Araştırma Makalesi
BibTex RIS Kaynak Göster

Investigation of Bending Behavior of Sandwich Plates Reinforced with Arched Structure

Yıl 2025, Cilt: 37 Sayı: 2, 781 - 790, 30.09.2025
https://doi.org/10.35234/fumbd.1710943

Öz

Sandwich composite structures are used in many industrial fields, including automotive, aircraft, train, yachting, construction, and solar panels. Historically, arched structures (with an open-ended arch geometry) have been used to increase load-carrying capacity in bridges constructed from materials such as stone, wood, metal, and concrete, used for various purposes such as pedestrian, vehicle, or railway bridges. The aim of this study is to apply the superior load-carrying properties of arched structures to sandwich composite plates, thereby increasing the structure's resistance under bending. The bending strength of sandwich composite structures, created by placing carbon fiber-reinforced polymer (CFRP) composites between two complementary arch-shaped parts produced with a 3D printer, was investigated. The interiors of the sandwich composites were fabricated using a 3D printer using acrylonitrile butadiene styrene (ABS) filament, with one side flat and the other side in an arch geometry of varying widths. CFRP composite plates were used for the upper and lower surfaces of the sandwich structures. The study investigated the flexural strength of sandwich structures reinforced with arches of 0.5 mm and 1 mm thicknesses, with arch widths of 50 mm, 100 mm, and 150 mm. The results showed that the arched structures increased the flexural strength of the sandwich plates. A significant increase of 34% and 67% in maximum bending force was obtained in samples with 0.5 mm and 1 mm arch thickness and 150 mm arch width, respectively, compared to structures without arches.

