Derleme
BibTex RIS Kaynak Göster
Yıl 2021, Cilt: 6 Sayı: 3, 245 - 265, 20.09.2021
https://doi.org/10.31680/gaunjss.948063

Öz

Kaynakça

  • Abe, T., Fujita, S., Nakajima, T., Sakamaki, M., Ozaki, H., Ogasawara, R., . . . Yasuda, T. (2010). Effects of low-intensity cycle training with restricted leg blood flow on thigh muscle volume and VO2max in young men. Journal of sports science & medicine, 9(3), 452.
  • Abe, T., Kearns, C. F. ve Sato, Y. (2006). Muscle size and strength are increased following walk training with restricted venous blood flow from the leg muscle, Kaatsu-walk training. Journal of applied physiology, 100(5), 1460-1466.
  • Amani-Shalamzari, S., Farhani, F., Rajabi, H., Abbasi, A., Sarikhani, A., Paton, C., . . . Nikolaidis, P. T. (2019). Blood flow restriction during futsal training increases muscle activation and strength. Frontiers in physiology, 10, 614.
  • Amani-Shalamzari, S., Sarikhani, A., Paton, C., Rajabi, H., Bayati, M., Nikolaidis, P. T. ve Knechtle, B. (2020). Occlusion Training During Specific Futsal Training Improves Aspects of Physiological and Physical Performance. Journal of sports science & medicine, 19(2), 374.
  • Barjaste, A., Mirzaei, B., Rahmani-Nia, F., Haghniyaz, R. ve Brocherie, F. (2021). Concomitant aerobic-and hypertrophy-related skeletal muscle cell signaling following blood flow-restricted walking. Science & Sports, 36(2), e51-e58.
  • Bjørnsen, T., Wernbom, M., Kirketeig, A., Paulsen, G., Samnøy, L. E., Bækken, L. V., . . . Raastad, T. (2018). Type 1 Muscle Fiber Hypertrophy after Blood Flow–restricted Training in Powerlifter.
  • Centner, C. ve Lauber, B. (2020). A Systematic Review and Meta-Analysis on Neural Adaptations Following Blood Flow Restriction Training: What We Know and What We Don't Know. Frontiers in physiology, 11, 887.
  • Christiansen, D. (2019). Molecular stressors underlying exercise training‐induced improvements in K+ regulation during exercise and Na+, K+‐ATPase adaptation in human skeletal muscle. Acta physiologica, 225(3), e13196.
  • Christiansen, D., Eibye, K., Hostrup, M. ve Bangsbo, J. (2020). Training with blood flow restriction increases femoral artery diameter and thigh oxygen delivery during knee‐extensor exercise in recreationally trained men. The Journal of physiology, 598(12), 2337-2353.
  • Christiansen, D., Eibye, K. H., Rasmussen, V., Voldbye, H. M., Thomassen, M., Nyberg, M., . . . Bishop, D. J. (2019). Cycling with blood flow restriction improves performance and muscle K+ regulation and alters the effect of anti‐oxidant infusion in humans. The Journal of physiology, 597(9), 2421-2444.
  • Christiansen, D., Murphy, R. M., Bangsbo, J., Stathis, C. G. ve Bishop, D. J. (2018). Increased FXYD1 and PGC‐1α mRNA after blood flow‐restricted running is related to fibre type‐specific AMPK signalling and oxidative stress in human muscle. Acta physiologica, 223(2), e13045.
  • Coffey, V. G. ve Hawley, J. A. (2017). Concurrent exercise training: do opposites distract? The Journal of physiology, 595(9), 2883-2896.
  • Conceicao, M. S., Junior, E. M., Telles, G. D., Libardi, C. A., Castro, A., Andrade, A. L., . . . Júnior, J. M. C. (2019). Augmented anabolic responses after 8-wk cycling with blood flow restriction. Medicine and science in sports and exercise, 51(1), 84-93.
  • Conceicao, M. S., Traina Chacon-Mikahil, M. P., Telles, G. D., Libardi, C. A., Mendes Junior, E. M., Vechin, F. C., . . . Cavaglieri, C. R. (2016). Attenuated PGC-1 alpha Isoforms following Endurance Exercise with Blood Flow Restriction. Medicine and science in sports and exercise, 48(9), 1699-1707.
  • Cook, C. J., Kilduff, L. P. ve Beaven, C. M. (2014). Improving strength and power in trained athletes with 3 weeks of occlusion training. International journal of sports physiology and performance, 9(1), 166-172. Corvino, R. B., Oliveira, M. F., Denadai, B. S., Rossiter, H. B. ve Caputo, F. (2019). Speeding of oxygen uptake kinetics is not different following low‐intensity blood‐flow‐restricted and high‐intensity interval training. Experimental physiology, 104(12), 1858-1867.
  • Credeur, D. P., Hollis, B. C. ve Welsch, M. A. (2010). Effects of handgrip training with venous restriction on brachial artery vasodilation. Medicine and science in sports and exercise, 42(7), 1296.
  • Cristina-Oliveira, M., Meireles, K., Spranger, M. D., O’Leary, D. S., Roschel, H. ve Peçanha, T. (2020). Clinical safety of blood flow-restricted training? A comprehensive review of altered muscle metaboreflex in cardiovascular disease during ischemic exercise. American Journal of Physiology-Heart and Circulatory Physiology, 318(1), H90-H109.
  • de Oliveira, M. F. M. d., Caputo, F., Corvino, R. B. ve Denadai, B. S. (2016). Short‐term low‐intensity blood flow restricted interval training improves both aerobic fitness and muscle strength. Scandinavian journal of medicine & science in sports, 26(9), 1017-1025.
  • Egan, B., O’connor, P. L., Zierath, J. R. ve O’gorman, D. J. (2013). Time course analysis reveals gene-specific transcript and protein kinetics of adaptation to short-term aerobic exercise training in human skeletal muscle. PloS one, 8(9), e74098.
  • Enoka, R. M. (1988). Muscle strength and its development. Sports Medicine, 6(3), 146-168.
  • Esbjörnsson, M., Jansson, E., Sundberg, C., Sylven, C., Eiken, O., Nygren, A. ve Kaijser, L. (1993). Muscle fibre types and enzyme activities after training with local leg ischaemia in man. Acta Physiologica Scandinavica, 148(3), 233-242.
