta J, Koppu S. Explainable Soft Attentive EfficientNet for breast cancer classification in histopathological images. Biomed Signal Process Control 2024; 90: 105828.
  • Atwan J, Almansour N, Hashem Ryalat M, Sahran S, Aldabbas H, Albashish D. Ensemble of Deep Features for Breast Cancer Histopathological Image Classification. The Computer Journal. 2024; bxad127.
  • Koshy SS, Anbarasi LJ. LMHistNet: Levenberg–Marquardt Based Deep Neural Network for Classification of Breast Cancer Histopathological Images. IEEE Access. 2024; 12: 52051-52066.
  • Karthiga R, Narasimhan K, Raju N, Amirtharajan R. Automatic approach for breast cancer detection based on deep belief network using histopathology images. Multimedia Tools Appl 2025; 84(4): 4733-4750.
  • Addo D, Zhou S, Sarpong K, Nartey OT, Abdullah MA, Ukwuoma CC, Al-antari MA. A hybrid lightweight breast cancer classification framework using the histopathological images. Biocybern Biomed Eng 2024; 44(1): 31-54.
  • Abdulaal AH, Valizadeh M, Amirani M C, Shah A S. A self-learning deep neural network for classification of breast histopathological images. Biomed Signal Process Control 2024; 87: 105418.
  • Ouahab A. Multimodal convolutional neural networks for detection of covid-19 using chest x-ray and CT images. Opt Mem Neural Networks. 2021; 30(4): 276-283.
  • Bayramoglu N, Kannala J, Heikkilä J. Deep learning for magnification independent breast cancer histopathology image classification. In 2016 23rd International conference on pattern recognition (ICPR). 2016, December: pp. 2440-2445. IEEE.
  • Spanhol FA, Oliveira LS, Petitjean C, Heutte L. Breast cancer histopathological image classification using convolutional neural networks. In 2016 international joint conference on neural networks (IJCNN). 2016, July: pp. 2560-2567. IEEE.
  • Qi Q, Li Y, Wang J, Zheng H, Huang Y, Ding X, Rohde G K. Label-efficient breast cancer histopathological image classification. IEEE J Biomed Health Inf 2018: 23(5), 2108-2116.
  • Feng Y, Zhang L, Mo J. Deep manifold preserving autoencoder for classifying breast cancer histopathological images. IEEE/ACM Trans Comput Biol Bioinf 2018: 17(1), 91-101.
  • Nahid AA, Mehrabi MA, Kong Y. Histopathological breast cancer image classification by deep neural network techniques guided by local clustering. Biomed Res Int, 2018.
  • Ibraheem AM, Rahouma KH, Hamed HF. 3PCNNB-net: Three parallel CNN branches for breast cancer classification through histopathological images. J Med Biol Eng 2021: 41(4), 494-503.
  • Budak Ü, Cömert Z, Rashid ZN, Şengür A, Çıbuk M. Computer-aided diagnosis system combining FCN and Bi-LSTM model for efficient breast cancer detection from histopathological images. Appl Soft Comput 2019: 85, 105765.
  • Budak Ü, Güzel AB. Automatic grading system for diagnosis of breast cancer exploiting co-occurrence shearlet transform and histogram features. IRBM. 2020: 41(2), 106-114.
  • Krizhevsky A, Hinton G. Learning multiple layers of features from tiny images. 2009.
  • Karpathy A. Lessons learned from manually classifying CIFAR-10. 2011. [Online]. Available: http://karpathy.github.io/2011/04/27/manually-classifying-cifar10/

BreakHis Veritabanı Kullanılarak Meme Kanseri Tespiti için Çok Girişli CNN Modelleri

Yıl 2025, Cilt: 37 Sayı: 2, 711 - 721, 30.09.2025
https://doi.org/10.35234/fumbd.1674044

Öz

Meme kanseri (MK), özellikle dünya genelinde kadınların en çok muzdarip olduğu hastalıklardan biridir. Rutin meme kontrolleri, hem erken teşhis hem de ilgili kişinin erken tedavisi açısından hayati öneme sahiptir. Bilgisayar destekli teşhis sistemleri, patoloji uzmanlarına teşhis sırasında yardımcı olan bir araç olma konusunda önemli bir yol kat etmiştir. Bu çalışmada, histopatolojik görüntülerden BC’nin etkili bir şekilde teşhisi için yeni bir evrişimli sinir ağı (CNN) önerilmiştir. Geleneksel CNN’lerin yalnızca bir girişi olduğu için, eğitim sürecinde yalnızca veri kümesindeki ham görüntüler kullanılmaktadır. Bu durum, ağın ek bir özelliği giriş olarak kullanmasını sınırlandırmaktadır. Ancak, önerilen model klasik CNN yapılarından farklı olarak iki girişe sahiptir. Ağın bir girişi histopatolojik ham görüntüleri, diğer girişi ise ilgili görüntülerin derin özelliklerini kullanmaktadır. Tüm deneysel çalışmalar, yaygın olarak kullanılan BreaKHis veri kümesi üzerinde gerçekleştirilmiştir. Performans testi için doğruluk ölçütü tercih edilmiş ve 5 katlı çapraz doğrulama tekniği kullanılmıştır. 40×, 100×, 200× ve 400× alt veri kümelerinde sırasıyla %99,94, %98,94, %99,05 ve %97,30 doğruluk skorları elde edilmiştir. Elde edilen sonuçlar, MK teşhisi için son derece etkili değerler olmasının yanı sıra, literatürde raporlanan diğer sonuçlara kıyasla çok daha üstün niteliktedir.