Proje Numarası

2024/8-23 M

Kaynakça

  • Li T, Zhu M, Yang Z, Song J, Dai J, Yao Y, Hu L. Wood composite as an energy efficient building material: guided sunlight transmittance and effective thermal insulation. Adv Energy Mater 2016; 6(22): 1601122.
  • Singh P, Sheikh J, Behera B. K. Metal-faced sandwich composite panels: a review. Thin-Walled Struct 2024; 195: 111376.
  • Geren N, Uzay Ç, Boztepe MH, Bayramoğlu M. Sandviç Malzeme Geliştirmede Polimer Köpük Çekirdek Kalınlığının Eğilme Dayanımına Etkisinin Deneysel olarak Araştırılması. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 2017; 32(2): 13-22.
  • Kaveloğlu S, Temiz Ş, Doğan O, Kamer MS. 3 Boyutlu Yazıcı ile Üretilen Farklı Hücre Çaplarındaki Bal Peteği Sandviç Yapıların Eğme Dayanımlarının İncelenmesi. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi 2022; 37(2): 459-470.
  • Davies JM. (Ed.). Lightweight sandwich construction. UK: John Wiley & Sons, 2008.
  • Ferri R, Sankar BV. A comparative study on the impact resistance of composite laminates and sandwich panels. J Thermoplast Compos Mater 1997; 10(4): 304-315.
  • Murdy P, Dolson J, Miller D, Hughes S, Beach R. Leveraging the advantages of additive manufacturing to produce advanced hybrid composite structures for marine energy systems. Appl Sci 2021; 11(3): 1336.
  • Camacho DD, Clayton P, O'Brien WJ, Seepersad C, Juenger M, Ferron R, Salamone S. Applications of additive manufacturing in the construction industry–A forward-looking review. Autom Constr 2018; 89: 110-119.
  • Singh N. Additive manufacturing for functionalized nanomaterials breaks limits. In Additive Manufacturing with Functionalized Nanomaterials 2021; (pp. 1-34). Elsevier.
  • Yanen C, Çelik E, Solmaz MY. Çekirdek Malzemesi Ergiyik Biriktirme Yöntemi İle Üretilen Bal Peteği Sandviç Kompozitlerin Eğilme Dayanımlarının İncelenmesi. Dicle Üniversitesi Fen Bilimleri Enstitüsü Dergisi 2021; 10(2): 147-162.
  • Güdür C, Türkoğlu T, Eren İ. Effect of lattice design and process parameters on the properties of PLA, ABS AND PETG polymers produced by fused deposition modelling. J Mater Mechat A 2023; 4(2): 561-570.
  • Fenni BÖ, Eken E, Kaygısız H. Application of topology optimization on a 3D-printed shelf bracket. Int J Print Technol Digit Ind 2024; 8(1): 32-45.
  • Tanabi H. Investigation of the temperature effect on the mechanical properties of 3D printed composites. Int Adv Res Eng J 2021; 5(2): 188-193.
  • Pottmann H, Eigensatz M, Vaxman A, & Wallner J. Architectural geometry. Comput Graph 2015; 47: 145-164.
  • Valluzzi MR, Modena C, de Felice G. Current practice and open issues in strengthening historical buildings with composites. Mater Struct 2014; 47: 1971-1985.
  • Conde B, Ramos LF, Oliveira DV, Riveiro B, Solla M. Structural assessment of masonry arch bridges by combination of non-destructive testing techniques and three-dimensional numerical modelling: Application to Vilanova bridge. Eng Struct 2017; 148: 621-638.
  • Almssad A, Almusaed A, Homod RZ. Masonry in the context of sustainable buildings: A review of the brick role in architecture. Sustainability 2022; 14(22): 14734.
  • Hurdoganoglu D, Safaei B, Sahmani S, Onyibo EC, Qin Z. State-of-the-art review of computational static and dynamic behaviors of small-scaled functionally graded multilayer shallow arch structures from design to analysis. Arch Comput Methods Eng 2024; 31(1): 389-453.
  • Emami E, Kheyroddin A, Rezaifar O. Experimental and analytical investigation of arched steel haunches under cyclic loading. Eng Struct 2021; 246: 113041.
  • Rafiee A, Vinches M, Bohatier C. Application of the NSCD method to analyse the dynamic behaviour of stone arched structures. Int J Solids Struct 2008; 45(25-26): 6269-6283.
  • Gorgeri A, Vescovini R, Dozio L. Analysis of multiple-core sandwich cylindrical shells using a sublaminate formulation. Compos Struct 2019; 225: 111067.
  • Arbaoui J, Moustabchir H, Pruncu CI, Schmitt Y. Modeling and experimental analysis of polypropylene honeycomb multi-layer sandwich composites under four-point bending. J Sandw Struct Mater 2018; 20(4): 493-511.
  • Naresh K, Cantwell WJ, Khan KA, Umer R. Single and multi-layer core designs for Pseudo-Ductile failure in honeycomb sandwich structures. Compos Struct 2021; 256: 113059.
  • Dang W, Liu XT, Sun BH. Bending response of integrated multilayer corrugated sandwich panels. Appl Compos Mater 2023; 30(5): 1493-1512.
  • Xia F, Pang T, Sun G, Ruan D. Longitudinal bending of corrugated sandwich panels with cores of various shapes. Thin-Walled Struct 2022; 173: 109001.
  • Abedzade Atar H, Zarrebini M, Hasani H, Rezaeepazhand J. The effect of core geometry on flexural stiffness and transverse shear rigidity of weight‐wise identical corrugated core sandwich panels reinforced with 3D flat spacer knitted fabric. Polym Compos 2020; 41(9): 3638-3648.
  • Shahkarami M, Zeinedini A. Flexural Properties of 3D-printed hierarchical-sinusoidal corrugated core sandwich panels with natural fiber reinforced skins. Polym Polym Compos 2022; 30: 09673911221101299.
  • ASTM-C393/C393M-16, Standard Test Method For Core Shear Properties of Sandwich Constructions by Beam Flexure, 2016.
  • Atahan MG, Erikli M, Ozipek E, Ozgun F. Comparative study on bending behavior and damage analysis of 3D-printed sandwich core designs with bio-inspired reinforcements. Eng Fail Anal 2024; 163: 108439.
  • Lu C, Qi M, Islam S, Chen P, Gao S, Xu Y, Yang X. Mechanical performance of 3D-printing plastic honeycomb sandwich structure. Int J Precis Eng Manuf-Green Technol 2018; 5: 47-54.
  • Kaveloglu S, Temiz S. An experimental and finite element analysis of 3D printed honeycomb structures under axial compression. Polym Polym Compos 2022, 30: 09673911221122333.
  • Ultimaker Cura 5.7.2 sofware, 2024, https://github.com/Ultimaker/Cura/releases/tag/5.7.2-RC2 (Erişim 03.05.2025).
  • The Ultimaker 2+ specifications, 2020, https://support.ultimaker.com/hc/en-us/articles/360011915779-The-Ultimaker-2-specifications (Accessed 03.05.2025).
  • Araldite® 2015 Adhesive Technical Datasheet, 2015, https://docs.rs-online.com/47fc/A700000006492752.pdf (Accessed 03.05.2025).
  • Altemimi JE, Said AI, Al-Mahaidi R. Experimental Investigation of Masonry Arches Strengthened with Carbon Fiber Composites CFRP. In Geotechnical Engineering and Sustainable Construction: Sustain Geotech Eng 2022; (pp. 627-639). Singapore: Springer Singapore.
  • Rovero L, Focacci F, Stipo G. Structural behavior of arch models strengthened using fiber-reinforced polymer strips of different lengths. J Compos Constr 2013; 17(2): 249-258.