  • Ferguson, R. A., Hunt, J. E., Lewis, M. P., Martin, N. R., Player, D. J., Stangier, C., . . . Turner, M. C. (2018). The acute angiogenic signalling response to low-load resistance exercise with blood flow restriction. European journal of sport science, 18(3), 397-406.
  • Gifford, J. R., Garten, R. S., Nelson, A. D., Trinity, J. D., Layec, G., Witman, M. A., . . . Etheredge, C. (2016). Symmorphosis and skeletal muscle: in vivo and in vitro measures reveal differing constraints in the exercise‐trained and untrained human. The Journal of physiology, 594(6), 1741-1751.
  • Groennebaek, T., Jespersen, N. R., Jakobsgaard, J. E., Sieljacks, P., Wang, J., Rindom, E., . . . Miller, B. F. (2018). Skeletal muscle mitochondrial protein synthesis and respiration increase with low-load blood flow restricted as well as high-load resistance training. Frontiers in physiology, 9, 1796.
  • Grønfeldt, B. M., Lindberg Nielsen, J., Mieritz, R. M., Lund, H. ve Aagaard, P. (2020). Effect of blood‐flow restricted vs heavy‐load strength training on muscle strength: Systematic review and meta‐analysis. Scandinavian journal of medicine & science in sports, 30(5), 837-848.
  • Gustafsson, T., Puntschart, A., Kaijser, L., Jansson, E. ve Sundberg, C. J. (1999). Exercise-induced expression of angiogenesis-related transcription and growth factors in human skeletal muscle. American Journal of Physiology-Heart and Circulatory Physiology, 276(2), H679-H685.
  • Gülfirat, Ö. ve Bişgin, H. (2021). BLOOD FLOW RESTRICTION IN STRENGTH TRAINING. European Journal of Physical Education and Sport Science, 6(11).
  • Hansen, S. K., Ratzer, J., Nielsen, J. L., Suetta, C., Karlsen, A., Kvorning, T., . . . Aagaard, P. (2020). Effects of alternating blood flow restricted training and heavy-load resistance training on myofiber morphology and mechanical muscle function. Journal of applied physiology, 128(6), 1523-1532.
  • Hellsten, Y. ve Nyberg, M. (2011). Cardiovascular adaptations to exercise training. Comprehensive Physiology, 6(1), 1-32.
  • Hostrup, M. ve Bangsbo, J. (2017). Limitations in intense exercise performance of athletes–effect of speed endurance training on ion handling and fatigue development. The Journal of physiology, 595(9), 2897-2913.
  • Hunt, J. E., Galea, D., Tufft, G., Bunce, D. ve Ferguson, R. A. (2013). Time course of regional vascular adaptations to low load resistance training with blood flow restriction. Journal of applied physiology, 115(3), 403-411.
  • Hunt, J. E., Walton, L. A. ve Ferguson, R. A. (2012). Brachial artery modifications to blood flow-restricted handgrip training and detraining. Journal of applied physiology, 112(6), 956-961.
  • Jones, H., Nyakayiru, J., Bailey, T. G., Green, D. J., Cable, N. T., Sprung, V. S., . . . Thijssen, D. H. (2015). Impact of eight weeks of repeated ischaemic preconditioning on brachial artery and cutaneous microcirculatory function in healthy males. European Journal of Preventive Cardiology, 22(8), 1083-1087.
  • Larsen, F. J., Schiffer, T. A., Zinner, C., Willis, S. J., Morales‐Alamo, D., Calbet, J. A., . . . Holmberg, H. C. (2020). Mitochondrial oxygen affinity increases after sprint interval training and is related to the improvement in peak oxygen uptake. Acta physiologica, 229(3), e13463.
  • Laursen, P. B. (2010). Training for intense exercise performance: high‐intensity or high‐volume training? Scandinavian journal of medicine & science in sports, 20, 1-10.
  • Lignell, E., Fransson, D., Krustrup, P. ve Mohr, M. (2018). Analysis of high-intensity skating in top-class ice hockey match-play in relation to training status and muscle damage. The Journal of Strength & Conditioning Research, 32(5), 1303-1310.
  • Lixandrao, M. E., Ugrinowitsch, C., Berton, R., Vechin, F. C., Conceição, M. S., Damas, F., . . . Roschel, H. (2018). Magnitude of muscle strength and mass adaptations between high-load resistance training versus low-load resistance training associated with blood-flow restriction: a systematic review and meta-analysis. Sports Medicine, 48(2), 361-378.
  • Loenneke, J. P., Wilson, J. M., Marín, P. J., Zourdos, M. C. ve Bemben, M. G. (2012). Low intensity blood flow restriction training: a meta-analysis. European journal of applied physiology, 112(5), 1849-1859.
  • Luebbers, P. E., Fry, A. C., Kriley, L. M. ve Butler, M. S. (2014). The effects of a 7-week practical blood flow restriction program on well-trained collegiate athletes. The Journal of Strength & Conditioning Research, 28(8), 2270-2280.
  • Manimmanakorn, A., Hamlin, M. J., Ross, J. J., Taylor, R. ve Manimmanakorn, N. (2013). Effects of low-load resistance training combined with blood flow restriction or hypoxia on muscle function and performance in netball athletes. Journal of science and medicine in sport, 16(4), 337-342.
  • Meinild Lundby, A. K., Jacobs, R., Gehrig, S., De Leur, J., Hauser, M., Bonne, T. C., . . . Kaech, A. (2018). Exercise training increases skeletal muscle mitochondrial volume density by enlargement of existing mitochondria and not de novo biogenesis. Acta physiologica, 222(1), e12905.
  • Mitchell, E. A., Martin, N. R., Turner, M. C., Taylor, C. W. ve Ferguson, R. A. (2019). The combined effect of sprint interval training and postexercise blood flow restriction on critical power, capillary growth, and mitochondrial proteins in trained cyclists. Journal of applied physiology, 126(1), 51-59.
  • Morgan, N., Daniels, W. ve Subramaney, U. (2019). A prospective observational study of heroin users in Johannesburg, South Africa: Assessing psychiatric comorbidities and treatment outcomes. Comprehensive psychiatry, 95, 152137.