Kaynakça

  • American Cancer Society. About Breast Cancer. Available: https://www.cancer.org/content/dam/CRC/PDF/-Public/8577.00.pdf
  • American Cancer Society. Cancer Facts & Figures 2018. Available: https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/annual-cancer-facts-and-figures/2018/cancer-facts-and-figures-2018.pdf
  • Wang L. Early diagnosis of breast cancer. Sensors 2017; 17(7): 1572.
  • Spanhol FA, Oliveira LS, Petitjean C, Heutte L. A dataset for breast cancer histopathological image classification. IEEE Trans Biomed Eng 2015; 63(7): 1455-1462.
  • Wang X. Classification of breast histopathology images using convolutional neural networks. J Med Imaging 2018; 5(2): 021020.
  • Li Y. Classification of breast histopathology images using a deep learning approach. Comput Methods Programs Biomed. 2019; 173: 33-40.
  • Li J, Shi J, Chen J, Du Z, Huang L. Self-attention random forest for breast cancer image classification. Frontiers in oncology. 2023; 13: 1043463.
  • Li Y, Wu J, Wu Q. Classification of breast cancer histology images using multi-size and discriminative patches based on deep learning. IEEE Access. 2019; 7: 21400-21408.
  • Bardou D, Zhang K, Ahmad S M. Classification of breast cancer based on histology images using convolutional neural networks. IEEE Access. 2018; 6: 24680-24693.
  • Hameed Z, Zahia S, Garcia-Zapirain B, Javier Aguirre J, Maria Vanegas A. Breast cancer histopathology image classification using an ensemble of deep learning models. Sensors. 2020; 20(16): 4373.
  • Desai M, Shah M. An anatomization on breast cancer detection and diagnosis employing multi-layer perceptron neural network (MLP) and Convolutional neural network (CNN). Clinical eHealth. 2021; 4: 1-11.
  • Araújo T, Aresta G, Castro E, Rouco J, Aguiar P, Eloy C, Campilho A. Classification of breast cancer histology images using convolutional neural networks. PloS one. 2017; 12(6): e0177544.
  • Yan R, Ren F, Wang Z, Wang L, Zhang T, Liu Y, Zhang F. Breast cancer histopathological image classification using a hybrid deep neural network. Methods. 2020; 173: 52-60.
  • Deniz E, Şengür A, Kadiroğlu Z, Guo Y, Bajaj V, Budak Ü. Transfer learning based histopathologic image classification for breast cancer detection. Health Inf Sci Syst 2018; 6(1): 1-7.
  • Demir F. DeepBreastNet: A novel and robust approach for automated breast cancer detection from histopathological images. Biocybern Biomed Eng 2021; 41(3): 1123-1139.
  • Liu H, Cui G, Luo Y, Guo Y, Zhao L, Wang Y, Tuncer T. Artificial Intelligence-Based Breast Cancer Diagnosis Using Ultrasound Images and Grid-Based Deep Feature Generator. International Journal of General Medicine. 2022; 15: 2271.
  • Peta J, Koppu S. Explainable Soft Attentive EfficientNet for breast cancer classification in histopathological images. Biomed Signal Process Control 2024; 90: 105828.
  • Atwan J, Almansour N, Hashem Ryalat M, Sahran S, Aldabbas H, Albashish D. Ensemble of Deep Features for Breast Cancer Histopathological Image Classification. The Computer Journal. 2024; bxad127.
  • Koshy SS, Anbarasi LJ. LMHistNet: Levenberg–Marquardt Based Deep Neural Network for Classification of Breast Cancer Histopathological Images. IEEE Access. 2024; 12: 52051-52066.
  • Karthiga R, Narasimhan K, Raju N, Amirtharajan R. Automatic approach for breast cancer detection based on deep belief network using histopathology images. Multimedia Tools Appl 2025; 84(4): 4733-4750.
  • Addo D, Zhou S, Sarpong K, Nartey OT, Abdullah MA, Ukwuoma CC, Al-antari MA. A hybrid lightweight breast cancer classification framework using the histopathological images. Biocybern Biomed Eng 2024; 44(1): 31-54.
  • Abdulaal AH, Valizadeh M, Amirani M C, Shah A S. A self-learning deep neural network for classification of breast histopathological images. Biomed Signal Process Control 2024; 87: 105418.
  • Ouahab A. Multimodal convolutional neural networks for detection of covid-19 using chest x-ray and CT images. Opt Mem Neural Networks. 2021; 30(4): 276-283.
  • Bayramoglu N, Kannala J, Heikkilä J. Deep learning for magnification independent breast cancer histopathology image classification. In 2016 23rd International conference on pattern recognition (ICPR). 2016, December: pp. 2440-2445. IEEE.
  • Spanhol FA, Oliveira LS, Petitjean C, Heutte L. Breast cancer histopathological image classification using convolutional neural networks. In 2016 international joint conference on neural networks (IJCNN). 2016, July: pp. 2560-2567. IEEE.
  • Qi Q, Li Y, Wang J, Zheng H, Huang Y, Ding X, Rohde G K. Label-efficient breast cancer histopathological image classification. IEEE J Biomed Health Inf 2018: 23(5), 2108-2116.
  • Feng Y, Zhang L, Mo J. Deep manifold preserving autoencoder for classifying breast cancer histopathological images. IEEE/ACM Trans Comput Biol Bioinf 2018: 17(1), 91-101.
  • Nahid AA, Mehrabi MA, Kong Y. Histopathological breast cancer image classification by deep neural network techniques guided by local clustering. Biomed Res Int, 2018.
  • Ibraheem AM, Rahouma KH, Hamed HF. 3PCNNB-net: Three parallel CNN branches for breast cancer classification through histopathological images. J Med Biol Eng 2021: 41(4), 494-503.
  • Budak Ü, Cömert Z, Rashid ZN, Şengür A, Çıbuk M. Computer-aided diagnosis system combining FCN and Bi-LSTM model for efficient breast cancer detection from histopathological images. Appl Soft Comput 2019: 85, 105765.
  • Budak Ü, Güzel AB. Automatic grading system for diagnosis of breast cancer exploiting co-occurrence shearlet transform and histogram features. IRBM. 2020: 41(2), 106-114.
  • Krizhevsky A, Hinton G. Learning multiple layers of features from tiny images. 2009.
  • Karpathy A. Lessons learned from manually classifying CIFAR-10. 2011. [Online]. Available: http://karpathy.github.io/2011/04/27/manually-classifying-cifar10/
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Derin Öğrenme, Yapay Görme
Bölüm MBD
Yazarlar