Kemerli Yapıyla Güçlendirilmiş Sandviç Plakaların Eğme Davranışlarının İncelenmesi

Yıl 2025, Cilt: 37 Sayı: 2, 781 - 790, 30.09.2025
https://doi.org/10.35234/fumbd.1710943

Öz

Sandviç kompozit yapılar otomotiv, uçak, tren, yatçılık, inşaat ve güneş panelleri gibi birçok endüstriyel alanlarda kullanılmaktadır. Geçmişten günümüze kadar taş, ağaç, metal ve beton gibi malzemelerden farklı amaçlarla yaya, taşıt ya da demir yolu olarak kullanılan köprülerde yük taşıma kapasitesini artırmak amacıyla kemerli (iki ucu açık yay geometrisinde) yapılar kullanılmıştır. Bu çalışmanın amacı, kemerli yapıların üstün yük taşıma özelliğini sandviç kompozit plakalara uygulamak ve bu sayede yapının eğilme altındaki dayanımını artırmaktır. 3 boyutlu yazıcı ile üretilen ve birbirini tamamlayan kemer geometrisine sahip iki parça arasına, kemer işlevi görecek şekilde karbon fiber takviyeli polimer (CFRP) kompozitler yerleştirilerek oluşturulan sandviç kompozit yapıların eğme dayanımları incelenmiştir. Sandviç kompozitlerin iç kısımları üç boyutlu yazıcıda akrilonitril bütadien stiren (ABS) filamentten bir yüzü düz, diğer yüzü farklı genişliklerde kemer geometrisinde üretilmiştir. Sandviç yapılarda alt ve üst yüzeyler CFRP kompozit plakalar kullanılmıştır. Çalışmada 50 mm, 100 mm, 150 mm kemer genişliğinde 0,5 mm ve 1 mm kemer kalınlığındaki kemerlerle güçlendirilmiş sandviç yapıların eğme dayanımları incelenmiştir. Sonuç olarak, kemerli yapılar sandviç plakaların eğme dayanımlarını artırdığı tespit edilmiştir. 150 mm kemer genişliğindeki 0,5 mm ve 1 mm kemer kalınlığına sahip numunelerde kemersiz yapılara göre maksimum eğme kuvvetinde sırasıyla %34 ve %67 oranında önemli bir artış elde edilmiştir.

Etik Beyan

Bu çalışmanın, özgün bir çalışma olduğunu; çalışmanın hazırlık, veri toplama, analiz ve bilgilerin sunumu olmak üzere tüm aşamalarından bilimsel etik ilke ve kurallarına uygun davrandığımı kabul ederek etik görev ve sorumluluklara riayet ettiğimi beyan ederim. Herhangi bir zamanda, çalışmayla ilgili yaptığım bu beyana aykırı bir durumun saptanması durumunda, ortaya çıkacak tüm ahlaki ve hukuki sonuçlara razı olduğumu bildiririm.

Destekleyen Kurum

Kahramanmaraş Sütçü İmam Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi

Proje Numarası

2024/8-23 M

Teşekkür

Bu çalışma, Kahramanmaraş Sütçü İmam Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi (KSÜ BAP) tarafından 2024/8-23 M nolu proje ile desteklenmiştir. Desteklerinden dolayı KSÜ BAP birimine teşekkür ederim.