  • Mouser, J. G., Laurentino, G. C., Dankel, S. J., Buckner, S. L., Jessee, M. B., Counts, B. R., . . . Loenneke, J. P. (2017). Blood flow in humans following low-load exercise with and without blood flow restriction. Applied Physiology, Nutrition, and Metabolism, 42(11), 1165-1171.
  • Narici, M., Franchi, M. ve Maganaris, C. (2016). Muscle structural assembly and functional consequences. Journal of Experimental Biology, 219(2), 276-284.
  • Nielsen, J. L., Frandsen, U., Jensen, K. Y., Prokhorova, T. A., Dalgaard, L. B., Bech, R. D., . . . Aagaard, P. (2020). Skeletal Muscle Microvascular Changes in Response to Short-Term Blood Flow Restricted Training—Exercise-Induced Adaptations and Signs of Perivascular Stress. Frontiers in physiology, 11.
  • Nuzzo, J. L., Finn, H. T. ve Herbert, R. D. (2019). Causal mediation analysis could resolve whether training-induced increases in muscle strength are mediated by muscle hypertrophy. Sports Medicine, 49(9), 1309-1315.
  • Nyakayiru, J., Fuchs, C. J., Trommelen, J., Smeets, J. S., Senden, J. M., Gijsen, A. P., . . . Verdijk, L. B. (2019). Blood flow restriction only increases myofibrillar protein synthesis with exercise. Medicine and science in sports and exercise, 51(6), 1137.
  • Ozaki, H., Kakigi, R., Kobayashi, H., Loenneke, J., Abe, T. ve Naito, H. (2014). Effects of walking combined with restricted leg blood flow on m TOR and MAPK signalling in young men. Acta physiologica, 211(1), 97-106.
  • Pignanelli, C., Petrick, H. L., Keyvani, F., Heigenhauser, G. J., Quadrilatero, J., Holloway, G. P. ve Burr, J. F. (2020). Low-load resistance training to task failure with and without blood flow restriction: muscular functional and structural adaptations. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 318(2), R284-R295.
  • Poole, D. C., Behnke, B. J. ve Musch, T. I. (2021). The role of vascular function on exercise capacity in health and disease. The Journal of physiology, 599(3), 889-910.
  • Preobrazenski, N., Islam, H., Drouin, P. J., Bonafiglia, J. T., Tschakovsky, M. E. ve Gurd, B. J. (2020). A novel gravity-induced blood flow restriction model augments ACC phosphorylation and PGC-1α mRNA in human skeletal muscle following aerobic exercise: a randomized crossover study. Applied Physiology, Nutrition, and Metabolism, 45(6), 641-649.
  • Renzi, C. P., Tanaka, H. ve Sugawara, J. (2010). Effects of leg blood flow restriction during walking on cardiovascular function. Medicine and science in sports and exercise, 42(4), 726.
  • SA, H. K., Kianigul, M., Haghighi, A.-H., Nooghabi, M. J. ve Scott, B. R. (2020). Performing Soccer-Specific Training With Blood Flow Restriction Enhances Physical Capacities in Youth Soccer Players. Journal of Strength and Conditioning Research.
  • Scott, B. R., Loenneke, J. P., Slattery, K. M. ve Dascombe, B. J. (2016). Blood flow restricted exercise for athletes: A review of available evidence. Journal of science and medicine in sport, 19(5), 360-367.
  • Scott, B. R., Peiffer, J. J. ve Goods, P. S. (2017). The effects of supplementary low-load blood flow restriction training on morphological and performance-based adaptations in team sport athletes. The Journal of Strength & Conditioning Research, 31(8), 2147-2154.
  • Sieljacks, P., Wang, J., Groennebaek, T., Rindom, E., Jakobsgaard, J. E., Herskind, J., . . . de Paoli, F. V. (2019). Six weeks of low-load blood flow restricted and high-load resistance exercise training produce similar increases in cumulative myofibrillar protein synthesis and ribosomal biogenesis in healthy males. Frontiers in physiology, 10, 649.
  • Skattebo, Ø., Calbet, J. A., Rud, B., Capelli, C. ve Hallén, J. (2020). Contribution of oxygen extraction fraction to maximal oxygen uptake in healthy young men. Acta Physiologica (Oxford, England), 230(2).
  • Suchomel, T. J., Nimphius, S. ve Stone, M. H. (2016). The importance of muscular strength in athletic performance. Sports Medicine, 46(10), 1419-1449.
  • Taylor, A. F., Saunders, M. M., Shingle, D. L., Cimbala, J. M., Zhou, Z. ve Donahue, H. J. (2007). Mechanically stimulated osteocytes regulate osteoblastic activity via gap junctions. American Journal of Physiology-Cell Physiology, 292(1), C545-C552.
  • Taylor, C. W., Ingham, S. A. ve Ferguson, R. A. (2016). Acute and chronic effect of sprint interval training combined with postexercise blood‐flow restriction in trained individuals. Experimental physiology, 101(1), 143-154.
  • Tinken, T. M., Thijssen, D. H., Hopkins, N., Dawson, E. A., Cable, N. T. ve Green, D. J. (2010). Shear stress mediates endothelial adaptations to exercise training in humans. Hypertension, 55(2), 312-318.
  • Vigotsky, A. D., Halperin, I., Lehman, G. J., Trajano, G. S. ve Vieira, T. M. (2018). Interpreting signal amplitudes in surface electromyography studies in sport and rehabilitation sciences. Frontiers in physiology, 8, 985.
  • Wernbom, M., Schoenfeld, B. J., Paulsen, G., Bjørnsen, T., Cumming, K. T., Aagaard, P., . . . Raastad, T. (2020). Commentary: can blood flow restricted exercise cause muscle damage? Commentary on blood flow restriction exercise: considerations of methodology, application, and safety. Frontiers in physiology, 11.
  • Wortman, R. J., Brown, S. M., Savage-Elliott, I., Finley, Z. J. ve Mulcahey, M. K. (2020). Blood Flow Restriction Training for Athletes: A Systematic Review. The American Journal of Sports Medicine, 0363546520964454.