Adnan Köşker 0009-0007-9622-8016

Ümit Budak 0000-0003-4082-383X

Musa Çıbuk 0000-0001-9028-2221

Abdülkadir Şengür 0000-0003-1614-2639

Yayımlanma Tarihi 30 Eylül 2025
Gönderilme Tarihi 11 Nisan 2025
Kabul Tarihi 10 Haziran 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 37 Sayı: 2

Kaynak Göster

APA Köşker, A., Budak, Ü., Çıbuk, M., Şengür, A. (2025). Multi-Input CNN Models for Breast Cancer Detection Using BreakHis Database. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 37(2), 711-721. https://doi.org/10.35234/fumbd.1674044
AMA Köşker A, Budak Ü, Çıbuk M, Şengür A. Multi-Input CNN Models for Breast Cancer Detection Using BreakHis Database. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. Eylül 2025;37(2):711-721. doi:10.35234/fumbd.1674044
Chicago Köşker, Adnan, Ümit Budak, Musa Çıbuk, ve Abdülkadir Şengür. “Multi-Input CNN Models for Breast Cancer Detection Using BreakHis Database”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 37, sy. 2 (Eylül 2025): 711-21. https://doi.org/10.35234/fumbd.1674044.
EndNote Köşker A, Budak Ü, Çıbuk M, Şengür A (01 Eylül 2025) Multi-Input CNN Models for Breast Cancer Detection Using BreakHis Database. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 37 2 711–721.
IEEE A. Köşker, Ü. Budak, M. Çıbuk, ve A. Şengür, “Multi-Input CNN Models for Breast Cancer Detection Using BreakHis Database”, Fırat Üniversitesi Mühendislik Bilimleri Dergisi, c. 37, sy. 2, ss. 711–721, 2025, doi: 10.35234/fumbd.1674044.
ISNAD Köşker, Adnan vd. “Multi-Input CNN Models for Breast Cancer Detection Using BreakHis Database”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 37/2 (Eylül2025), 711-721. https://doi.org/10.35234/fumbd.1674044.
JAMA Köşker A, Budak Ü, Çıbuk M, Şengür A. Multi-Input CNN Models for Breast Cancer Detection Using BreakHis Database. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2025;37:711–721.
MLA Köşker, Adnan vd. “Multi-Input CNN Models for Breast Cancer Detection Using BreakHis Database”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, c. 37, sy. 2, 2025, ss. 711-2, doi:10.35234/fumbd.1674044.
Vancouver Köşker A, Budak Ü, Çıbuk M, Şengür A. Multi-Input CNN Models for Breast Cancer Detection Using BreakHis Database. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2025;37(2):711-2.