Kaynakça

  • Li T, Zhu M, Yang Z, Song J, Dai J, Yao Y, Hu L. Wood composite as an energy efficient building material: guided sunlight transmittance and effective thermal insulation. Adv Energy Mater 2016; 6(22): 1601122.
  • Singh P, Sheikh J, Behera B. K. Metal-faced sandwich composite panels: a review. Thin-Walled Struct 2024; 195: 111376.
  • Geren N, Uzay Ç, Boztepe MH, Bayramoğlu M. Sandviç Malzeme Geliştirmede Polimer Köpük Çekirdek Kalınlığının Eğilme Dayanımına Etkisinin Deneysel olarak Araştırılması. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 2017; 32(2): 13-22.
  • Kaveloğlu S, Temiz Ş, Doğan O, Kamer MS. 3 Boyutlu Yazıcı ile Üretilen Farklı Hücre Çaplarındaki Bal Peteği Sandviç Yapıların Eğme Dayanımlarının İncelenmesi. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi 2022; 37(2): 459-470.
  • Davies JM. (Ed.). Lightweight sandwich construction. UK: John Wiley & Sons, 2008.
  • Ferri R, Sankar BV. A comparative study on the impact resistance of composite laminates and sandwich panels. J Thermoplast Compos Mater 1997; 10(4): 304-315.
  • Murdy P, Dolson J, Miller D, Hughes S, Beach R. Leveraging the advantages of additive manufacturing to produce advanced hybrid composite structures for marine energy systems. Appl Sci 2021; 11(3): 1336.
  • Camacho DD, Clayton P, O'Brien WJ, Seepersad C, Juenger M, Ferron R, Salamone S. Applications of additive manufacturing in the construction industry–A forward-looking review. Autom Constr 2018; 89: 110-119.
  • Singh N. Additive manufacturing for functionalized nanomaterials breaks limits. In Additive Manufacturing with Functionalized Nanomaterials 2021; (pp. 1-34). Elsevier.
  • Yanen C, Çelik E, Solmaz MY. Çekirdek Malzemesi Ergiyik Biriktirme Yöntemi İle Üretilen Bal Peteği Sandviç Kompozitlerin Eğilme Dayanımlarının İncelenmesi. Dicle Üniversitesi Fen Bilimleri Enstitüsü Dergisi 2021; 10(2): 147-162.
  • Güdür C, Türkoğlu T, Eren İ. Effect of lattice design and process parameters on the properties of PLA, ABS AND PETG polymers produced by fused deposition modelling. J Mater Mechat A 2023; 4(2): 561-570.
  • Fenni BÖ, Eken E, Kaygısız H. Application of topology optimization on a 3D-printed shelf bracket. Int J Print Technol Digit Ind 2024; 8(1): 32-45.
  • Tanabi H. Investigation of the temperature effect on the mechanical properties of 3D printed composites. Int Adv Res Eng J 2021; 5(2): 188-193.
  • Pottmann H, Eigensatz M, Vaxman A, & Wallner J. Architectural geometry. Comput Graph 2015; 47: 145-164.
  • Valluzzi MR, Modena C, de Felice G. Current practice and open issues in strengthening historical buildings with composites. Mater Struct 2014; 47: 1971-1985.
  • Conde B, Ramos LF, Oliveira DV, Riveiro B, Solla M. Structural assessment of masonry arch bridges by combination of non-destructive testing techniques and three-dimensional numerical modelling: Application to Vilanova bridge. Eng Struct 2017; 148: 621-638.
  • Almssad A, Almusaed A, Homod RZ. Masonry in the context of sustainable buildings: A review of the brick role in architecture. Sustainability 2022; 14(22): 14734.
  • Hurdoganoglu D, Safaei B, Sahmani S, Onyibo EC, Qin Z. State-of-the-art review of computational static and dynamic behaviors of small-scaled functionally graded multilayer shallow arch structures from design to analysis. Arch Comput Methods Eng 2024; 31(1): 389-453.
  • Emami E, Kheyroddin A, Rezaifar O. Experimental and analytical investigation of arched steel haunches under cyclic loading. Eng Struct 2021; 246: 113041.
  • Rafiee A, Vinches M, Bohatier C. Application of the NSCD method to analyse the dynamic behaviour of stone arched structures. Int J Solids Struct 2008; 45(25-26): 6269-6283.
  • Gorgeri A, Vescovini R, Dozio L. Analysis of multiple-core sandwich cylindrical shells using a sublaminate formulation. Compos Struct 2019; 225: 111067.
  • Arbaoui J, Moustabchir H, Pruncu CI, Schmitt Y. Modeling and experimental analysis of polypropylene honeycomb multi-layer sandwich composites under four-point bending. J Sandw Struct Mater 2018; 20(4): 493-511.
  • Naresh K, Cantwell WJ, Khan KA, Umer R. Single and multi-layer core designs for Pseudo-Ductile failure in honeycomb sandwich structures. Compos Struct 2021; 256: 113059.
  • Dang W, Liu XT, Sun BH. Bending response of integrated multilayer corrugated sandwich panels. Appl Compos Mater 2023; 30(5): 1493-1512.
  • Xia F, Pang T, Sun G, Ruan D. Longitudinal bending of corrugated sandwich panels with cores of various shapes. Thin-Walled Struct 2022; 173: 109001.
  • Abedzade Atar H, Zarrebini M, Hasani H, Rezaeepazhand J. The effect of core geometry on flexural stiffness and transverse shear rigidity of weight‐wise identical corrugated core sandwich panels reinforced with 3D flat spacer knitted fabric. Polym Compos 2020; 41(9): 3638-3648.
  • Shahkarami M, Zeinedini A. Flexural Properties of 3D-printed hierarchical-sinusoidal corrugated core sandwich panels with natural fiber reinforced skins. Polym Polym Compos 2022; 30: 09673911221101299.
  • ASTM-C393/C393M-16, Standard Test Method For Core Shear Properties of Sandwich Constructions by Beam Flexure, 2016.
  • Atahan MG, Erikli M, Ozipek E, Ozgun F. Comparative study on bending behavior and damage analysis of 3D-printed sandwich core designs with bio-inspired reinforcements. Eng Fail Anal 2024; 163: 108439.
  • Lu C, Qi M, Islam S, Chen P, Gao S, Xu Y, Yang X. Mechanical performance of 3D-printing plastic honeycomb sandwich structure. Int J Precis Eng Manuf-Green Technol 2018; 5: 47-54.
  • Kaveloglu S, Temiz S. An experimental and finite element analysis of 3D printed honeycomb structures under axial compression. Polym Polym Compos 2022, 30: 09673911221122333.
  • Ultimaker Cura 5.7.2 sofware, 2024, https://github.com/Ultimaker/Cura/releases/tag/5.7.2-RC2 (Erişim 03.05.2025).
  • The Ultimaker 2+ specifications, 2020, https://support.ultimaker.com/hc/en-us/articles/360011915779-The-Ultimaker-2-specifications (Accessed 03.05.2025).
  • Araldite® 2015 Adhesive Technical Datasheet, 2015, https://docs.rs-online.com/47fc/A700000006492752.pdf (Accessed 03.05.2025).
  • Altemimi JE, Said AI, Al-Mahaidi R. Experimental Investigation of Masonry Arches Strengthened with Carbon Fiber Composites CFRP. In Geotechnical Engineering and Sustainable Construction: Sustain Geotech Eng 2022; (pp. 627-639). Singapore: Springer Singapore.
  • Rovero L, Focacci F, Stipo G. Structural behavior of arch models strengthened using fiber-reinforced polymer strips of different lengths. J Compos Constr 2013; 17(2): 249-258.
Toplam 36 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Katı Mekanik, Kompozit ve Hibrit Malzemeler
Bölüm MBD
Yazarlar