Sporcularda Kan Akımı Kısıtlamalı Antrenman ve Fizyolojik Mekanizması

Yıl 2021, Cilt: 6 Sayı: 3, 245 - 265, 20.09.2021
https://doi.org/10.31680/gaunjss.948063

Öz

İskelet kası kasılması ile kan akımının düzenlenebilmesi bizlere; kas yorgunluğu, kan basınç refleksleri ve metabolizmanın fizyolojik işleyişi hakkında birçok bilgi vermektedir. Kan akımı kısıtlaması (KAK) kullanımına artan ilgi, egzersizin kan akımının azaldığı dönemlerde antrenman uyarlamalarını nasıl etkileyebileceğini açıklığa kavuşturmaya odaklanmaktadır. Bu ilginin esas sebebi, sağlıklı popülasyonlarda değişimi tetiklemesi beklenmeyen oldukça düşük yoğunluklar ve dirençler kullanıldığında bile bireylerin kas boyutunda, kuvvetinde ve dayanıklılık kapasitelerinde artışları gösteren çalışmaların bulunmasıdır. KAK egzersizinin güç ve dayanıklılık çalışan sporcuların antrenmanlarına dâhil edilmesinin, iskelet kası ve kardiyovasküler adaptasyonları artıran fizyolojik faydalar sağladığı gösterilmiştir. Son bulgular, KAK egzersizinin yerel kas oksijen mevcudiyeti ve vasküler kayma stresi gibi akut fizyolojik stres faktörlerini değiştirdiğini ve bunun da geleneksel antrenmanla kolayca elde edilemeyen adaptasyonları sağlayabileceğini göstermektedir. Sporcular için KAK antrenmanının anlaşılmasındaki bir başka mevcut sınırlama ise, mekanizmaya ait bilgilerin çoğunun rekreasyonel olarak aktif veya antrenmansız bireylerden derlenmiş olmasıdır. Antrenman durumu egzersize tepkiyi etkilediğinden, sporcunun KAK egzersizine verdiği tepkinin karakterize edilmesi gereklidir. Bununla birlikte, KAK'ın fizyolojik adaptasyonları nasıl etkilediğini anlamamızı sağlayacak son gelişmeler, KAK egzersizinin iyi hedeflenmiş uyarlamalarını sağlayarak sporcuların fiziksel performanslarının optimizasyonunda kolaylıklar sağlayacaktır. Bu inceleme söz konusu kavramları araştırmakta ve sporcularda KAK antrenmanı uygulamanın etkilerini, kanıta dayalı şekilde özetleyerek bilgi boşluklarını doldurmaktadır.

Kaynakça

  • Abe, T., Fujita, S., Nakajima, T., Sakamaki, M., Ozaki, H., Ogasawara, R., . . . Yasuda, T. (2010). Effects of low-intensity cycle training with restricted leg blood flow on thigh muscle volume and VO2max in young men. Journal of sports science & medicine, 9(3), 452.
  • Abe, T., Kearns, C. F. ve Sato, Y. (2006). Muscle size and strength are increased following walk training with restricted venous blood flow from the leg muscle, Kaatsu-walk training. Journal of applied physiology, 100(5), 1460-1466.
  • Amani-Shalamzari, S., Farhani, F., Rajabi, H., Abbasi, A., Sarikhani, A., Paton, C., . . . Nikolaidis, P. T. (2019). Blood flow restriction during futsal training increases muscle activation and strength. Frontiers in physiology, 10, 614.
  • Amani-Shalamzari, S., Sarikhani, A., Paton, C., Rajabi, H., Bayati, M., Nikolaidis, P. T. ve Knechtle, B. (2020). Occlusion Training During Specific Futsal Training Improves Aspects of Physiological and Physical Performance. Journal of sports science & medicine, 19(2), 374.
  • Barjaste, A., Mirzaei, B., Rahmani-Nia, F., Haghniyaz, R. ve Brocherie, F. (2021). Concomitant aerobic-and hypertrophy-related skeletal muscle cell signaling following blood flow-restricted walking. Science & Sports, 36(2), e51-e58.
  • Bjørnsen, T., Wernbom, M., Kirketeig, A., Paulsen, G., Samnøy, L. E., Bækken, L. V., . . . Raastad, T. (2018). Type 1 Muscle Fiber Hypertrophy after Blood Flow–restricted Training in Powerlifter.
  • Centner, C. ve Lauber, B. (2020). A Systematic Review and Meta-Analysis on Neural Adaptations Following Blood Flow Restriction Training: What We Know and What We Don't Know. Frontiers in physiology, 11, 887.
  • Christiansen, D. (2019). Molecular stressors underlying exercise training‐induced improvements in K+ regulation during exercise and Na+, K+‐ATPase adaptation in human skeletal muscle. Acta physiologica, 225(3), e13196.
  • Christiansen, D., Eibye, K., Hostrup, M. ve Bangsbo, J. (2020). Training with blood flow restriction increases femoral artery diameter and thigh oxygen delivery during knee‐extensor exercise in recreationally trained men. The Journal of physiology, 598(12), 2337-2353.
  • Christiansen, D., Eibye, K. H., Rasmussen, V., Voldbye, H. M., Thomassen, M., Nyberg, M., . . . Bishop, D. J. (2019). Cycling with blood flow restriction improves performance and muscle K+ regulation and alters the effect of anti‐oxidant infusion in humans. The Journal of physiology, 597(9), 2421-2444.
  • Christiansen, D., Murphy, R. M., Bangsbo, J., Stathis, C. G. ve Bishop, D. J. (2018). Increased FXYD1 and PGC‐1α mRNA after blood flow‐restricted running is related to fibre type‐specific AMPK signalling and oxidative stress in human muscle. Acta physiologica, 223(2), e13045.
  • Coffey, V. G. ve Hawley, J. A. (2017). Concurrent exercise training: do opposites distract? The Journal of physiology, 595(9), 2883-2896.
  • Conceicao, M. S., Junior, E. M., Telles, G. D., Libardi, C. A., Castro, A., Andrade, A. L., . . . Júnior, J. M. C. (2019). Augmented anabolic responses after 8-wk cycling with blood flow restriction. Medicine and science in sports and exercise, 51(1), 84-93.
  • Conceicao, M. S., Traina Chacon-Mikahil, M. P., Telles, G. D., Libardi, C. A., Mendes Junior, E. M., Vechin, F. C., . . . Cavaglieri, C. R. (2016). Attenuated PGC-1 alpha Isoforms following Endurance Exercise with Blood Flow Restriction. Medicine and science in sports and exercise, 48(9), 1699-1707.
  • Cook, C. J., Kilduff, L. P. ve Beaven, C. M. (2014). Improving strength and power in trained athletes with 3 weeks of occlusion training. International journal of sports physiology and performance, 9(1), 166-172. Corvino, R. B., Oliveira, M. F., Denadai, B. S., Rossiter, H. B. ve Caputo, F. (2019). Speeding of oxygen uptake kinetics is not different following low‐intensity blood‐flow‐restricted and high‐intensity interval training. Experimental physiology, 104(12), 1858-1867.
  • Credeur, D. P., Hollis, B. C. ve Welsch, M. A. (2010). Effects of handgrip training with venous restriction on brachial artery vasodilation. Medicine and science in sports and exercise, 42(7), 1296.