Serdar Kaveloğlu 0000-0003-0157-7314

Proje Numarası 2024/8-23 M
Yayımlanma Tarihi 30 Eylül 2025
Gönderilme Tarihi 31 Mayıs 2025
Kabul Tarihi 17 Temmuz 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 37 Sayı: 2

Kaynak Göster

APA Kaveloğlu, S. (2025). Kemerli Yapıyla Güçlendirilmiş Sandviç Plakaların Eğme Davranışlarının İncelenmesi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 37(2), 781-790. https://doi.org/10.35234/fumbd.1710943
AMA Kaveloğlu S. Kemerli Yapıyla Güçlendirilmiş Sandviç Plakaların Eğme Davranışlarının İncelenmesi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. Eylül 2025;37(2):781-790. doi:10.35234/fumbd.1710943
Chicago Kaveloğlu, Serdar. “Kemerli Yapıyla Güçlendirilmiş Sandviç Plakaların Eğme Davranışlarının İncelenmesi”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 37, sy. 2 (Eylül 2025): 781-90. https://doi.org/10.35234/fumbd.1710943.
EndNote Kaveloğlu S (01 Eylül 2025) Kemerli Yapıyla Güçlendirilmiş Sandviç Plakaların Eğme Davranışlarının İncelenmesi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 37 2 781–790.
IEEE S. Kaveloğlu, “Kemerli Yapıyla Güçlendirilmiş Sandviç Plakaların Eğme Davranışlarının İncelenmesi”, Fırat Üniversitesi Mühendislik Bilimleri Dergisi, c. 37, sy. 2, ss. 781–790, 2025, doi: 10.35234/fumbd.1710943.
ISNAD Kaveloğlu, Serdar. “Kemerli Yapıyla Güçlendirilmiş Sandviç Plakaların Eğme Davranışlarının İncelenmesi”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 37/2 (Eylül2025), 781-790. https://doi.org/10.35234/fumbd.1710943.
JAMA Kaveloğlu S. Kemerli Yapıyla Güçlendirilmiş Sandviç Plakaların Eğme Davranışlarının İncelenmesi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2025;37:781–790.
MLA Kaveloğlu, Serdar. “Kemerli Yapıyla Güçlendirilmiş Sandviç Plakaların Eğme Davranışlarının İncelenmesi”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, c. 37, sy. 2, 2025, ss. 781-90, doi:10.35234/fumbd.1710943.
Vancouver Kaveloğlu S. Kemerli Yapıyla Güçlendirilmiş Sandviç Plakaların Eğme Davranışlarının İncelenmesi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2025;37(2):781-90.