  • Cristina-Oliveira, M., Meireles, K., Spranger, M. D., O’Leary, D. S., Roschel, H. ve Peçanha, T. (2020). Clinical safety of blood flow-restricted training? A comprehensive review of altered muscle metaboreflex in cardiovascular disease during ischemic exercise. American Journal of Physiology-Heart and Circulatory Physiology, 318(1), H90-H109.
  • de Oliveira, M. F. M. d., Caputo, F., Corvino, R. B. ve Denadai, B. S. (2016). Short‐term low‐intensity blood flow restricted interval training improves both aerobic fitness and muscle strength. Scandinavian journal of medicine & science in sports, 26(9), 1017-1025.
  • Egan, B., O’connor, P. L., Zierath, J. R. ve O’gorman, D. J. (2013). Time course analysis reveals gene-specific transcript and protein kinetics of adaptation to short-term aerobic exercise training in human skeletal muscle. PloS one, 8(9), e74098.
  • Enoka, R. M. (1988). Muscle strength and its development. Sports Medicine, 6(3), 146-168.
  • Esbjörnsson, M., Jansson, E., Sundberg, C., Sylven, C., Eiken, O., Nygren, A. ve Kaijser, L. (1993). Muscle fibre types and enzyme activities after training with local leg ischaemia in man. Acta Physiologica Scandinavica, 148(3), 233-242.
  • Ferguson, R. A., Hunt, J. E., Lewis, M. P., Martin, N. R., Player, D. J., Stangier, C., . . . Turner, M. C. (2018). The acute angiogenic signalling response to low-load resistance exercise with blood flow restriction. European journal of sport science, 18(3), 397-406.
  • Gifford, J. R., Garten, R. S., Nelson, A. D., Trinity, J. D., Layec, G., Witman, M. A., . . . Etheredge, C. (2016). Symmorphosis and skeletal muscle: in vivo and in vitro measures reveal differing constraints in the exercise‐trained and untrained human. The Journal of physiology, 594(6), 1741-1751.
  • Groennebaek, T., Jespersen, N. R., Jakobsgaard, J. E., Sieljacks, P., Wang, J., Rindom, E., . . . Miller, B. F. (2018). Skeletal muscle mitochondrial protein synthesis and respiration increase with low-load blood flow restricted as well as high-load resistance training. Frontiers in physiology, 9, 1796.
  • Grønfeldt, B. M., Lindberg Nielsen, J., Mieritz, R. M., Lund, H. ve Aagaard, P. (2020). Effect of blood‐flow restricted vs heavy‐load strength training on muscle strength: Systematic review and meta‐analysis. Scandinavian journal of medicine & science in sports, 30(5), 837-848.
  • Gustafsson, T., Puntschart, A., Kaijser, L., Jansson, E. ve Sundberg, C. J. (1999). Exercise-induced expression of angiogenesis-related transcription and growth factors in human skeletal muscle. American Journal of Physiology-Heart and Circulatory Physiology, 276(2), H679-H685.
  • Gülfirat, Ö. ve Bişgin, H. (2021). BLOOD FLOW RESTRICTION IN STRENGTH TRAINING. European Journal of Physical Education and Sport Science, 6(11).
  • Hansen, S. K., Ratzer, J., Nielsen, J. L., Suetta, C., Karlsen, A., Kvorning, T., . . . Aagaard, P. (2020). Effects of alternating blood flow restricted training and heavy-load resistance training on myofiber morphology and mechanical muscle function. Journal of applied physiology, 128(6), 1523-1532.
  • Hellsten, Y. ve Nyberg, M. (2011). Cardiovascular adaptations to exercise training. Comprehensive Physiology, 6(1), 1-32.
  • Hostrup, M. ve Bangsbo, J. (2017). Limitations in intense exercise performance of athletes–effect of speed endurance training on ion handling and fatigue development. The Journal of physiology, 595(9), 2897-2913.
  • Hunt, J. E., Galea, D., Tufft, G., Bunce, D. ve Ferguson, R. A. (2013). Time course of regional vascular adaptations to low load resistance training with blood flow restriction. Journal of applied physiology, 115(3), 403-411.
  • Hunt, J. E., Walton, L. A. ve Ferguson, R. A. (2012). Brachial artery modifications to blood flow-restricted handgrip training and detraining. Journal of applied physiology, 112(6), 956-961.
  • Jones, H., Nyakayiru, J., Bailey, T. G., Green, D. J., Cable, N. T., Sprung, V. S., . . . Thijssen, D. H. (2015). Impact of eight weeks of repeated ischaemic preconditioning on brachial artery and cutaneous microcirculatory function in healthy males. European Journal of Preventive Cardiology, 22(8), 1083-1087.
  • Larsen, F. J., Schiffer, T. A., Zinner, C., Willis, S. J., Morales‐Alamo, D., Calbet, J. A., . . . Holmberg, H. C. (2020). Mitochondrial oxygen affinity increases after sprint interval training and is related to the improvement in peak oxygen uptake. Acta physiologica, 229(3), e13463.
  • Laursen, P. B. (2010). Training for intense exercise performance: high‐intensity or high‐volume training? Scandinavian journal of medicine & science in sports, 20, 1-10.
  • Lignell, E., Fransson, D., Krustrup, P. ve Mohr, M. (2018). Analysis of high-intensity skating in top-class ice hockey match-play in relation to training status and muscle damage. The Journal of Strength & Conditioning Research, 32(5), 1303-1310.
  • Lixandrao, M. E., Ugrinowitsch, C., Berton, R., Vechin, F. C., Conceição, M. S., Damas, F., . . . Roschel, H. (2018). Magnitude of muscle strength and mass adaptations between high-load resistance training versus low-load resistance training associated with blood-flow restriction: a systematic review and meta-analysis. Sports Medicine, 48(2), 361-378.
  • Loenneke, J. P., Wilson, J. M., Marín, P. J., Zourdos, M. C. ve Bemben, M. G. (2012). Low intensity blood flow restriction training: a meta-analysis. European journal of applied physiology, 112(5), 1849-1859.
  • Luebbers, P. E., Fry, A. C., Kriley, L. M. ve Butler, M. S. (2014). The effects of a 7-week practical blood flow restriction program on well-trained collegiate athletes. The Journal of Strength & Conditioning Research, 28(8), 2270-2280.
  • Manimmanakorn, A., Hamlin, M. J., Ross, J. J., Taylor, R. ve Manimmanakorn, N. (2013). Effects of low-load resistance training combined with blood flow restriction or hypoxia on muscle function and performance in netball athletes. Journal of science and medicine in sport, 16(4), 337-342.
  • Meinild Lundby, A. K., Jacobs, R., Gehrig, S., De Leur, J., Hauser, M., Bonne, T. C., . . . Kaech, A. (2018). Exercise training increases skeletal muscle mitochondrial volume density by enlargement of existing mitochondria and not de novo biogenesis. Acta physiologica, 222(1), e12905.
  • Mitchell, E. A., Martin, N. R., Turner, M. C., Taylor, C. W. ve Ferguson, R. A. (2019). The combined effect of sprint interval training and postexercise blood flow restriction on critical power, capillary growth, and mitochondrial proteins in trained cyclists. Journal of applied physiology, 126(1), 51-59.
  • Morgan, N., Daniels, W. ve Subramaney, U. (2019). A prospective observational study of heroin users in Johannesburg, South Africa: Assessing psychiatric comorbidities and treatment outcomes. Comprehensive psychiatry, 95, 152137.
  • Mouser, J. G., Laurentino, G. C., Dankel, S. J., Buckner, S. L., Jessee, M. B., Counts, B. R., . . . Loenneke, J. P. (2017). Blood flow in humans following low-load exercise with and without blood flow restriction. Applied Physiology, Nutrition, and Metabolism, 42(11), 1165-1171.
  • Narici, M., Franchi, M. ve Maganaris, C. (2016). Muscle structural assembly and functional consequences. Journal of Experimental Biology, 219(2), 276-284.
  • Nielsen, J. L., Frandsen, U., Jensen, K. Y., Prokhorova, T. A., Dalgaard, L. B., Bech, R. D., . . . Aagaard, P. (2020). Skeletal Muscle Microvascular Changes in Response to Short-Term Blood Flow Restricted Training—Exercise-Induced Adaptations and Signs of Perivascular Stress. Frontiers in physiology, 11.
  • Nuzzo, J. L., Finn, H. T. ve Herbert, R. D. (2019). Causal mediation analysis could resolve whether training-induced increases in muscle strength are mediated by muscle hypertrophy. Sports Medicine, 49(9), 1309-1315.
  • Nyakayiru, J., Fuchs, C. J., Trommelen, J., Smeets, J. S., Senden, J. M., Gijsen, A. P., . . . Verdijk, L. B. (2019). Blood flow restriction only increases myofibrillar protein synthesis with exercise. Medicine and science in sports and exercise, 51(6), 1137.
  • Ozaki, H., Kakigi, R., Kobayashi, H., Loenneke, J., Abe, T. ve Naito, H. (2014). Effects of walking combined with restricted leg blood flow on m TOR and MAPK signalling in young men. Acta physiologica, 211(1), 97-106.
  • Pignanelli, C., Petrick, H. L., Keyvani, F., Heigenhauser, G. J., Quadrilatero, J., Holloway, G. P. ve Burr, J. F. (2020). Low-load resistance training to task failure with and without blood flow restriction: muscular functional and structural adaptations. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 318(2), R284-R295.
  • Poole, D. C., Behnke, B. J. ve Musch, T. I. (2021). The role of vascular function on exercise capacity in health and disease. The Journal of physiology, 599(3), 889-910.
  • Preobrazenski, N., Islam, H., Drouin, P. J., Bonafiglia, J. T., Tschakovsky, M. E. ve Gurd, B. J. (2020). A novel gravity-induced blood flow restriction model augments ACC phosphorylation and PGC-1α mRNA in human skeletal muscle following aerobic exercise: a randomized crossover study. Applied Physiology, Nutrition, and Metabolism, 45(6), 641-649.
  • Renzi, C. P., Tanaka, H. ve Sugawara, J. (2010). Effects of leg blood flow restriction during walking on cardiovascular function. Medicine and science in sports and exercise, 42(4), 726.
  • SA, H. K., Kianigul, M., Haghighi, A.-H., Nooghabi, M. J. ve Scott, B. R. (2020). Performing Soccer-Specific Training With Blood Flow Restriction Enhances Physical Capacities in Youth Soccer Players. Journal of Strength and Conditioning Research.
  • Scott, B. R., Loenneke, J. P., Slattery, K. M. ve Dascombe, B. J. (2016). Blood flow restricted exercise for athletes: A review of available evidence. Journal of science and medicine in sport, 19(5), 360-367.
  • Scott, B. R., Peiffer, J. J. ve Goods, P. S. (2017). The effects of supplementary low-load blood flow restriction training on morphological and performance-based adaptations in team sport athletes. The Journal of Strength & Conditioning Research, 31(8), 2147-2154.
  • Sieljacks, P., Wang, J., Groennebaek, T., Rindom, E., Jakobsgaard, J. E., Herskind, J., . . . de Paoli, F. V. (2019). Six weeks of low-load blood flow restricted and high-load resistance exercise training produce similar increases in cumulative myofibrillar protein synthesis and ribosomal biogenesis in healthy males. Frontiers in physiology, 10, 649.
  • Skattebo, Ø., Calbet, J. A., Rud, B., Capelli, C. ve Hallén, J. (2020). Contribution of oxygen extraction fraction to maximal oxygen uptake in healthy young men. Acta Physiologica (Oxford, England), 230(2).
  • Suchomel, T. J., Nimphius, S. ve Stone, M. H. (2016). The importance of muscular strength in athletic performance. Sports Medicine, 46(10), 1419-1449.
  • Taylor, A. F., Saunders, M. M., Shingle, D. L., Cimbala, J. M., Zhou, Z. ve Donahue, H. J. (2007). Mechanically stimulated osteocytes regulate osteoblastic activity via gap junctions. American Journal of Physiology-Cell Physiology, 292(1), C545-C552.
  • Taylor, C. W., Ingham, S. A. ve Ferguson, R. A. (2016). Acute and chronic effect of sprint interval training combined with postexercise blood‐flow restriction in trained individuals. Experimental physiology, 101(1), 143-154.
  • Tinken, T. M., Thijssen, D. H., Hopkins, N., Dawson, E. A., Cable, N. T. ve Green, D. J. (2010). Shear stress mediates endothelial adaptations to exercise training in humans. Hypertension, 55(2), 312-318.
  • Vigotsky, A. D., Halperin, I., Lehman, G. J., Trajano, G. S. ve Vieira, T. M. (2018). Interpreting signal amplitudes in surface electromyography studies in sport and rehabilitation sciences. Frontiers in physiology, 8, 985.
  • Wernbom, M., Schoenfeld, B. J., Paulsen, G., Bjørnsen, T., Cumming, K. T., Aagaard, P., . . . Raastad, T. (2020). Commentary: can blood flow restricted exercise cause muscle damage? Commentary on blood flow restriction exercise: considerations of methodology, application, and safety. Frontiers in physiology, 11.
  • Wortman, R. J., Brown, S. M., Savage-Elliott, I., Finley, Z. J. ve Mulcahey, M. K. (2020). Blood Flow Restriction Training for Athletes: A Systematic Review. The American Journal of Sports Medicine, 0363546520964454.
Toplam 65 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Spor Hekimliği
Bölüm Hareket ve Antrenman Bilimleri
Yazarlar

Dursun Alper Yılmaz 0000-0001-8096-5504

Gökhan Dege 0000-0002-9702-1881

Yayımlanma Tarihi 20 Eylül 2021
Gönderilme Tarihi 4 Haziran 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 6 Sayı: 3

Kaynak Göster

APA Yılmaz, D. A., & Dege, G. (2021). Sporcularda Kan Akımı Kısıtlamalı Antrenman ve Fizyolojik Mekanizması. Gaziantep Üniversitesi Spor Bilimleri Dergisi, 6(3), 245-265. https://doi.org/10.31680/gaunjss.948063

ISSN: 2536-5339

Gaziantep Üniversitesi Spor Bilimleri Dergisi

16157

Bu dergi içerisinde yer alan eserler aksi belirtilmedikçe Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.